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Abstract. We prove the following theorem. Any isometric operator U , that
acts from the Hilbert space H1(Ω) with nonnegative weight p(x) to the Hilbert
space H2(Ω) with nonnegative weight q(x), allows for the integral representa-
tion

Uf =
1

q(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ω
L(ξ, t)f(t)p(t)dt,

U−1f =
1

p(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ω
K(ξ, t)f(t)q(t)dt,

where the kernels L(ξ, t) and K(ξ, t) satisfy certain conditions that are nec-
essary and sufficient for these kernels to generate the corresponding isometric
operators.

1. Introduction

The rotation operation in a three-dimensional Euclidean space does not modify
the length of vectors, hence it does not modify angles between the vectors. Gen-
eralizing this operation to the Hilbert space leads to orthogonal transformations
(unitary and isometric operators). By definition, an operator acting on the entire
space H is called a unitary operator, if for any two elements in H the transfor-
mation preserves their scalar product, hence also the distance between them. A
unitary operator is linear, its inverse operator is defined on the entire space and
it is a unitary operator that coincides with the adjoint operator. An isometric op-
erator maps one Hilbert space onto another Hilbert space (or its subspace), while
preserving the scalar product of the elements. Therefore a unitary operator is a
particular case of an isometric operator, which occurs when both spaces coincide.
In a finite dimensional space any isometric operator is unitary. This is no longer
true in the general case. For example, the operator U(x1, x2, ...) = (0, x1, x2, ...) in
a coordinate Hilbert space is isometric but not unitary.

Orthogonal transformations hold a notable place in Operator Theory and its
applications.

If H is a separable space, then there exists a closed orthonormal system in H .
A unitary transformation converts this system into an orthonormal system. Con-
versely, if there are two closed orthonormal systems and an operator that transforms
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one of them into another, then this operator is unitary. The well-known integral
transforms of Fourier, Plancherel, Watson, Stiltjes, Hilbert and others ([1], [4]) are
isometric and, in particular, unitary operators in the corresponding spaces.

The importance of these operators prompted the attention of the renowned math-
ematician Bochner. The following fundamental theorem belongs to him ([3]):

The Bochner Theorem. For each orthogonal transformation U in the space
L2[a, b] there exist two kernels, K(s, t) and L(s, t), that are square integrable with
respect to t, such that∫ b

a

K2(s, t)dt =
∫ b

a

L2(s, t)dt = s− a,(α) ∫ t

a

K(s, τ)dτ ≡
∫ s

a

L(t, σ)dσ,(β)

and for each function x(t) ∈ L2(a, b)

(γ) Ux(t) = ∂
∂t

∫ b
a L(t, σ)x(σ)dσ

U−1x(t) = ∂
∂t

∫ b
a
K(t, τ)x(τ)dτ

}
.

Conversely, two kernels, K(s, t) and L(s, t), that satisfy the conditions (α) and (β),
define orthogonal transformation in the space L2(a, b) by the formulas (γ).

Note that the kernels K(s, t) and L(s, t) are “bad”; at least they cannot be
absolutely continuous with respect to s (with square integrable derivative). Other-
wise, it would be possible to differentiate under the integral sign and to represent
the operator as a Fredholm operator. It is known ([1], [2]) that the integral Fred-
holm operator (Aψ)(t) =

∫ b
a
K(s, t)x(s)ds with the kernel K(s, t), that is square

integrable or square integrable with respect to s almost for each t, cannot be an
orthogonal operator. This is because such an operator is compact and therefore
non-invertible, as opposed to an orthogonal operator.

This paper is devoted to the expansion of the Bochner Theorem to isometric
operators, acting from the Hilbert space Hp(x)(Ω) to the Hilbert space Hq(x)(Ω),
x ∈ Rn, Ω =

∏n
i=1[ai, bi].

Let H be a set of complex-valued functions f(x) that are defined on the n-
dimensional block

Ω = {x = (x1, x2, . . . , xn) ∈ Rn| ai ≤ xi ≤ bi, i = 1, n},
and square integrable on Ω with the nonnegative weights p(x) and q(x). Consider
two Hilbert spaces H1 ≡ Hp(x)(Ω) and H2 ≡ Hq(x)(Ω), consisting of elements from
H . The scalar product in the space H1 is given by

(1) (f1, f2)p =
∫

Ω

p(x)f1(x)f2(x)dx,

and the scalar product in the space H2 is given by

(2) (f1, f2)q =
∫

Ω

q(x)f1(x)f2(x)dx.

Let U be an isometric operator from H1 to H2 that preserves the scalar product.
Namely, for every f1 and f2 ∈ H
(3) (f1, f2)p = (Uf1, Uf2)q.
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As is well-known ([1]), an isometric operator is linear, invertible, and the inverse
operator is also isometric.

2. The main theorem

Theorem 1. For each isometric operator U , acting from H1 to H2, there are two
corresponding kernels K(ξ, x) and L(ξ, x), that are defined in Ω×Ω and satisfy the
conditions: ∫

Ω

K(ξ, x)K(ξ, x)q(x)dx =
∫

Ωξ

p(x)dx,(4) ∫
Ω

L(ξ, x)L(ξ, x)p(x)dx =
∫

Ωξ

q(x)dx,(5) ∫
Ωξ

K(η, x)q(x)dx =
∫

Ωη

L(ξ, x)p(x)dx,(6)

where Ωα = {x ∈ Rn|ai ≤ xi ≤ αi, i = 1, n} ⊆ Ω. The operators U and U−1 allow
for integral representations for any f(x) ∈ H(Ω):

Uf =
1
q(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ω

f(x)L(ξ, x)p(x)dx,(7)

U−1f =
1
p(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ω

f(x)K(ξ, x)q(x)dx.(8)

Conversely, two kernels, K(ξ, x) and L(ξ, x), that are defined on Ω×Ω and satisfy
the conditions (4), (5), and (6), generate the isometric operator U from H1 to H2

and its inverse operator U−1, according to formulas (7) and (8).

Proof. We introduce the indicator functions

(9) eξ(x) ≡ eξ1,ξ2,...,ξn(x1, x2, ...xn) =

{
1 for x ∈ Ωξ,
0 for x 6∈ Ωξ.

Set

K(ξ, x) = Ueξ(x),(10)

L(ξ, x) = U−1eξ(x).(11)

Since U and U−1 are isometric, we have

||Ueξ(x)||2q = ||eξ(x)||2p,(12)

||U−1eξ(x)||2p = ||eξ(x)||2q .(13)

Using the equalities (10) and (11) allows us to rewrite (12) and (13) in the integral
form ∫

Ω

K(ξ, x)K(ξ, x)q(x)dx =
∫

Ωξ

p(x)dx,∫
Ω

L(ξ, x)L(ξ, x)p(x)dx =
∫

Ωξ

q(x)dx.

Therefore, we have arrived at equalities (4) and (5).
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For the isometric operator U from H1 to H2, the following equality holds,
∀ f1, f2 ∈ H :

(14) (Uf1, f2)q = (f1, U
−1f2)p,

which yields for f1 = eη(x), f2 = eξ(x)

(Ueη, eξ)q = (eη, U−1eξ)p.

Hence, by taking (10) into consideration, we arrive at the equality (6)∫
Ωξ

K(η, x)q(x)dx =
∫

Ωη

L(ξ, x)p(x)dx

for ∀ ξ = (ξ1, ξ2, ..., ξn), η = (η1, η2, ..., ηn) ∈ Ω. The equality (14) yields ∀ f(x) ∈
H(Ω)

(15) (Uf, eξ)q = (f, U−1eξ)p.

Using the integral form and taking (11) into consideration yields∫
Ω

Uf(x)eξ(x)q(x)dx =
∫

Ω

f(x)L(ξ, x)p(x)dx.

Hence,

(16)
∫

Ωξ

Uf(x)q(x)dx =
∫

Ω

f(x)L(ξ, x)p(x)dx.

Repetitive differentiating of the equality (16) with respect to ξ1, ξ2, ..., ξn yields

∂n

∂ξ1∂ξ2 . . . ∂ξn

∫
Ωξ

Uf(x)q(x)dx =
∂n

∂ξ1∂ξ2 . . . ∂ξn

∫
Ω

f(x)L(ξ, x)p(x)dx.

But

(17)
∂n

∂ξ1∂ξ2 . . . ∂ξn

∫
Ωξ

q(x)Uf(x)dx = q(ξ)(Uf)(ξ).

Therefore

(18) q(ξ)(Uf)(ξ) =
∂n

∂ξ1∂ξ2 . . . ∂ξn

∫
Ω

f(x)L(ξ, x)p(x)dx.

This implies the representation (7). The equality (14), ∀ f ∈ H , implies

(19) (U−1f(x), eξ(x))p = (f(x), Ueξ(x))q .
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Rewriting this in the integral form and taking (11) into consideration yields

(20)
∫

Ωξ

U−1f(x)p(x)dx =
∫

Ω

f(x)K(ξ, x)q(x)dx.

Repetitive differentiating of the equality (20) with respect to ξ1, ξ2, ..., ξn yields

(21) p(ξ)U−1f(x) =
∂n

∂ξ1∂ξ2 . . . ∂ξn

∫
Ω

f(x)K(ξ, x)q(x)dx,

which implies the representation (8).
We now prove the converse statement. Consider the kernels

K(ξ, x) ≡ K(ξ1, ξ2, ..., ξn, x1, x2, ..., xn)

and
L(ξ, x) ≡ L(ξ1, ξ2, ..., ξn, x1, x2, ..., xn)

that are defined on Ω×Ω and satisfy the conditions (4), (5), and (6). We shall show
that the operators U and U−1, defined by the formulas (7) and (8), are mutually
inverse operators from H1 to H2.

Setting f(x) = eη(x) in (7) yields, according to (6),

Ueη(x) =
1
q(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ω

eη(x)L(ξ, x)p(x)dx

=
1
q(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ωη

L(ξ, x)p(x)dx

=
1
q(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ωξ

K(η, x)q(x)dx = K(η, ξ).

Setting f(x) = eη(x) in (8) yields, according to (6),

U−1eη(x) =
1
p(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ω

eη(x)K(ξ, x)q(x)dx

=
1
p(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ωη

K(ξ, x)q(x)dx

=
1
p(ξ)

∂n

∂ξ1 . . . ∂ξn

∫
Ωξ

L(η, x)p(x)dx = L(η, ξ).

Condition (4) implies

||Ueη(x)||2q =
∫

Ω

K(η, x)K(η, x)q(x)dx =
∫

Ωη

p(x)dx.

Condition (5) implies

||U−1eη(x)||2p =
∫

Ω

L(η, x)L(η, x)p(x)dx =
∫

Ωη

q(x)dx,

but

||eη(x)||2p =
∫

Ωη

p(x)dx, ||eη(x)||2q =
∫

Ωη

q(x)dx.

Therefore,
||Ueη(x)||q = ||eη(x)||p, ||U−1eη(x)||p = ||eη(x)||q .
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Since linear operators that preserve norms also preserve scalar products, the oper-
ators U and U−1, defined by (7) and (8), are isometric on the indicator functions
for ∀ξ = (ξ1, ξ2, ..., ξn) ∈ Ω. Any step function allows for unique representation
as a linear combination of the indicator functions eξ1,ξ2,...,ξn(x1, x2, ..., xn) ≡ eξ(x).
Therefore the operators U and U−1 could be expanded to the step functions while
preserving the isometricity property. The set of step functions is dense in H . There-
fore the operators U and U−1 are extendible to the whole space, while preserving
isometricity. This concludes the proof of the theorem.

Corollary 1. For Ω ≡ [a, b], p(x1, x2, ..., xn) = q(x1, x2, ..., xn) ≡ 1, we obtain the
Bochner Theorem.

3. Application of the theorem to Trikomi transform

The Trikomi formulas (see [4]) that relate the standardized Tschebishev polyno-
mials Tn(x), orthogonal on [−1, 1] with weight q(x) = 1√

1−x2 , with the Legendre
polynomials Pn(x), orthogonal on [−1, 1] with weight p(x) = 1, have the following
representation:

(n+
1
2

)(1 + x)
1
2

∫ x

−1

(x− t)− 1
2Pn(t)dt = Tn(x) + Tn+1(x),(22)

(n+
1
2

)(1 − x)
1
2

∫ 1

x

(t− x)−
1
2Pn(t)dt = Tn(x) − Tn+1(x).(23)

Adding the formulas (22) and (23) yields the formula

(24) Tn(x) =
2n+ 1

4

[√
1 + x

∫ x

−1

Pn(t)dt√
x− t

+
√

1− x
∫ 1

x

Pn(t)dt√
t− x

]
,

which represents Tschebishev polynomials by means of Legendre polynomials. We
transform (24) as follows:

Tn(x) =
2n+ 1

4

[∫ x

−1

√
1 + x

x− t Pn(t)dt+
∫ 1

x

√
1− x
t− x Pn(t)dt

]
or

(25) Tn(x) =
2n+ 1

4

∫ 1

−1

G(x, t)Pn(t)dt,

where

(26) G(x, t) =


√

x+1
x−t for − 1 ≤ t < x,√
1−x
t−x for x < t ≤ 1.

The formulas (25) and (26) transform Legendre polynomials into Tschebishev poly-
nomials

2n+ 1
4

Pn(x) U→ Tn(x).

The operator U , acting from H1[−1, 1] to H 1√
1−x2

[−1, 1], transforms a complete or-

thogonal Legendre system into a complete orthogonal Tschebishev system. There-
fore U can be extended to the space of functions on [−1, 1] that are integrable with



BOCHNER THEOREM ON ORTHOGONAL OPERATORS 1597

weight p(x) = 1 and q(x) = 1√
1−x2 , and U is isometric. We can write it as follows:

(27) Uf(x) =
∫ 1

−1

G(x, t)f(t)dt.

It is natural to refer to the operator (27) as the Trikomi operator. According to
our theorem, every isometric operator generates two kernels, K(x, t) and L(x, t).
We calculate these kernels by following the proof of the theorem.

K(ξ, x) = Ueξ(x), where eξ(x) =
{

1 for x < ξ,
0 for x > ξ,

− 1 ≤ x, ξ ≤ 1,

K(ξ, x) =
∫ 1

−1

eξ(t)G(x, t)dt =
∫ x

−1

eξ(t)

√
x+ 1
x− t dt+

∫ 1

x

eξ(t)

√
1− x
t− x dt.

For x < ξ we have

K(ξ, x) =
∫ x

−1

eξ(t)

√
x+ 1
x− t dt+

∫ 1

x

eξ(t)

√
1− x
t− x dt

=
√
x+ 1

∫ x

−1

dt√
x− t

+
√

1− x
∫ ξ

x

dt√
t− x

=
√
x+ 1(−2

√
x− t)

∣∣x−1 +
√

1− x(2
√
t− x)

∣∣ξ
x

= 2
√
x+ 1

√
x+ 1 + 2

√
1− x

√
ξ − x = 2

[
x+ 1 +

√
(1− x)(ξ − x)

]
.

For x > ξ we have

K(ξ, x) =
∫ x

−1

eξ(t)

√
x+ 1
x− t dt+

∫ x

ξ

eξ(t)

√
x+ 1
x− t dt+

∫ 1

x

eξ(t)

√
1− x
t− x dt

=
∫ ξ

−1

√
x+ 1
x− t dt =

√
x+ 1

∫ ξ

−1

dt√
x− t

=
√
x+ 1

(
−2
√
x− t

) ∣∣∣ξ−1

=
√
x+ 1

(
2
√
x+ 1− 2

√
x− ξ

)
= 2

(
x+ 1−

√
(x+ 1)(x− ξ)

)
,

since
∫ x

ξ

eξ(t)

√
x+ 1
x− t dt = 0 for ξ < x.(28)

Hence,

(29) K(ξ, x) =
{

2[x+ 1 +
√

(1− x)(ξ − x)] for x < ξ,

2[x+ 1−
√

(x+ 1)(x− ξ)] for x > ξ.
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According to the theory developed above,

L(ξ, x) = U−1eξ(x),

U−1f =
d

dξ

∫ 1

−1

f(t)K(ξ, t)√
1− t2

dt,

(U−1f)(x) =
d

dx

∫ 1

−1

K(x, t)√
1− t2

f(t)dt

= 2
d

dx

[∫ x

−1

t+ 1 +
√

(1− t)(x − t)√
1− t2

f(t)dt

+
∫ 1

x

t+ 1−
√

(t+ 1)(t− x)√
1− t2

f(t)dt
]

= 2
d

dx

[∫ x

−1

√
1 + t

1− tf(t)dt+
∫ x

−1

√
x− t
1 + t

f(t)dt+
∫ 1

x

√
1 + t

1− tf(t)dt

−
∫ 1

x

√
t− x
1− t f(t)dt

]
= 2

d

dx

[∫ 1

−1

√
1 + t

1− tf(t)dt+
∫ x

−1

√
x− t
1 + t

f(t)dt

−
∫ 1

x

√
t− x
1− t f(t)dt

]
= 2
[√

x− x
1 + x

f(x) +
1
2

∫ x

−1

f(t)dt√
(x− t)(1 + t)

+
√
x− x
1− x f(x) +

1
2

∫ 1

x

f(t)dt√
(t− x)(1 − t)

]
=
∫ x

−1

f(t)dt√
(x− t)(1 + t)

+
∫ 1

x

f(t)dt√
(t− x)(1 − t)

.

Therefore

(30) U−1f(x) =
∫ x

−1

f(t)dt√
(x− t)(1 + t)

+
∫ 1

x

f(t)dt√
(t− x)(1 − t)

.

Setting f(x) = Tn(x), U−1f(x) = 2n+1
4 Pn(x) yields

(31)
2n+ 1

4
Pn(x) =

∫ x

−1

Tn(t)dt√
(x− t)(1 + t)

+
∫ 1

x

Tn(t)dt√
(t− x)(1 − t)

.

The formula (31) converses (24) and allows us to represent Legendre polynomials
by means of Tschebishev polynomials.

We write the formula (30) in a different way:

(32) U−1f(x) =
∫ 1

−1

f(t)Φ(x, t)dt, where Φ(x, t) =


1√

(x−t)(1+t)
for t < x,

1√
(t−x)(1−t)

for t > x.
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For x > ξ

L(ξ, x) = U−1eξ(t) =
∫ x

−1

eξ(t)
dt√

(x− t)(1 + t)
+
∫ 1

x

eξ(t)
dt√

(t− x)(1 − t)

=
∫ ξ

−1

eξ(t)
dt√

(x− t)(1 + t)
+
∫ x

ξ

eξ(t)
dt√

(x− t)(1 + t)
+
∫ 1

x

eξ(t)
dt√

(t− x)(1 − t)

=
∫ ξ

−1

dt√
(x − t)(1 + t)

=
π

2
− arcsin

−2ξ + x− 1
x+ 1

.

For x < ξ

U−1eξ(t) =
∫ x

−1

dt√
(x− t)(1 + t)

+
∫ ξ

x

dt√
(t− x)(1 − t)

=
π

2
+ arcsin

x− 2ξ + 1
1− x .

The kernel L(ξ, x) = U−1eξ(x) can be expressed by the formula

L(x, ξ) =

{
π
2 + arcsin x−2ξ+1

1−x , for x < ξ,
π
2 − arcsin x−2ξ−1

1+x , for x > ξ.

According to the theorem, the operator (Uf)(x) allows for representation

(Uf)(x) =
√

1− x2
d

dx

[ ∫ x

−1

(
π

2
− arcsin

−2x+ t+ 1
t− 1

)f(t)dt

+
∫ 1

x

(
π

2
− arcsin

−2x+ t− 1
t+ 1

)f(t)dt
]

=
√

1− x2
[
(
π

2
− arcsin

−2x+ x+ 1
x− 1

)f(x) +
∫ x

−1

f(t)dt√
(x− 1)(t− x)

− (
π

2
− arcsin

−2x+ x− 1
x+ 1

)f(x) +
∫ 1

x

f(t)dt√
(1 + x)(t− x)

]
=
√

1− x2
[
(
π

2
+ arcsin 1)f(x) +

∫ x

−1

f(t)dt√
(x− 1)(t− x)

− (
π

2
+ arcsin 1)f(x) +

∫ 1

x

f(t)dt√
(1 + x)(t− x)

]
=
√

1− x2
[ ∫ x

−1

f(t)dt√
(1 − x)(x − t)

+
∫ 1

x

f(t)dt√
(1 + x)(t− x)

]
=
√

1− x2
[ 1√

1− x

∫ x

−1

f(t)dt√
x− t

+
1√

1 + x

∫ 1

x

f(t)dt√
t− x

]
=
√

1 + x

∫ x

−1

f(t)dt√
x− t

+
√

1− x
∫ 1

x

f(t)dt√
t− x

.

Hence,

(Uf)(x) =
√

1 + x

∫ x

−1

f(t)dt√
x− t

+
√

1− x
∫ 1

x

f(t)dt√
t− x

,

which coincides with the formula (27). The operator (32) is inverse to the Trikomi
operator.
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