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PROPAGATION OF NORMALITY
ALONG REGULAR ANALYTIC JORDAN ARCS
IN ANALYTIC FUNCTIONS WITH VALUES
IN A COMPLEX UNITAL BANACH ALGEBRA
WITH CONTINUOUS INVOLUTION

DANIEL TURCOTTE

(Communicated by David R. Larson)

ABSTRACT. Globevnik and Vidav have studied the propagation of normality
from an open subset V' of a region D of the complex plane for analytic functions
with values in the space £(H) of bounded linear operators on a Hilbert space
H. We obtain a propagation of normality in the more general setting of a
converging sequence located on a regular analytic Jordan arc in the complex
plane for analytic functions with values in a complex unital Banach algebra
with continuous involution. We show that in this more general setting, the
propagation of normality does not imply functional commutativity anymore as
it does in the case studied by Globevnik and Vidav. An immediate consequence
of the Propagation of Normality Theorem is that the further generalization
given by Wolf of Jamison’s generalization of Rellich’s theorem is equivalent to
Jamison’s result. We obtain a propagation property within Banach subspaces
for analytic Banach space-valued functions. The propagation of normality
differs from the propagation within Banach subspaces since the set of all normal
elements does not form a Banach subspace.

Notation. We denote by D a region of the complex plane, by O an open set of
the complex plane and by B be a complex unital Banach algebra with continuous
involution. Let X be a complex normed vector space. We denote by H(O, X) the
space of all analytic X-valued functions from D.

In the context of the space of bounded linear operators L£(H) on a Hilbert
space H, Globevnik and Vidav [2] have shown that if f € H(D,L(H)) is nor-
mal in an open subset V' C D, then f and f* form a functionally commutative pair
(f, f*) in D (i.e. the commutator [f(s), f*(t)] is zero for every s,t € D). Hence by
Fuglede’s theorem, f is functionally commutative (i.e. [f(s), f(t)] is zero for every
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s,t € D). In particular, f(s) is normal for every s € D. In other words, the nor-
mality of f(s) propagates from the open subset V into the whole region D. We note
that the first part of this result remains valid in a complex unital Banach algebra
with continuous involution and the second part remains valid in a C*-algebra.

Theorem 1 (Globevnik-Vidav). Let f € H(D;B). If there exists an open subset
V C D such that f(s) is normal for every s € D, then (f, [*) is a functionally
commutative pair. In particular, f is normal in D. Furthermore, if B is a C*-
algebra, then f is functionally commutative.

We will now study the propagation of normality on regular analytic Jordan
arcs for analytic functions with values in a complex unital Banach algebra with
continuous involution. We will see in an example that in this more general setting
the propagation of normality does not imply functional commutativity. We note
that in general the function f* : s — f(s)* is not analytic. However, we will see
that the principle of analytic continuation for vector-valued functions can still be
applied in a restricted way to f* to obtain the Propagation of Normality Theorem.

Definition. A curve v : [a,b] — C is said to be an analytic arc if for each point s,
in [a, b] there exists a power series

v(s) = Z an(s — 50)"
n=0

that converges for s € B(s,, 1) for a certain r, > 0.
An analytic arc v is said to be regular if v'(s) # 0 for every s € [a, b].

Theorem 2 (Propagation of Normality). Let f € H(O,B). Let T be a regular
analytic Jordan arc contained in O and (s,) a converging sequence contained in T’
such that sy, # sm for n# m. If f(s,) is normal for every sy, then f(s) is normal
for every s € T.

Proof. Since T is an analytic Jordan arc, it has an analytic continuation in a simply
connected open neighborhood D of [a,b] in C, symmetrical with respect to the
real axis. As I' is regular, shrinking D if necessary we may suppose that the
continuation has a non-vanishing derivative and is therefore injective. Let us denote
this continuation by j. The region D can be chosen small enough that j(D) C O.
We define

F(t)=f(), teD.
So F € H(D, B). We set

tn = j_l(sn)7

where (t,) is a converging sequence of real numbers and F(t,) = f(sn). So, F(ty)
is normal for every t,,. Let t, denote the limit of (¢,) (it is clear that t, = j71(s,)
where s, is the limit of s,,). We have

o0
F(t) = Z an(t —to)", t € B(to,1,), for a certain 1, > 0.
n=0
Since the involution is continuous, we have

(FO) = an(T=1)",  t€Bltoro).
n=0
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Let g be defined by
g(t) ==Y aj(t—to)",  tE Blto,rs).
n=0

We have g € H(B(to,7,), B) and
F(t)" =g(t), for every t € (to — 1o, to + 7o) -

Hence, the normality of F'(t,) can now be written in terms of the commutation of
two analytic B-valued functions:

[F(tn), g(tn)] =0, tn € B(to, 7o) -
The principal of analytic continuation implies that

[F(t),g(t)]zo, tEB(thro)'

In particular, F' is normal on (t, — ro,to + 7). Since F is continuous, F(t, — 7o)
and F(t, + r,) are also normal.

Consequently, by continuing this process, we see that F(t) is normal for every
t € RND. In particular, this implies that f(s) is normal for every s € T. O

Jamison [3] p. 109] has shown that Rellich’s theorem on the analyticity of
eigenvalues of an analytic matrix-valued function that is self-adjoint on the real
axis can be extended to an analytic family of operators in £(H) that is normal on
the real axis.

Theorem (Jamison, [3]). Let f € H(B(0,d),L(H)), d > 0, be such that f(s) is
normal for s real. If f(0) has an isolated eigenvalue A\, of finite multiplicity m,
then there exists r,0 > 0 such that for each s € B(0,r), the set Sp f(s) N B(Xo, )
is composed of m eigenvalues (counting the multiplicity) of f(s); thus

Sp £(5) N B(Xo,8) = {AV(s),..., Al (s)}, s € B(0,7),

where n is the number of distinct eigenvalues contained in Sp f(s) N B(X,d) for

every s € B'(0,7), n < m, and )\(()1),...,)\(()") are distinct analytic functions in
B(0,7) and A§P(0) = --- = AlM(0).

Wolf [6 Theorem 6.4] has given a generalization of Jamison’s theorem by re-
placing the condition of normality of f(s) for s on the real line by the following:
f(s) is normal for every s € E where E is a subset of the real line having 0 as an
accumulation point. An immediate consequence of the Propagation of Normality
Theorem is that Wolf’s hypothesis that f(s) is normal for every s € E implies
that f(s) is normal for every s real, i.e. Wolf’s theorem is equivalent to Jamison’s
theorem.

We note that up to this day, Jamison’s theorem and its generalization given by
Wolf had each received separate attention. In 1959, Butler, using a completely
different approach from the one used here, gave a simple proof of the theorem as
stated by Wolf. The simplicity of Butler’s paper led Reed and Simon [4, p. 60]
to comment concerning the theorem of Wolf: “Considerable light has been shed on
this theorem by J. Butler”. The Propagation of Normality Theorem provides a new
and descriptive solution to the difficulties of Wolf’s theorem.

The Propagation of Normality Theorem and the Globevnik-Vidav theorem lead
us to formulate the following problem: When I is a regular analytic Jordan curve
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and f € H(D, B) is normal on a subset E C I with a limit point, does the normality
propagate on all of D when D is a simply connected region of the complex plane? We
will construct an example that shows that the answer to this question is negative in
all non-commutative unital complex Banach algebras B with continuous involution.

Example. Let f € H(C; B) where B is non-commutative. We want f to be normal
on the unit circle without being normal on the unit disc. Thus, suppose that f(s)
is normal for every s € OU. We have

f (rew) = Z Aprnet?n
n=0

Since the involution is continuous, we have
[ee]
* 0\ _ * .n_—ifn
[ (re?) = g Arre
n=0

By hypothesis, the function f is normal on U, thus
eiG(pfl) [f(ew% f*(eze)] =0

o j
:ZZ[Ak, 3y 0TIl p=0,1,2,....

—T
The only terms contributing in (@) are those for which 2k — j + p = 0, therefore we
get

[e e}

(2) > Ak A5, ] =0, p=0,12,...
k=0

Now consider the particular case that f is a polynomial of degree 2 with values in
B, i.e. Ap=0 for every k > 3. From (2)), we get the following system of equations:

[Ao, AS] + [A1, AT] + [A2, A5] =0,
(3) [Ao, AT+ [A1, A5] =0,
[Ag, A5] =0
In order to simplify the system of equations (B]), we set Ag = I. Thus we get
@ [A1, AT] + [Ag2, A3] =0,
[A1,A5]=0.
Since the algebra B is non-commutative, it follows from the decomposition of
B into the direct sum B = Sym(B) @ i Sym(B) that there exist two self-adjoint
elements z,,y, € Sym(B) that do not commute. Therefore Ay := z, + iy, is an

element of B that is not normal. Hence, we get a solution of the system (@) by
posing As := Aj. Therefore, the polynomial

f(z) =T+ Ajz+ Aj2?

is normal on the unit circle without being normal on the unit disc.
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Similarly[l if we choose Ay = 0 in @) (instead of Ay = I) we get the following
system which is analogous to (@):
[Ag, Ag] + [A1, AT] =0,
[40,A7] =0
We can set A; = Af, where Ag := x + iy is not a normal element. The polynomial
p(z) = Ao + Ajz

is normal on the unit circle and is not normal anywhere else in the plane since
[p(2),p(2)*] = (1 — |2]?)[Ao, AZ]. Furthermore, p is not functionally commutative,
indeed [p(#1),p(22)] = 0if and only if z; = 23 since [p(z1), p(22)] = (21 —22)[A%, Ao

The next theorem is a direct consequence of the principle of analytic continuation
for analytic vector-valued functions. It describes a propagation property within
Banach subspaces.

Theorem 3. Let f € H(D,X), where X is a complex Banach space. Let G be
a subset of D with a limit point in D. Then for each s € D and j = 0,1,2,...,
Df(D) is included in the Banach subspace generated by f(G).

Proof. Let us first show that f(D) is included in the Banach subspace generated by
f(G). Denote by S(f(G)) the Banach subspace generated by f(G). Let f(z) denote
the class of f(z) in the Banach space X/S(f(G)). We have f € H(D,X/S(f(G)))

and f|g = 0, therefore the principle of analytic continuation implies that f is
identically equal to zero. Hence f(D) C S(f(G)).

Let us now show that Df(D) is included in S(f(G)). Let s, be an arbitrary
element of D. Since the set D is open, there exists r > 0 such that s, + B(0,7) is
contained in D. Let (hy,) be a sequence in B(0,r) converging to 0 and such that
hyp # 0. Then, we have

Df(SO) — lim f(so + hn) — f(so) )
n—oo hn
But we have already shown that f(s,) and f(so, + hy) are elements of S(f(G)), so
M is an element of S(f(G)). Thus, Df(s,) is the limit of a sequence of
elements of S(f(G)). Hence, Df (s,) is an element of S(f(G)). But s, is an arbitrary
point in D, so Df(s) is an element of S(f(G)) for each s € D. By induction on
the order j of the derivative, that implies that D7f(s) is an element of S(f(G)) for
eachs €D and j =0,1,2,.... O

Corollary. Let A € H(D; L(X,Y)) where X and Y are complex Banach spaces and
L(X,Y) is the space of bounded linear operators between X and ). Suppose that
there exists a sequence (s,) converging in D such that A(sy,) is a compact operator.
Then DjA(s) is a compact operator for each s € D and j =0,1,2,....

Proof. Let LC(X,Y) denote the set of compact operators in L(X,Y). LC(X,)) is a
closed vector subspace of £(X,)) [5], theorem 4.18]. So, the closed vector subspace
generated by the set of f(s,) is contained in £LC(X,Y). Therefore, Theorem 3
implies that DJA(D) is contained in £C(X, ). O

1The choice of A3 =0 in B) was suggested by M.D. Choi, University of Toronto.
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