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Abstract. There exists a p-local spectrum T (m) with BP∗(T (m))=
BP∗[t1, . . . , tm]. Its Adams-Novikov E2-term is isomorphic to

ExtΓ(m+1)(BP∗, BP∗),

where

Γ(m+ 1) = BP∗(BP )/ (t1, . . . , tm) = BP∗[tm+1, tm+2, . . . ].

In this paper we determine the groups

Ext1
Γ(m+1)(BP∗, v

−1
n BP∗/In)

for all m,n > 0. Its rank ranges from n + 1 to n2 depending on the value of
m.

1. Introduction and main theorem

The object of this paper is to compute the first cohomology (H1) of certain
subgroups Sn,m of the pro-p-group Sn known as the Morava stabilizer group. Sn
can be described as a group of automorphisms of a certain formal group law Fn
of height n in characteristic p, and as a group of units in the maximal order En
of a certain p-adic division algebra Dn. En is also the endomorphism ring of Fn.
The group Sn has a well known role in the chromatic approach to stable homotopy
theory and the Adams–Novikov spectral sequence introduced in [MRW77]. We refer
the reader to [Rav86, Chapters 5 and 6] for a detailed description.

The subgroups in question can be described in three equivalent ways:
(i) in terms of the the formal group law Fn over the field Fpn defined in [Rav86,

A2.2.10],
(ii) in terms of the maximal order En described in [Rav86, A2.2.16], and
(iii) in terms of topological constructions related to the Adams–Novikov spectral

sequence described in [Rav86, §6.2].
For (i) Fn ∈ Fpn [[x, y]] is a certain power series in two variables. An auto-

morphism of it is an invertible (as a function) power series f(x) in one variable
satisfying the condition

f(Fn(x, y)) = F (f(x), f(y)).
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It is known that if two such automorphisms agree modulo (xi), then they also agree
modulo (xp

m

) where pm is the smallest power of p not less than i. (There is a similar
statement about formal group laws themselves known as the Lazard Comparison
Lemma [Rav86, A2.1.12].) Sn is the group of automorphisms that are congruent
to x modulo (xp), and Sn,m ⊂ Sn is the subgroup of automorphisms congruent to
x modulo (xp

m+1
). In particular Sn,0 = Sn.

For (ii) recall that En is the algebra obtained from the Witt ring W (Fpn) by
adjoining an indeterminate S subject to the relations Sn = p and Sw = wσS for
w ∈ W (Fpn) where σ denotes the Frobenius automorphism of W (Fpn). Then Sn,m
is the group of units in En congruent to 1 modulo (Sm+1).

For (iii) we need to recall the role of Sn in stable homotopy theory. We refer the
reader not familiar with the Adams–Novikov spectral sequence to [Rav86, Chapter
4]. In the chromatic spectral sequence (see [Rav86, Chapter 5]) one is interested in
computing the group

(1.1) ExtBP∗(BP )(BP∗, v−1
n BP∗/In).

Here BP denotes the Brown-Peterson spectrum for a fixed prime p. Its homotopy
is

BP∗ := π∗(BP ) = Z(p)[v1, v2, . . . ]
and its self-homology is

BP∗(BP ) := π∗(BP ∧BP ) = BP∗[t1, t2, . . . ]

where |vi| = |ti| = 2pi − 2. In denotes the ideal (p, v1, . . . , vn−1).
A change-of-rings-isomorphism (see [MR77] or [Rav86, 6.1.1]) equates the Ext

group of (1.1) with
ExtΣ(n)(K(n)∗,K(n)∗),

where Σ(n) is the Morava stabilizer algebra

Σ(n) = K(n)∗ ⊗BP∗ BP∗(BP )⊗BP∗ K(n)∗.

As an algebra,
Σ(n) = K(n)∗[t1, t2, . . . ]/(vnt

pn

i − vp
i

n ti),
where ti is the image of the generator of the same name in BP∗(BP ). Σ(n) is
closely related to the dual of the group ring Fpn [Sn]; we refer the reader to [Rav86,
§6.2] for the precise statement. As in [Rav86, §6.5] we let

Σ(n,m+ 1) = Σ(n)/(t1, . . . , tm);

we call this the generalized Morava stabilizer algebra. It bears a similar relation to
the dual of the group ring Fpn [Sn,m]. The object of this paper is to determine its
first cohomology group,

Ext1
Σ(n,m+1)(K(n)∗,K(n)∗)

(which we will abbreviate by Ext1
Σ(n,m+1)), for all values of m ≥ 0 and n > 0 and

for all primes p. This amounts to identifying the primitive elements in Σ(n,m+ 1).
The case m = 0 was described in [Rav86, 6.3.12].

There is a deeper reason to consider these particular subgroups of Sn. In
[Rav86, §6.5], the second author has introduced the spectrum T (m) which has
BP∗-homology

BP∗(T (m)) = BP∗[t1, · · · · · · , tm],
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and is homotopy equivalent to BP below dimension 2pm+1 − 3.
Then the Adams-Novikov E2-term converging to the homotopy groups of T (m)

E∗,∗2 (T (m)) = ExtBP∗(BP )(BP∗, BP∗(T (m)))

is isomorphic by [Rav86, 7.1.3] to

ExtΓ(m+1)(BP∗, BP∗),

where

Γ(m+ 1) = BP∗(BP )/ (t1, . . . , tm) = BP∗[tm+1, tm+2, . . . ].

In particular Γ(1) = BP∗(BP ) by definition. When using the chromatic spectral
sequence to compute Ext over Γ(m + 1), the group Sn,m has a role analogous to
that of Sn in the classical case. The groups appearing in the E1-term of this version
of the chromatic spectral sequence are known as generalized chromatic Ext groups.
Recently they have been the subject of several papers: [KS01], [IK00], [Ich], [Shic],
[Shia], [Shi95], [KS93], [MS93b], [MS93a], [NY], [INR], and [NRb].

The spectra T (m) and their Ext groups figure in the method of infinite descent,
the technique for explicitly computing the Adams-Novikov E2-term that was used
in [Rav86, Chapter 7] and described further in [Rav02] and [NRa]. An approach
to the limiting behavior of these groups as m approaches infinity is described in
[Rav00].

The ring En has an embedding in the ring of n× n matrices over the Witt ring
W (Fpn) described in [Rav86, 6.2.6]. This means that Sn and each of its subgroups
supports a homomorphism induced by the determinant to the group of units in
W (Fpn), and it is known that its image is contained in the p-adic units Z×p . The
structure of this group is

Z×p ∼=
{

Z/(p− 1)⊕ Zp for p odd,
Z/(2)⊕ Z2 for p = 2.

From this is it possible to construct primitives Tn ∈ Σ(n) for all primes p and
Un ∈ Σ(n) for p = 2 [Rav86, 6.3.12] satisfying

Tn ≡
∑

0≤j<n
tp
j

n mod (t1, . . . , tn−1)

and

Un − Tn ≡
∑

0≤j<n
t2
j

2n mod (t1, . . . , tn−1).

The corresponding elements in Ext1
Σ(n), and their images in Ext1

Σ(n,m+1), are de-
noted by ζn and ρn, respectively.

The results of [Rav86, §6.3] are stated in terms of S(n) = Σ(n) ⊗K(n)∗ Fp and
S(n,m + 1) = Σ(n,m + 1) ⊗K(n)∗ Fp. Passing from Σ(n) to S(n) amounts to
dropping the grading and setting vn equal to 1. Formulas are given for Tn and (for
p = 2) Un in S(n). It is straightforward to lift them to homogeneous elements in
Σ(n).

We can now state our main result.
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Theorem 1.2. For p odd the rank of Ext1
Σ(n,m+1) (as a vector space over K(n)∗)

is 

(m+ 1)n+ 1 for m < n−2
2 ,

(m+ 1)n+ n/2 for n even and m = n−2
2 ,

(m+ 1)n for n−1
2 ≤ m ≤ n− 1,

n2 for m ≥ n− 1.

Let hm+i,j ∈ Ext1 be the element corresponding to tp
j

m+i when it is primitive. Then
a basis for Ext1 is given by

{ζn} ∪ {hm+i,j : 1 ≤ i ≤ m+ 1, j ∈ Z/(n)} for m < n−2
2 ,

{ζn,j : j ∈ Z/(n/2)}
∪ {hm+i,j : 1 ≤ i ≤ m+ 1, j ∈ Z/(n)} for n even and m = n−2

2 ,

{hm+i,j : 1 ≤ i ≤ m+ 1, j ∈ Z/(n)} for n−1
2 ≤ m ≤ n− 1,

{hm+i,j : 1 ≤ i ≤ n, j ∈ Z/(n)} for m ≥ n,
where ζn is as above and

ζn,j = v−p
j

n (tn + v1−pn/2

n tp
n/2

n − t1+pn/2

n/2 )p
j

.

For p = 2 the rank is

(m+ 1)n+ 2 for m < n−2
2 ,

(m+ 1)n+ n/2 + 1 for n even and m = n−2
2 ,

(m+ 1)n+ 1 for n−1
2 ≤ m ≤ n− 1,

n2 for m ≥ n.
The basis is as in the odd primary case but with ρn added when m < n.

Note that for m = 0 this result gives the same answer as [Rav86, 6.3.12]. Also
[Rav86, 6.5.6] implies that Ext1 has rank n2 with the basis indicated above when
m > pn

2p−2 − 1 and m ≥ n − 1; it says that in this case the full Ext group is the
exterior algebra on those generators. [There is a missing hypothesis in [Rav86,
6.5.6] and [Rav86, 6.3.7]; see the online errata for details.]

Corollary 1.3. For n ≤ 3 the rank of Ext1
Σ(n,m+1) is as indicated in the following

table:

n = 1 n = 2 n = 3
p = 2 p odd p = 2 p odd p = 2 p odd

m rank m rank m rank m rank m rank m rank
0 2 ≥ 0 1 0 4 0 3 0 5 0 4
≥ 1 1 1 5 ≥ 1 4 1 7 1 6

≥ 2 4 2 10 ≥ 2 9
≥ 3 9
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2. The proof

We need to show that the indicated basis elements are primitive and that there
are no other primitives. The primitivity of ζn and (for p = 2) ρn was established
in [Rav86, 6.3.12].

For the rest we need to study the coproduct in Σ(n,m+ 1). A formula for the
coproduct in BP∗(BP ) was given in [Rav86, 4.3.13]. In BP∗(BP )/In for i ≤ 2n
we have [Rav86, 4.3.15]

∆(ti) =
∑

0≤j≤i
tj ⊗ tp

j

i−j +
∑

0≤j≤i−n−1

vn+jbi−n−j,n+j−1,

where bi,j satisfies

bi,j ≡ −
1
p

∑
0<k<pj+1

(
pj+1

k

)
tki ⊗ t

pj+1−k
i mod (t1, . . . , ti−1).

It is defined precisely in [Rav86, 4.3.14]. Similar methods yield the following formula
for the coproduct in Γ(m+ 1)/In for i ≤ 2n:

∆(tm+i) = tm+i ⊗ 1 + 1⊗ tm+i +
∑

m<k<i

tk ⊗ tp
k

m+i−k

+
∑

0≤k≤i−n−1

vn+kbm+i−n−k,n+k−1.

In Σ(n,m+ 1) this simplifies to

(2.1)
∆(tm+i) = tm+i ⊗ 1 + 1⊗ tm+i +

∑
m<k<i

tk ⊗ tp
k

m+i−k

+vnbm+i−n,n−1,

where the last term vanishes when i ≤ n. This formula implies that tm+i is primitive
for i ≤ min(m+ 1, n).

When n is even and m = n−2
2 we have

∆(tn) = tn ⊗ 1 + 1⊗ tn + tn/2 ⊗ tp
n/2

n/2 ,

∆(v1−pn/2

n tp
n/2

n ) = v1−pn/2

n

(
tn ⊗ 1 + 1⊗ tn + tn/2 ⊗ tp

n/2

n/2

)pn/2

= v1−pn/2

n

(
tp
n/2

n ⊗ 1 + 1⊗ tpn/2

n + tp
n/2

n/2 ⊗ t
pn

n/2

)
= v1−pn/2

n

(
tp
n/2

n ⊗ 1 + 1⊗ tpn/2

n + vp
n/2−1
n tp

n/2

n/2 ⊗ tn/2
)

= v1−pn/2

n

(
tp
n/2

n ⊗ 1 + 1⊗ tp
n/2

n

)
+ tp

n/2

n/2 ⊗ tn/2

and

∆(t1+pn/2

n/2 ) =
(
tn/2 ⊗ 1 + 1⊗ tn/2

)1+pn/2

= t1+pn/2

n/2 ⊗ 1 + tp
n/2

n/2 ⊗ tn/2 + tn/2 ⊗ tp
n/2

n/2 + 1⊗ t1+pn/2

n/2 ,

so ζn,j is primitive.
This means that each basis element specified in Theorem 1.2 is indeed primitive.
To show that there are no other primitives in Σ(n,m+ 1) we need the methods

of [Rav86, §6.3]. As noted above, results there are stated in terms of S(n) =
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Σ(n)⊗K(n)∗ Fp and S(n,m+ 1) = Σ(n,m+ 1)⊗K(n)∗ Fp. An increasing filtration

on S(n) is described in [Rav86, 6.3.1]. The weight of tp
j

i for each j is the integer
dn,i defined recursively by

dn,i =
{

0 if i ≤ 0,
max(i, pdn,i−n) if i > 0.

The bigraded object E0S(n) is described in [Rav86, 6.3.2]. It is considerably simpler
than the coproduct in the unfiltered object. It contains elements tm+i,j (with
j ∈ Z/(n)) which are the projections of tp

j

m+i. The coproduct on these elements is
given by

(2.2) ∆(tm+i,j) =



tm+i,j ⊗ 1 + 1⊗ tm+i,j

+
∑

m<k<i

tk,j ⊗ tm+i−k,j+k if i < c−m,

tm+i,j ⊗ 1 + 1⊗ tm+i,j

+
∑

m<k<i

tk,j ⊗ tm+i−k,j+k

+ bm+i−n,n−1+j if i = c−m,

tm+i,j ⊗ 1 + 1⊗ tm+i,j

+ bm+i−n,n−1+j if i > c−m,

where c = pn/(p− 1) and bm+i−n,n−1+j is the projection of bm+i−n,n−1+j, which
is 0 for i ≤ n.

Note that tm+i,j is primitive for i ≤ m + 1 as expected, but it is also primitive
for c−m < i ≤ n, which can occur when m > n/(p− 1).

To proceed further we use the fact that the dual of E0S(n,m+1) is a primitively
generated Hopf algebra and therefore isomorphic to the universal enveloping algebra
of its restricted Lie algebra of primitives, by a theorem of Milnor-Moore [MM65].
The cohomology of the unrestricted Lie algebra L(n,m + 1) (this notation differs
from that of [Rav86, §6.3]) is that of the Koszul complex

(2.3) C(n,m+ 1) = E(hm+i,j : i > 0, j ∈ Z/(n)),

where each hm+i,j has cohomological degree 1, with

d(hm+i,j) =


∑

m<k<i

hk,jhm+i−k,j+k if i ≤ c−m,

0 if i > c−m.

Lemma 2.4. Let C(n,m + 1) be the complex of (2.3). Then H1(L(n,m + 1)) =
H1(C(n,m+ 1)) is spanned by

{hm+i,j : 1 ≤ i ≤ m+ 1} ∪ {hm+i,j : i > c−m} ∪

∑
j

hn,j,
∑
j

h2n,j

 ,

(where c = pn/(p− 1)) unless n = 2m+ 2, in which case we must adjoin the set{
hn,j + hn,j+n/2 : j ∈ Z/(n/2)

}
.
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Note that hn,j is either trivial or in the first subset unless n ≥ 2m+ 2 and that
hn,j is either trivial or in the second subset unless p = 2. Note also that the first
and second subsets overlap when m ≥ c/2.

Proof. The primitivity of the elements in the first and second subsets is obvious.
For

∑
j hn,j we have

d

∑
j

hn,j

 =
∑
j

∑
m<k<n−m

hk,jhn−k,j+k

=
∑

m<k<n/2

∑
j

hk,jhn−k,j+k

+
{ ∑

j hn/2,jhn/2,j+n/2 if n is even,
0 if n is odd

+
∑

n/2<k<n−m

∑
j

hk,jhn−k,j+k

=
∑

m<k<n/2

∑
j

hk,jhn−k,j+k + hn−k,j+khk,j

+


∑

0≤j<n/2 hn/2,jhn/2,j+n/2

+
∑
n/2≤j<n hn/2,jhn/2,j+n/2 if n is even,

0 if n is odd

=

{∑
0≤j<n/2 hn/2,jhn/2,j+n/2 + hn/2,j+n/2hn/2,j if n is even,

0 if n is odd
= 0.

Similar calculations show that for p = 2,
∑

j h2n,j is a cocycle, and that for n =
2m+ 2, hn,j + hn,j+n/2 is one.

It remains to show that there are no other cocycles in the subspace spanned by

{hm+i,j : m+ 1 < i ≤ c−m} ,
which is nonempty only when

m <
pn− p+ 1
2(p− 1)

.

It suffices to consider elements which are homogeneous with respect to the filtration
grading, i.e., to restrict our attention to one value of i at a time. Thus we need to
show that the subspace spanned by

(2.5)

{ ∑
m<k<i

hk,jhm+i−k,j+k : j ∈ Z/(n)

}

has dimension

(2.6)


n/2 if m+ i = n and n = 2m+ 2,
n− 1 if m+ i = n and n > 2m+ 2,
n− 1 if m+ i = 2n,
n otherwise.
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When n = 2m+ 2 and m+ i = n, the set of (2.5) is

{
hn/2,jhn/2,j+n/2 : j ∈ Z/(n)

}
=

{
hn/2,jhn/2,j+n/2 : 0 ≤ j < n/2

}
∪
{
hn/2,jhn/2,j+n/2 : n/2 ≤ j < n

}
=

{
hn/2,jhn/2,j+n/2 : 0 ≤ j < n/2

}
∪
{
−hn/2,j+n/2hn/2,j : n/2 ≤ j < n

}
=

{
hn/2,jhn/2,j+n/2 : 0 ≤ j < n/2

}
∪
{
−hn/2,jhn/2,j+n/2 : 0 ≤ j < n/2

}
,

so the subspace it spans has dimension n/2.
Now suppose that m + i = n, n > 2m+ 2, and n is odd. It suffices to consider

the middle two terms in the sum. Let ` = (n− 1)/2. Then we have

d(hn,j) = h`,jh`+1,j+` + h`+1,jh`,j+`+1 + . . . .

We can cancel the second term by adding d(hn,j+`+1), i.e.,

d(hn,j + hn,j+`+1)
= h`,jh`+1,j+` + h`+1,jh`,j+`+1

+h`,j+`+1h`+1,j+`+`+1 + h`+1,j+`+1h`,j+`+1+`+1 + . . .

= h`,jh`+1,j+` + h`+1,jh`,j+`+1

+h`,j+`+1h`+1,j + h`+1,j+`+1h`,j+1 + . . .

= h`,jh`+1,j+` + h`+1,j+`+1h`,j+1 + . . . .

Similarly we can cancel the second term here by adding d(hn,j+1). Since (n+ 1)/2
and n are relatively prime, we will need to sum up the hn,j over all j to get a
cocycle. It follows that this subspace has dimensions n− 1 as claimed.

For m + i = n and n even, let ` = n/2. Then it suffices to consider the middle
three terms of the sum, i.e.,

d(hn,j) = h`−1,jh`+1,j+`−1 + h`,jh`,j+` + h`+1,jh`−1,j+`+1 + . . . .

We can cancel the middle term by adding d(hn,j+`), so we get

d(hn,j + hn,j+`)
= h`−1,jh`+1,j+`−1 + h`,jh`,j+` + h`+1,jh`−1,j+`+1

+h`−1,j+`h`+1,j−1 + h`,j+`h`,j + h`+1,j+`h`−1,j+1 + . . .

= h`−1,jh`+1,j+`−1 + h`−1,j+`h`+1,j−1

+h`+1,jh`−1,j+`+1 + h`+1,j+`h`−1,j+1 + . . . .
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Now we can cancel the third and fourth terms by adding d(hn,j+1 + hn,j+`+1), and
we have

d(hn,j + hn,j+` + hn,j+1 + hn,j+`+1)
= h`−1,jh`+1,j+`−1 + h`−1,j+`h`+1,j−1

+h`+1,jh`−1,j+`+1 + h`+1,j+`h`−1,j+1

+h`−1,j+1h`+1,j+` + h`−1,j+`+1h`+1,j

+h`+1,j+1h`−1,j+`+2 + h`+1,j+`+1h`−1,j+2 + . . .

= h`−1,jh`+1,j+`−1 + h`−1,j+`h`+1,j−1

+h`+1,j+1h`−1,j+`+2 + h`+1,j+`+1h`−1,j+2 + . . . .

Again in order to get complete cancellation we need to sum over all j, so the
subspace has dimension n− 1 as claimed.

We can make a similar argument for m+ i = 2n when p = 2, namely

d(h2n,j) = hn−1,jhn+1,j−1 + hn,jhn,j + hn+1,jhn−1,j+1 + . . .

= hn−1,jhn+1,j−1 + hn+1,jhn−1,j+1 + . . . ,

so

d(h2n,j + h2n,j+1)
= hn−1,jhn+1,j−1 + hn+1,jhn−1,j+1

hn−1,j+1hn+1,j + hn+1,j+1hn−1,j+2 + . . .

= hn−1,jhn+1,j−1 + hn+1,j+1hn−1,j+2 + . . . ,

and so on.
Finally we need to consider the cases of (2.6) where m+ i is not divisible by n.

For this we can show that the expressions∑
m<k<i

hk,jhm+i−k,j+k

are linearly independent. Suppose the term

±hk,xhm+i−k,y

appears in the sums for some value of j. Then modulo n either j = x and y ≡ k+x,
so x ≡ y − k, or j = y and x ≡ m+ i+ y − k. These conditions on x are mutually
exclusive since m+ i is not divisible by n. This means that each monomial of this
form can appear in the sum for at most one value of j, so the sums for various j
are linearly independent. �

Now Ext1
S(n,m+1) is a subspace of H1(L(n,m + 1)). To finish the proof of the

theorem we need to show that the elements hm+i,j with i > max(c−m,m+ 1) do
not survive passage to Ext1

E0S(n,m+1) or from it to Ext1
S(n,m+1). We need to look

at the first and second spectral sequences constructed for this purpose by May in
[May66] and described (for m = 0) in [Rav86, 6.3.4]. It follows from (2.2) that in
the first May spectral sequence

dr(hm+i,j) = bm+i−n,j−1 6= 0 for i > n

for some r.
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This eliminates all of the unwanted primitives except the ones with

max(c−m,m+ 1) < i ≤ n.
For this we can use (2.1), which implies that in the second May spectral sequence,

dr(hm+i,j) =
∑

m<k<i

hk,jhm+i−k,j+k

where

r = min(dn,m+i − dn,k − dn,m+i−k : m < k < i)
= p(m+ i− n)− (m+ i)

since k and m− i− k do not exceed n and m+ i < 2n
= (p− 1)(m+ i)− pn.

Note that
n < c < m+ i ≤ m+ n < 2n

so m + i is not divisible by n. Thus we can argue as in the last paragraph of the
proof of Lemma 2.4 that the sums

∑
m<k<i hk,jhm+i−k,j+k are linearly indepen-

dent. It follows that no linear combination of the unwanted hm+i,j can survive to
Ext1

S(n,m+1), so Ext1
Σ(n,m+1) is as claimed.
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