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COMMUTATOR ESTIMATES

MICHAEL TAYLOR

(Communicated by Andreas Seeger)

Abstract. We produce a family of commutator estimates, bridging two sharp
classical cases of Calderon-Coifman-Meyer type and of Kato-Ponce-Moser type,
respectively. The result provides a useful sharpening of other commonly used
commutator estimates.

1. Introduction

Commutator estimates have played important roles in PDE in a variety of con-
texts, ranging from energy estimates for hyperbolic PDE and other evolution equa-
tions to local and microlocal regularity and propagation of singularities. Here we
survey several types of commutator estimates involving pseudodifferential opera-
tors, and we produce sharpenings of some of these estimates, in a treatment that
unifies them with other commutator estimates.

One basic example is the following.

Proposition 1.1. Assume 1 < p <∞. Given P ∈ OPS0
1,0,

(1.1) ‖[P, f ]u‖Hs,p ≤ C‖f‖Hσ,p‖u‖Hs−1,p ,

provided

(1.2) σ > n
p + 1, 0 ≤ s ≤ σ.

Here f and u are defined onRn. The estimate (1.1) also holds for P ∈ OPS0
1,δ, δ ∈

[0, 1), and furthermore for P ∈ OPBS0
1,1. By definition, an element p(x,D) of

OPSm1,δ has symbol p(x, ξ), satisfying

(1.3) |Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|+δ|β|.

The class OPBSm1,1 consists of operators with symbol p(x, ξ) ∈ Sm1,1, satisfying

(1.4) supp p̂(η, ξ) ⊂ {(η, ξ) : |η| ≤ ρ|ξ|},
for some ρ < 1. This class was introduced by [Mey] and contains the paradifferential
operators introduced in [B]. We note that OPBSm1,1 contains all the operator classes
OPSm1,δ, δ < 1, at least modulo smoothing operators. For a recent example of the
use of Proposition 1.1, with p = 2, see [MS].
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Here is another commutator estimate:

Proposition 1.2. Assume 1 < p <∞ and s ≥ 0. Given P ∈ OPBSm1,1,m > 0, we
have

(1.5) ‖[P, f ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hs+m−1,p + C‖f‖Hs+m,p‖u‖L∞.

In case P ∈ OPBS0
1,1, we have

(1.6) ‖[P, f ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hs−1,p + C‖f‖Hs,p(‖u‖L∞ + ‖Pu‖L∞).

Such an estimate was established in [KP] for P = (I − ∆)m/2, in [T] for P ∈
OPSm1,0, and in [AT] for P ∈ OPBSm1,1. In case P is a differential operator of order
m, (1.5) is a classical Moser estimate.

The following commutator estimates involve only the Lipschitz norm of f .

Proposition 1.3. Assume 1 < p <∞. Then

(1.7) P ∈ OPBS1
1,1 ⇒ ‖[P, f ]u‖Lp ≤ C‖f‖Lip1‖u‖Lp.

Also

(1.8) P ∈ OPBS0
1,1 ⇒ ‖[P, f ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hs−1,p , 0 ≤ s ≤ 1.

The result (1.7) was proven in [Cal] for classical first-order pseudodifferential
operators, in [CM2] for P ∈ OPS1

1,0, and in [AT] for P ∈ OPBS1
1,1. The result

(1.8) was proven in [T] for P ∈ OPS0
1,0 and in [AT] for P ∈ OPBS1

1,1.
Clearly Proposition 1.2 is stronger than Proposition 1.1 when s > n/p+ 1, and

Proposition 1.3 is stronger than Proposition 1.1 when 0 ≤ s ≤ 1. One of our goals
here is to produce sharpened versions of Proposition 1.1 for the entire range s ∈ R+.
One result we will establish is the following.

Proposition 1.4. Assume 1 < p < ∞. Let P ∈ OPBS0
1,1. Then, for s > 1,

0 < θ < 1, we have

(1.9) ‖[P, f ]u‖Hs,p ≤ C1‖f‖Lip1‖u‖Hs−1,p + C2‖f‖Hs,p/θ‖u‖Lp/(1−θ),

with C1 = C1(s, p), C1 = C2(s, p, θ).

The outline of the rest of this paper is as follows. In §2 we discuss a general
setup for estimating [P, f ]u in terms of a paraproduct decomposition. Given P ∈
OPBSm1,1, we estimate the Hs,p-norm of this quantity by C‖f‖Lip1‖u‖Hs+m−1,p

plus Sobolev norms of a pair of paraproducts. In §3 we discuss various paraproduct
estimates to be brought to bear on these remainder terms. In the course of doing
this we recall the proof of Proposition 1.2 and we extend Proposition 1.3 to treat
P ∈ OPBSm1,1, with |m| ≤ 1. In §4 we prove Proposition 1.4 and analogues for
P ∈ OPBSm1,1, with m > 0. We show explicitly how certain choices of θ lead to
results that sharpen Proposition 1.1.

2. First basic estimate

In this section we establish the following proposition, which distills part of the
commutator analysis as presented in §3.6 of [T].
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Proposition 2.1. Given P ∈ OPBSm1,1, s ≥ 0, s ≥ −m, 1 < p <∞, we have

(2.1) ‖[P, f ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hs+m−1,p + C‖Tuf‖Hs+m,p + ‖TPuf‖Hs,p .

Proof. We start with expansions

fPu = TfPu+ TPuf +R(f, Pu),

P (fu) = PTfu+ PTuf + PR(f, u),
(2.2)

where Tf is Bony’s paraproduct operation. Next, we have

(2.3) f ∈ Lip1 ⇒ [Tf , P ] ∈ OPBSm−1
1,1 ,

modulo a smoothing operator. For P ∈ OPSm1,0, this is established in [T], (3.6.4),
and for P ∈ OPBSm1,1, in [AT], Proposition 4.2 (with certain technical adjustments,
discussed there). Hence

(2.4) ‖[P, Tf ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hs+m−1,p .

Also, Proposition 3.5.D of [T] gives

(2.5) ‖R(f, g)‖Hσ,p ≤ C‖f‖Lip1‖g‖Hσ−1,p , σ ≥ 0, 1 < p <∞,

so we have

(2.6) ‖R(f, Pu)‖Hs,p + ‖PR(f, u)‖Hs,p ≤ C‖f‖Lip1‖u‖Hs+m−1,p ,

provided s ≥ 0 and s+m ≥ 0. This establishes (2.1).

3. Estimates on Tvf

To apply (2.1), we need estimates on Tuf and on TPuf . We collect a number of
such useful estimates here. To begin, we have

(3.1) v ∈ L∞ ⇒ Tv ∈ OPBS0
1,1

(cf. [T], (3.5.5)), and hence

(3.2) ‖Tvf‖Hσ,p ≤ C‖v‖L∞‖f‖Hσ,p , σ ∈ R, 1 < p <∞.

Note that this plus (2.1) yields the estimate (1.6). Next we have, for m > 0,

(3.3) v ∈ C−m∗ ⇒ Tf ∈ OPBSm1,1,

where C−m∗ is a Zygmund space; cf. [T], (3.5.7). Hence

(3.4) ‖Tvf‖Hs,p ≤ C‖v‖C−m∗ ‖f‖Hs+m,p , s ∈ R, 1 < p <∞, m > 0.

This plus (2.1) yields the estimate (1.5).
Next, we have the fundamental paraproduct estimate of [CM]:

(3.5) ‖Tvf‖Lp ≤ C‖v‖Lp‖f‖BMO.

See also [T], Appendix D, for a proof. As shown in [T], Proposition 3.5.F, one can
deduce from (3.5) that

(3.6) ‖Tvf‖Hs,p ≤ C‖v‖Hs−r,p‖f‖hr,∞, 0 ≤ s ≤ r,

for r ∈ Z+. Here hr,∞ denotes the bmo-Sobolev space

h
r,∞ = (I −∆)−r/2 bmo,



1504 MICHAEL TAYLOR

and bmo denotes the localized John-Nirenberg space. The case r = 1 of (3.6) is
particularly germane to our analysis. This estimate applied to the remainders in
(2.1) yields the following extension of Proposition 1.3.

Proposition 3.1. Given P ∈ OPBSm1,1, |m| ≤ 1, we have

(3.7) ‖[P, f ]u‖Hs,p ≤ C‖f‖Lip1‖u‖Hs+m−1,p ,

provided either

(3.8) 0 ≤ m ≤ 1 and 0 ≤ s ≤ 1−m, or − 1 ≤ m ≤ 0 and |m| ≤ s ≤ 1.

Proof. We have

0 ≤ s ≤ 1⇒ ‖TPuf‖Hs,p ≤ C‖Pu‖Hs−1,p‖f‖h1,∞

≤ C‖u‖Hs+m−1,p‖f‖h1,∞
(3.9)

and

(3.10) 0 ≤ s+m ≤ 1⇒ ‖Tuf‖Hs+m,p ≤ C‖u‖Hs+m−1,p‖f‖h1,∞ ,

from which the result follows.
Next, we interpolate between (3.2) and (3.5) to obtain further useful estimates.

Proposition 3.2. For 1 < p <∞, s ∈ R, 0 < θ ≤ 1,

(3.11) ‖Tvf‖Hs,p ≤ C‖v‖Lp/(1−θ)‖f‖Hs,p/θ .

Proof. If v(z) and f(z) are holomorphic on Ω = {z : 0 < Re z < 1}, appropriately
bounded on Ω, with v(iy) bounded in Lp, v(1 + iy) bounded in L∞, f(iy) bounded
in bmo, and f(1 + iy) bounded in Hσ,p, we have for Φ(z) = Tv(z)f(z) that Φ(θ) ∈
Hθσ,p. Results of [FS] yield [bmo, Hσ,p]θ = Hθσ,p/θ, so we have (3.11).

4. Further commutator estimates

To begin, we record how Proposition 1.1 is a consequence of (1.6) and (1.8).

Proof of Proposition 1.1. Fix σ > n/p+ 1. To prove (1.1), it suffices to establish it
for the two endpoint cases, s = 0 and s = σ; the rest follows by interpolation. But
(1.6) implies (1.1) for s = σ and (1.8) implies (1.1) for s = 0.

To be sure, this is a sledgehammer approach to Proposition 1.1. A direct para-
product proof is briefly presented in [MS] (with specific reference to p = 2). We
redeem our approach by now presenting the

Proof of Proposition 1.4. In light of (2.1), it suffices to show that, for 0 < θ < 1,

(4.1) ‖Tuf‖Hs,p + ‖TPuf‖Hs,p ≤ C‖f‖Hs,p/θ‖u‖Lp/(1−θ),

given P ∈ OPBS0
1,1. But note that (3.11) then applies to v = u and to v = Pu, so

we are done.
We now discuss in more detail how Proposition 1.4 refines Proposition 1.1.

Proposition 4.1. Given σ = n/p + 1 and 1 < s < σ, there exists θ ∈ (0, 1) such
that

(4.2) ‖f‖Hs,p/θ ≤ C‖f‖Hσ,p and ‖u‖Lp/(1−θ) ≤ C‖u‖Hs−1,p .
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Proof. For s = 1 and s = σ, respectively, we have

Hσ,p ⊂ h
1,∞, H0,p = Lp,

Hσ,p = Hσ,p, Hσ−1,p ⊂ bmo .
(4.3)

Interpolation gives

(4.4) Hσ,p ⊂ Hθ(σ−1)+1,p/θ, Hθ(σ−1),p ⊂ Lp/(1−θ).
Alternatively (and with less technology), the results of (4.4) follow directly from
the Sobolev embedding theorem. As θ runs over (0, 1), s = θ(σ − 1) + 1 runs over
(1, σ), so we have (4.2).

Note that, if θ = θ(n, p, s) ∈ (0, 1) is picked so that (4.2) holds, then p/θ =
n/(s− 1), and we have

(4.5) ‖[P, f ]u‖Hs,p ≤ C(‖f‖Lip1 + ‖f‖Hs,n/(s−1))‖u‖Hs−1,p , 1 < s < n
p + 1,

for P ∈ OPBS0
1,1, which is sharper than (1.1) in this range. The estimate (4.5) is

a corollary of the following even sharper result, a special case of (1.9):

(4.6) ‖[P, f ]u‖Hs,p ≤ C1‖f‖Lip1‖u‖Hs−1,p + C2‖f‖Hs,n/(s−1)‖u‖Lnp/(n−(s−1)p),

valid for 1 < s < n/p+ 1.
As already noted, (1.6) is sharper than (1.1) when s > n/p+1. We next sharpen

(1.1) in the case s = n/p+ 1. In such a case we have

(4.7) u, Pu ∈ Hn/p,p ⊂ bmo ⊂ C0
∗ .

Now (3.4) fails for m = 0, but a simple modification of the Littlewood-Paley argu-
ment used in such estimates gives

(4.8) ‖Tug‖Hs,p ≤ C‖(log Λ)g‖Hs,p‖u‖C0
∗
,

for s ∈ R, 1 < p <∞, where

(4.9) Λ = (2I −∆)1/2.

This estimate together with (2.1) yields

(4.10) ‖[P, f ]u‖Hn/p+1,p ≤ C‖f‖Lip1‖u‖Hn/p,p + C‖(log Λ)f‖Hn/p+1,p‖u‖C0
∗
,

for P ∈ OPBS0
1,1.

We now derive further estimates on ‖[P, f ]u‖Hs,p when P ∈ OPBSm1,1 with m >
0. In all cases we retain the standing assumption that

(4.11) s ≥ 0, 1 < p <∞.
The estimates we need derive from estimates on ‖Tuf‖Hs+m,p and on ‖TPuf‖Hs,p .
Thus various cases arise, depending on whether s+m ∈ (1, n/p+ 1) or not and on
whether s ∈ (1, n/p+ 1) or not. We break the first issue into four cases:

s+m > n
p + 1,(I)

s+m = n
p + 1,(II)

1 < s+m < n
p + 1,(III)

0 ≤ s+m ≤ 1.(IV)

In Case (I) the estimate (1.5) is always a servicable sharpening of

(4.12) ‖[P, f ]u‖Hs,p ≤ C‖f‖Hσ,p‖u‖Hs+m−1,p ,
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for n/p+ 1 < s+m ≤ σ. Case (II) calls for the estimate

(4.13) ‖Tuf‖Hs+m,p ≤ C‖(log Λ)f‖Hn/p+1,p‖u‖C0
∗
.

Following the arguments of Proposition 4.1, we see that Case (III) calls for the
estimate

(4.14) ‖Tuf‖Hs+m,p ≤ C‖f‖Hs+m,n/(s+m−1)‖u‖Lnp/(n−(s+m−1)p),

and that the right side of (4.14) is dominated by

(4.15) C‖f‖Hn/p+1,p‖u‖Hs+m−1,p .

Case (IV) calls for the estimate

(4.16) ‖Tuf‖Hs+m,p ≤ C‖f‖h1,∞‖u‖Hs+m−1,p ,

which follows from (3.6), with r = 1. The right side of (4.16) is also dominated by
(4.15).

Cases (II)–(IV) break up into sub-cases in which to estimate ‖TPuf‖Hs,p . We
have

1 < s < n
p + 1,(A)

0 ≤ s ≤ 1.(B)

Note that, since we are assuming m > 0, the case s ≥ n/p+ 1 is subsumed in Case
(I). Now we see that Case (A) calls for the estimate

(4.17) ‖TPuf‖Hs,p ≤ C‖f‖Hs,n/(s−1)‖u‖Hm,np/(n−(s−1)p) ,

and, by Proposition 4.1, the right side of (4.17) is dominated by (4.15). Finally,
Case (B) calls for the estimate

(4.18) ‖TPuf‖Hs,p ≤ C‖f‖h1,∞‖u‖Hs+m−1,p ,

also dominated by (4.15).
In particular, in all cases we have sharpenings of the following generalization of

Proposition 1.1.

Proposition 4.2. Assume 1 < p <∞, m ≥ 0. Given P ∈ OPBSm1,1, we have

(4.19) ‖[P, f ]u‖Hs,p ≤ C‖f‖Hσ,p‖u‖Hs+m−1,p ,

provided

(4.20) σ > n
p + 1, s ≥ 0, s+m ≤ σ.

References

[AT] P. Auscher and M. Taylor, Paradifferential operators and commutator estimates, Comm.
PDE 20 (1995), 1743–1775. MR 96j:47047

[B] J.-M. Bony, Calcul symbolique et propagation des singularitiés pour les équations aux
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