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NONZERO FIXED POINTS
OF POWER-BOUNDED LINEAR OPERATORS

EFE A. OK

(Communicated by Joseph A. Ball)

Abstract. This paper provides a variety of sufficient conditions for the exis-
tence of a nonzero fixed point of a power-bounded linear operator defined on
a real Banach space. In the case of power-bounded positive operators on a
Banach lattice, among the conditions we provide are not being strongly stable
along with commuting with a compact operator or being quasicompact. These
results apply directly to Markov operators. In the case of an arbitrary power-
bounded operator on a Hilbert space, being uniformly asymptotically regular
and not strongly stable guarantees the existence of a nonzero fixed point.

Introduction

This paper is concerned with the problem of determining whether or not a given
power-bounded linear operator on a real Banach space has a nontrivial fixed point.
A particularly interesting instant of the query is obtained in the case of nonex-
pansive linear operators (i.e. contractions). While nonexpansive maps are studied
extensively within metric fixed point theory, this problem does not seem to have
received much attention in the literature. It appears that most of the related work
is done rather through ergodic theory in the special case of Markov operators.
By contrast, our objective here is to treat the problem from an operator-theoretic
viewpoint, and derive general nonzero fixed point theorems for contractions defined
on real Banach spaces. By way of application, we then use these results to pro-
vide seemingly new sufficient conditions for the existence of invariant densities for
Markov operators and homogeneous Markov chains.

After going through some preliminary nomenclature in Section 1, we focus in
Section 2 on power-bounded positive operators defined on a real Banach lattice X .
It is shown that any such operator T that commutes with a compact operator K has
a nonzero fixed point if the norms of the T -iterations of at least one positive point
in the image of K does not converge to zero. The same conclusion is also obtained
for positive and power-bounded Dunford-Pettis operators that commute with a
weakly compact operator. In particular, if T is power-compact, then T must have
a positive fixed point provided that it is not strongly stable on the positive cone.
If X is an AL-space, power-compactness can be replaced in this statement with
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quasicompactness. An immediate implication of these results is that if a Markov
operator is quasicompact, or it commutes with a compact operator, then it has
an invariant density (Section 3). Finally, in Section 4, we show that a uniformly
asymptotically regular and power-bounded operator on a real Hilbert space has a
nonzero fixed point if and only if it is not strongly stable. It is not known if this
observation holds for non-uniformly asymptotically regular operators.

1. Preliminaries

We adopt the standard notation and terminology of the theory of linear opera-
tors. For any Banach space X , we let BX and SX stand for the closed unit ball and
unit sphere in X, respectively. For any nonempty S ⊆ X, we denote by co(S) the
smallest closed convex set that contains S, and let ext(S) stand for the set of all
extreme points of S. If (ek) is a Schauder basis for X, the associated kth coordinate
of a vector x is denoted by

〈
x, ek

〉
, that is, x =

∑〈
x, ek

〉
ek for every x ∈ X.

The Banach algebras of all linear and bounded linear operators on X are denoted
as L(X) and B(X), respectively. As usual, the adjoint, the spectrum, the point
spectrum, the continuous spectrum, the residual spectrum, and the spectral radius
of an operator T ∈ B(X) are denoted by T ∗, σ(T ), σp(T ), σc(T ), σr(T ), and r(T ),
respectively. In turn, the set of compact and weakly compact operators on X
are denoted respectively as K(X) and Kw(X), both of which are closed ideals in
B(X). Adopting the convention T 0 := I, we let T n stand for the nth iteration of
T for each nonnegative integer n. T is called algebraic if there exist an n ∈ N and
α0, ..., αn ∈ Z such that

∑n
i=1 αiT

i = 0. If T n ∈ K(X) for some n ∈ N, then T is
called power-compact, and if ‖T n −K‖ < 1 for some (n,K) ∈ N×K(X), then T is
called quasicompact. Weakly power-compact and weakly quasicompact operators
are defined by replacing K(X) with Kw(X) in these definitions, respectively.

A linear operator T on X is called a contraction if ‖T ‖ ≤ 1. Obviously, due to its
linearity, T is a contraction if and only if it is nonexpansive, that is, ‖Tx− Ty‖ ≤
‖x− y‖ for all x, y ∈ X. One of the objectives of this paper is to investigate which
sort of contractions have nonzero fixed points. The analysis will, however, be
conducted in terms of a more general class of operators.

Definition. Let X be a normed linear space and T ∈ B(X). We say that T is
power-bounded if

(1) lim sup
n→∞

‖T nx‖ <∞ for all x ∈ X.

If T ∈ B(X) is similar to a contraction, that is, if there exists an invertible
U ∈ B(X) with

∥∥UTU−1
∥∥ ≤ 1, then T is power-bounded, for in this case

‖T n‖ =
∥∥U−1UT nU−1U

∥∥ ≤ ∥∥U−1
∥∥∥∥UTU−1

∥∥n ‖U‖ ≤ ∥∥U−1
∥∥ ‖U‖

for each n ∈ N. The converse is not true; a power-bounded operator in B(X) need
not be similar to a contraction (cf. Foguel [5]). Note also that, when X is a Banach
space, it follows from the uniform boundedness principle that T ∈ B(X) is power-
bounded iff supn≥1 ‖T n‖ <∞. Thus, in this case, the power-boundedness property
simply avoids the norms of the iterates of a bounded operator escape to infinity.

Obviously, a power-bounded operator T ∈ B(X) that has a nonzero fixed point
cannot be strictly contractive (i.e. ‖T ‖ < 1), for the unique fixed point of a strictly
contractive linear operator is 0. The converse is clearly not true; even a contrac-
tion which is not strictly contractive (such as a rotation) need not have a nonzero
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fixed point. Thus one needs to assert stronger properties than “not being strictly
contractive” for the power-bounded members of B(X) in order to guarantee the
existence of a nonzero fixed point. Following the terminology of Kubrusly [10], the
main property that we shall invoke here for this purpose is introduced next.

Definition. Let X be a normed linear space and T ∈ B(X). We say that T is
strongly stable if

(2) lim inf
n→∞

‖T nx‖ = 0 for all x ∈ X.

“Not being strongly stable” is a local property that puts a positive lower bound
on the norms of the T -iterations of a single point. It is thus satisfied by any isometry,
or more generally, any C1-contraction (cf. Nagy-Foiaş [15]). In contrast to power-
boundedness, it can be thought of as avoiding the norms of the T -iterations of a
given point escape to zero. So, at least locally, this property works counter to power
boundedness. Consequently, in the presence of these two properties, one is likely
to have a good control over the sequence of the norms of the local T -iterates. This
intuition underlies much of what follows.

Finally, we introduce our lattice-theoretic terminology. Unless explicitly stated
otherwise, by a Banach lattice we mean a real Banach lattice. For any Banach
lattice (X,%), the positive cone {x ∈ X : x % 0} is denoted as X+ and X++ :=
X+\{0}. We recall that the antisymmetry of % implies that X+ ∩ −X+ = {0}
and that an operator T ∈ L(X) is called positive if T (X+) ⊆ X+. We denote
the set of all positive operators on X as L+(X) and note that L+(X) ⊆ B(X).
An operator T ∈ L(X) is called positively weakly quasicompact if there exists an
(n,K) ∈ N×Kw(X) such that both K and T n−K are positive, and ‖T n −K‖ < 1.
Obviously, every weakly power-compact operator in L+(X) is positively weakly
quasicompact.

2. Compactness and positive fixed points

of power-bounded operators

Let X be a Banach lattice. One obvious way of guaranteeing that a contraction
T ∈ L+(X) has a nonzero fixed point is to impose a restriction on the asymptotic
behavior of the T -iterations of a given point in the space. For instance, if limT nx ∈
X++ for some x ∈ X, then limT nx is a nonzero fixed point of T. Or, less trivially,
if X is uniformly convex and there exists an (x, y) ∈ X ×X++ such that T n(x) ∈
X+ + y for each n, then T has a positive fixed point, because the Browder-Göhde
fixed point theorem applies to the restriction of T to co{T nx : n ∈ N}.

Of course imposing conditions directly on the sequence (T nx) is more demanding
than working with the real sequence (‖T nx‖). For an isometry, for instance, the
exact nature of the first sequence may be difficult to determine, while that of the
latter is trivial. Motivated by this observation, the iterative conditions that are
considered in this paper are imposed only on such real sequences. In particular,
the main results of this section (Theorems 2.1 and 2.2) will show that “not being
strongly stable” is enough to guarantee the existence of a nonzero fixed point for a
positive contraction that satisfies relatively mild compactness postulates.

2.1. The case of commutants of compact operators.

Theorem 2.1.A. Let X be a Banach lattice, and let T ∈ L+(X) be a power
bounded operator that commutes with a compact operator K ∈ K(X). Then T has
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a nonzero fixed point in X+ provided that

(3) lim inf
n→∞

‖T ny‖ > 0 for some y ∈ X+ ∩K(X).

Proof. Pick any x ∈ K−1(y) and observe that x, y 6= 0 by (3). Now, for any z ∈ X,
let OT (z) stand for the T -orbit of z. Since T and K commute, we have

OT (y) := {T ny : n = 0, 1, ...} = {T nKx : n = 0, 1, ...} = K(OT (x)).

We let A := cl(OT (y)). Since T is power-bounded, {T nx : n ∈ N} is a bounded
set, so K(OT (x)) is relatively compact. Thus A is a nonempty compact set in X.
Moreover,

T (cl(OT (y))) ⊆ cl(T (OT (y)))

= cl(TK(OT (x)))

= cl(KT (OT (x)))

⊆ cl(K(OT (x)))

so that T (A) ⊆ A. Next we define S := co(A) which is a convex set. Given that
A is compact, S must be compact by Mazur’s compactness theorem. Moreover,
since T (A) ⊆ A, we have T (co(A)) ⊆ co(T (A)) ⊆ co(A), that is, T (S) ⊆ S. Thus,
T |S is a continuous self-map on the nonempty convex and compact set S. By the
Schauder-Tychonoff fixed point theorem, therefore, there exists a z ∈ S such that
z = T |S(z) = Tz. To complete the proof, it is then enough to show that S ⊆ X++.

Given that T is positive and y ∈ X+, we have OT (y) ⊆ X+. Since the positive
cone of any normed lattice is closed, X+ is a closed convex set in X, so A ⊆ X+.
This further implies that S ⊆ X+. So all we need to show is that 0 /∈ S. Observe
first that 0 /∈ S\ext(S). Indeed, if u and v are two distinct vectors in S, then, since
S ⊆ X+, either u ∈ X++ or v ∈ X++, and hence, given that X+ ∩−X+ = {0}, we
have λu+ (1− λ)v ∈ X++ for all λ ∈ (0, 1). In fact, 0 ∈ ext(S) cannot hold either.
For, given that A is compact, by Milman’s converse to the Krein-Milman theorem,
we have ext(S) = ext(co(A)) ⊆ A, so 0 ∈ ext(S) would imply that 0 ∈ A. But this
would in turn yield a strictly increasing sequence (nk) of positive integers such that
‖T nky‖ → 0 as k → ∞, which is impossible in view of (3). Thus 0 /∈ S and the
proof is complete. �

Whether Theorem 2.1.A would remain valid if K was taken only to be weakly
compact is an open problem. However, the above proof modifies easily to show that
this is the case at least for Dunford-Pettis operators.

Theorem 2.1.B. Let X be a Banach lattice, and let T ∈ L+(X) be a power
bounded Dunford-Pettis operator that commutes with a weakly compact operator
K ∈ Kw(X). Then T has a nonzero fixed point in X+ provided that (3) holds.

Proof. Choosing any x ∈ K−1(y), in this case we define A := clw(OT (y)) and
S := co(A). By the Krein-Šmulian weak compactness theorem, S is a nonempty
convex and weakly compact set in X. Moreover, since it is linear, T is weak-to-weak
continuous, and hence we may apply the Schauder-Tychonoff fixed point theorem
again to find a point of S fixed under T. In turn, the argument given in the second
paragraph of the proof of Theorem 2.1.A yields a strictly increasing sequence (nk) of
positive integers such that w-limT nky = 0. Since T is Dunford-Pettis, this implies
that lim

∥∥T nk+1y
∥∥ = 0, contradicting (3). �
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The spirit of these results is reminiscent of certain classical results of metric fixed
point theory. For instance, a well-known generalization of the famous Kirk fixed
point theorem says that every nonexpansive self-map of a weakly compact convex
set in a Banach space X has a fixed point, provided that X has weak asymptotic
normal structure [1]. Or, it is known that every nonexpansive self-map of a weakly
compact convex set in a Banach space with a 1-unconditional basis has a fixed
point [12]. Theorems 2.1.A-B depart from such results in that they deal with the
existence of nonzero fixed points. In addition, owing to their linear nature, they do
not require the Banach space under consideration to have a special structure such
as having a Schauder basis or normal structure.

The following important special case of Theorems 2.1.A-B may be worth empha-
sizing.

Corollary 2.1. Let X be a Banach lattice, and let T ∈ L+(X) be a power-bounded
and power-compact operator. T has a nonzero fixed point in X+ if and only if
lim inf ‖T nx‖ > 0 for some x ∈ X+.

Proof. Pick any positive integer n with T n ∈ K(X), define K := T n and y := T nx,
and apply Theorem 2.1.A. �

We shall show in Section 2.2 that Corollary 2.1 can be substantially generalized
in the case of AL-spaces.

Remark 2.1. Corollary 2.1 is tight in the sense that none of its hypotheses can be
dropped in its statement. (A similar remark applies to Theorem 2.2 below.) That
this is the case for power boundedness and positivity is shown by trivial examples
on R. The weighted right-shift operator T (x1, x2, ...) := (x2, 2−1x3, 3−1x4...) lacks
a nonzero fixed point, but it is a positive compact contraction on `2. Finally, the
operator T ∈ B(C[0, 1]) defined by T (f)(t) := tf(t) is a positive contraction such
that

∥∥T n(1[0,1])
∥∥
∞ = sup0≤t≤1 |tn| = 1 for each n. But it is plain that T does not

have a nonzero fixed point.

Remark 2.2. (a) One does not in fact need the full strength of power-boundedness
in Corollary 2.1. Indeed, if T ∈ L+(X) is power-compact, then it has a positive
fixed point iff there exists an x ∈ X+ such that

∞ > lim sup
n→∞

‖T nx‖ ≥ lim inf
n→∞

‖T nx‖ > 0.

The proof is analogous to that of Theorem 2.1.A.
(b) A well-known result of Krein and Rutman [9] says that if T ∈ L+(X) is

power-compact, then the spectral radius r(T ) is an eigenvalue of T corresponding
to an eigenvector in X+. The Gelfand spectral formula implies that if T is nonexpan-
sive and not strongly stable, then r(T ) = 1, so in this case the said Krein-Rutman
theorem guarantees that T has a nonzero fixed point in X+. Corollary 2.1 can be
viewed as a modest generalization of this observation.

The final result of this subsection illustrates how Corollary 2.1 can be utilized
in certain Banach sequence spaces. We first make note of the following version of
the discrete Fubini theorem.

Lemma 2.1. Let (X,%) be a Banach lattice with an order-continuous norm. If
(xmk) is a double sequence in X+ such that

∑
k

∑
m xmkconverges, then

∑
m

∑
k xmk

also converges and
∑
m

∑
k xmk =

∑
k

∑
m xmk.
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Proof. Define y :=
∑

k

∑
m xmk and let

yn := y −
∑

n≥m≥1

∑
k≥1

xmk

for any n ∈ N. Clearly, y1 % y2 % · · · % 0, so by order-continuity, (yn) is convergent.
This implies that y %

∑
m

∑
k xmk ∈ X+. Interchanging the roles of m and k, we

also get
∑

m

∑
k xmk % y, and the result follows. �

Corollary 2.2. Let X be a real Banach space with an unconditional Schauder basis
(ek) such that ∑

k≥1

〈
x, ek

〉
<∞ for all x ∈ X.

Let T ∈ B(X) be a power-bounded and power-compact operator that satisfies the
following two properties:

(i)
〈
Tek, em

〉
≥ 0 for all k,m = 1, 2, ...,

(ii) lim inf ‖T ny‖ > 0 for some y ∈ X with
〈
y, ek

〉
≥ 0 for all k.

Then there exists a nonzero x ∈ X with x = Tx and
〈
x, ek

〉
≥ 0 for all k.

Proof. Let % stand for the coordinatewise partial order on X, that is, z % w iff〈
z, ek

〉
≥
〈
w, ek

〉
for all k. Define the map ‖·‖′ : X → R+ by

∥∥∑αke
k
∥∥′ :=

sup{
∥∥∑ βkαke

k
∥∥ : (βk) ∈ S`∞}, and note that (X,%, ‖·‖′) is a Banach lattice (The-

orem 4.2.22 of [13]). Now take any %-decreasing sequence (zm) with infm≥1 zm = 0,
and observe that since

∑〈
z1, e

k
〉
<∞, we can apply the monotone convergence the-

orem to get limm

∑
k

〈
zm, e

k
〉

=
∑

k limm

〈
zm, e

k
〉

= 0. But ‖zm‖′ ≤
∑
k

〈
zm, e

k
〉

for each m, so we have ‖zm‖′ ↘ 0 as m → ∞. Since it is easily seen that (X,%)
is Dedekind complete, it follows that (X,%, ‖·‖′) is a Banach lattice with an order-
continuous norm.

Now fix an arbitrary z with 〈z, em〉 ≥ 0 for all m, and note that

Tz =
∑
k≥1

∑
m≥1

〈
z, ek

〉 〈
Tek, em

〉
em =

∑
m≥1

∑
k≥1

〈
z, ek

〉 〈
Tek, em

〉
em

where the second equality follows from Lemma 2.1. Then, by (i),

〈Tz, em〉 =
∑
k≥1

〈
z, ek

〉 〈
Tek, em

〉
≥ 0, m = 1, 2, ... .

Thus T ∈ L+(X), and we can apply Corollary 2.1 to complete the proof. �

2.2. The case of quasicompact operators. This subsection is concerned with
quasicompact positive operators defined on a Banach lattice. The main result
provides a sufficient condition for the existence of a positive fixed point in terms
of the sequence of Cesaro means associated with the iterations of a positive vector.
This result is very much in the same spirit with the famous Yosida-Kakutani mean
ergodic theorem, and it is indeed proved by means of a similar method. As in the
previous subsection, the main difference here is that the present approach allows
one to obtain a nonzero fixed point for the operator in question.1

1Particularly related to Theorem 2.2 is Theorem 3 of [18], a special case of which shows that
every weakly quasicompact operator in a Banach space has a fixed point. However, Yosida and
Kakutani prove this result by using their mean ergodic theorem; the present proof is more direct.
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Theorem 2.2. Let X be a Banach lattice, and let T ∈ L+(X) be a power-bounded
quasicompact operator. T has a nonzero fixed point in X+ if and only if

(4) lim inf
m→∞

∥∥∥∥∥ 1
m

m∑
i=1

T iy

∥∥∥∥∥ > 0 for some y ∈ X+.

Proof. Pick any positive integer n with ‖T n −K‖ < 1 for some K ∈ K(X), and
define L := T n −K. Since ‖L‖ < 1, I −L is invertible and (I − L)−1 =

∑
i≥0 L

i ∈
B(X). Define

Um :=
1
m

m∑
i=1

T i, m = 1, 2, ...,

and observe that each Um is a positive operator on X with ‖Um‖ ≤ supi≥1

∥∥T i∥∥ =:
s(T ). Moreover, for each m,

Um = (I − L)−1(I − L)Um
= (I − L)−1(I − T n +K)Um
= (I − L)−1(I − T n)Um + ((I − L)−1K)Um.(5)

Since (I − L)−1K ∈ K(X) and since {Umy : m ∈ N} is bounded, the set
(I−L)−1K({Umy : m ∈ N}) is relatively compact. So, there exist a strictly in-
creasing sequence (mk) in N and a z ∈ X such that

(6) lim
k→∞

(I − L)−1KUmky = z.

On the other hand, for m > n it is readily verified that

‖(I − T n)Um‖ =
1
m

∥∥T + · · ·+ Tm − T n+1 − · · · − T n+m
∥∥

=
1
m

∥∥T + · · ·+ T n − Tm+1 − · · · − Tm+n
∥∥

=
1
m

∥∥∥∥∥
(

n∑
i=1

T i

)
(I − Tm)

∥∥∥∥∥
≤ 1

m
ns(T )(1 + s(T )).

Therefore, (I − T n)Um → 0 as m → ∞. Combining this finding with (5) and (6),
we get limUmky = z so that limTUmky = Tz. But

‖TUmky − Umky‖ =
1
mk
‖Tmky − y‖ ≤ 1

mk
(s(T ) + ‖y‖)

so that ‖TUmky − Umky‖ → 0 as k → ∞. Thus, we must have Tz = z. That
z ∈ X++ is an obvious consequence of the positivity of T and (4). �

The following result generalizes Corollary 2.1 for operators defined on an AL-
space, that is, on a Banach lattice the norm of which is additive on its positive
cone.

Corollary 2.3. Let X be an AL-space, and let T ∈ L+(X) be a power-bounded qua-
sicompact operator. T has a nonzero fixed point in X+ if and only if lim inf ‖T ny‖ >
0 for some y ∈ X+.
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Proof. We only need to verify (4). Since lim inf ‖T ny‖ > 0, there exists an α > 0
such that ‖T ny‖ ≥ α for all n. But T ny ∈ X+ for each n, so by additivity of ‖·‖ on
X+, we get

∥∥∥m−1
∑m−1
i=0 T iy

∥∥∥ = m−1
∑m−1

i=0

∥∥T iy∥∥ ≥ α for each m. �

Remark 2.3. For Dunford-Pettis operators, quasicompactness can be replaced with
positive weak quasicompactness in the statements of Theorem 2.2 and Corollary
2.3. To prove this, we adopt the notation given in the proof of Theorem 2.2, and
assume that K is weakly compact and positive, and T n −K is positive. We have
Um = Vm + Wm where Vm := (I − L)−1(I − T n)Um and Wm := (I − L)−1KUm.
Clearly, Vm → 0 as m → ∞ and Wm ∈ L+(X) for each m. The arguments above
(along with the Eberlein-Šmulian theorem) yield a strictly increasing sequence (mk)
in N and a z ∈ X such that w-limUmky = w-limWmky = z = Tz. We need to show
that z ∈ X++. To this end, define O := {Wmy : m ∈ N} and A := clw(O). Since
supm≥1 ‖Um‖ ≤ s(T ) and (I − L)−1K is weakly compact, A is a weakly compact
set in X+ with z ∈ A. It is thus enough to show that 0 /∈ S := co(A) to prove the
claim. But if 0 ∈ S, by using the argument given in the second paragraph of the
proof of Theorem 2.1.A, we may obtain a strictly increasing sequence (mt) in N
with w-limWmty = 0. Since each Wm is Dunford-Pettis, this gives ‖Wmty‖ → 0,
which in turn yields ‖Umty‖ ≤ ‖Vmty‖+‖Wmty‖ → 0 as t→∞, contradicting (4).

3. Application: On the existence of invariant densities

for Markov operators

Let (S,Σ, µ) be an arbitrary σ-finite measure space. We adopt the convention of
denoting the real Banach space L1(S,Σ, µ) by L1. When ordered pointwise (so that
L1

+ = {f ∈ L1 : f ≥ 0 a.e.}) this space is a Banach lattice. A linear operator T on
L1 is called a Markov operator if it is a positive contraction which is norm-preserving
on L1

+, that is, if ‖T ‖1 ≤ 1, and Tf ≥ 0 a.e. and ‖Tf‖1 = ‖f‖1 hold whenever
f ≥ 0 a.e. We denote the set of all Markov operators on L1 by M(S,Σ, µ). A
function f in L1 is called a density if f ∈ L1

+ and ‖f‖1 = 1. The set of all densities
is denoted as D. By definition, D is invariant under any Markov operator T, that
is, T (D) ⊆ D. If D 3 f = Tf, then f is called an invariant density for T.

Proposition 3.1. Let (S,Σ, µ) be a σ-finite measure space, and T ∈ M(S,Σ, µ).
If T commutes with a nonzero compact operator K on L1(S,Σ, µ), then there exists
an invariant density for T.

Proof. Take any g ∈ L1 with Kg 6= 0 a.e., and define the map h : S → R by

h(s) :=
{

g(s), if Kg(s) ≥ 0,
−g(s), if Kg(s) < 0.

It is obvious that h ∈ L1 and that L1
+ 3 Kh 6= 0 a.e. Thus letting f :=

K(h/ ‖Kh‖1), we find that f ∈ D ∩ K(L1), and ‖T nf‖1 = ‖f‖1 > 0 for all
n = 1, 2, ... . The claim then follows from Theorem 2.1.A. �

As we shall show in terms of Markov chains below (see Proposition 3.3), one
advantage of this result is that the sufficient condition that it gives for the existence
of an invariant density for a Markov operator is not in terms of the asymptotic
behavior of the sequence of iterations of the operator. This contrasts with most of
the related results that appear in the literature, for instance, with those given in
[4], [11], [16], and [7].
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Our next application is a common invariant density theorem which follows almost
immediately from Corollary 2.3.

Proposition 3.2. Let (S,Σ, µ) be a σ-finite measure space. If T is a finite commut-
ing family of quasicompact operators in M(S,Σ, µ), then there exists an invariant
density common to all members of T .

Proof. Define Ψ(T ) := {f ∈ L1 : f = Tf} for each T ∈ T . By Corollary 2.3, Ψ(T )
is a closed subspace of L1 such that Ψ(T ) ∩ D 6= ∅ for all T ∈ T . For any T1

and T2 in T , we have T2(Ψ(T1)) ⊆ Ψ(T1) since T1T2 = T2T1. Thus T2|Ψ(T1) is a
quasicompact contraction on the AL-space Ψ(T1), and, for any f ∈ Ψ(T1)∩D 6= ∅,
we have ‖T n2 f‖1 = ‖f‖1 > 0 for all n. Thus Corollary 2.3 applies, and we find that
Ψ(T1)∩Ψ(T2)∩D 6= ∅. But if T3 is any other member of T , then T3(Ψ(T1)∩Ψ(T2)) ⊆
Ψ(T1) ∩Ψ(T2), so continuing inductively, we find ∩{Ψ(T ) : T ∈ T } ∩D 6= ∅. �

Finally, we illustrate the applicability of these results by examining their imme-
diate implications for the theory of Markov chains. Let R∞×∞ denote the class of
all infinite real matrices and recall that a matrix P = [pij ]N×N ∈ R∞×∞ is said to
be stochastic if pij ≥ 0 and

∑
j pij = 1 for all i, j ∈ N. Letting `1 := L1(N, 2N, µc),

where µc is the counting measure, P is viewed as a positive linear operator on `1

in the obvious way: P : (x1, x2, ...) 7→
(∑

i≥1 pi1xi,
∑
i≥1 pi2xi, ...

)
. Since

‖Px‖1 =
∑
j≥1

∑
i≥1

pijxi =
∑
i≥1

xi
∑
j≥1

pij =
∑
i≥1

xi = ‖x‖1

for any x ≡ (x1, x2, ...) ∈ `1+, P is a Markov operator on `1. It is also easy to show
that any Markov operator on `1 arises this way, so we may identify the set of all
stochastic matrices in R∞×∞ with M := M(N, 2N, µc). Of course, in probability
theory, a member of M is referred to as a homogeneous Markov chain with a
countably infinite state space, and an invariant density for it is called a stationary
distribution of the chain.

Lemma 3.1. If P ∈ M and

(7) lim
k→∞

sup
i≥1

∑
j≥k+1

pij = 0,

then P is a compact operator on `1.2

Proof. For any k ∈ N, define Pk ∈ L(`1) by

Pkx :=

(
k∑
i=1

pi1xi, ...,
k∑
i=1

pikxi, 0, 0, ...

)
.

Then, for any x ∈ S`1 ,

‖(P − Pk)x‖1 ≤
∑
i≥1

|xi|
∑
j≥k+1

pij ≤
∑
i≥1

|xi|

sup
i≥1

∑
j≥k+1

pij

 = sup
i≥1

∑
j≥k+1

pij ,

so, by hypothesis, ‖P − Pk‖1 → 0 as k → ∞. Since each Pk is of finite rank, P
must be compact. �

2One can also show that (7) is in fact necessary for the compactness of P ∈ M, but we do not
need to prove this here. See, for instance, Example 3 of [17], p. 278.
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Proposition 3.3. Let P,Q ∈ M and 0 ≤ β ≤ 1. If (7) holds, and if βQ is
algebraic, then βQ + (1− β)P ∈M has a stationary distribution.

Proof. Let U := βQ and V := (1− β)P. Since U is algebraic, there exist an n ∈ N
and α0, ..., αn ∈ Z such that

∑n
i=1 αiU

i = 0. Writing p(T ) for
∑n

i=1 αiT
i for any

T ∈ B(`1), we have

p(U + V ) =
n∑
i=1

αiU
i +

n∑
i=1

αi

i−1∑
r=0

(
i

r

)
U rV i−r =

n∑
i=1

αi

i−1∑
r=0

(
i

r

)
U rV i−r.

But V is compact by Lemma 3.1, so this computation shows that p(U + V ) ∈
K(`1). Since U + V obviously commutes with p(U + V ), it must have a stationary
distribution by Proposition 3.1. �

Similarly, this time using Proposition 3.2, one can show that any P ∈ M, for
which there is some Q ∈ K(`1) with supi≥1

∑
j≥k+1 |pij − qij | → 0 as k → ∞, has

a stationary distribution.

4. Nonzero fixed points of uniformly asymptotically

regular contractions

All of the fixed point theorems reported in Section 2 were based on an operator-
compactness property that forbids the orbits of an operator to grow “too large.”
Even in the absence of such a compactness property, however, one may ensure
the existence of a nonzero fixed point by verifying that these orbits are in fact
well-behaved. In metric fixed point theory, a nontrivial property that is frequently
used for this purpose is asymptotic regularity which was introduced originally by
Browder and Petryshyn [3]. We shall show below that, in the case of Hilbert
spaces, the uniform version of this property does the work of both positivity and
compactness (or quasicompactness, etc.) insofar as the nonzero fixed points of a
linear operator is concerned.

Definition. Let X be a normed linear space and T ∈ B(X). We say that T is
asymptotically regular if

lim
n→∞

∥∥T nx− T n+1x
∥∥ = 0 for all x ∈ X.

If the convergence of this limit is uniform, that is,
∥∥T n − T n+1

∥∥ → 0 as n → ∞,
we then say that T is uniformly asymptotically regular.

Uniformly asymptotically regular and power-bounded operators enjoy interest-
ing spectral properties. In particular, a power-bounded operator whose spectrum
crosses the unit circle admits 1 in its spectrum iff it is uniformly asymptotically
regular (cf. [8]). The following lemma, on the other hand, shows that a uniformly
asymptotically regular and power-bounded operator admits 1 as an eigenvalue iff
it is not strongly stable.

Lemma 4.1. Let X be a complex Hilbert space and let T ∈ B(X) be power-bounded
and uniformly asymptotically regular. Then T has a nonzero fixed point if and only
if it is not strongly stable.

Proof. We only need to establish the sufficiency part of the claim. To this end, we
begin by observing that, by power-boundedness, ‖·‖′ : X → R+ defined by ‖x‖′ :=
supn≥1 ‖T nx‖ is a norm on X which is equivalent to ‖·‖ and with respect to which
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T is nonexpansive. Therefore, it is enough to prove the lemma for nonexpansive T,
so we assume in what follows that ‖T ‖ ≤ 1.

Since T is not strongly stable, we can find a y ∈ SX with lim ‖T ‖n ≥ lim ‖T ny‖ =:
α > 0 which would not be possible if ‖T ‖ < 1. Thus ‖T ‖ = 1. On the other hand,
since (‖T ny‖) is a decreasing sequence, ‖T n‖ ≥ ‖T ny‖ ≥ α for each n, and hence,
by the Gelfand spectral radius formula, r(T ) = lim ‖T n‖1/n ≥ limα1/n = 1. Con-
sequently, we have 1 = ‖T ‖ ≥ r(T ) ≥ 1, that is, r(T ) = 1. Since σ(T ) is compact,
it follows that there exists a λ ∈ C with |λ| = 1 and λ ∈ σ(T ). But if λ 6= 1, then
the spectral mapping theorem yields∥∥T n − T n+1

∥∥ ≥ r(T n − T n+1) ≥ |1− λ| , n = 1, 2, ...,

which is impossible due to the uniform asymptotic regularity of T. Thus we conclude
that 1 ∈ σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ). To complete the proof, then, it is enough
to show that 1 /∈ σc(T ) ∪ σr(T ).

If 1 ∈ σr(T ), then because σr(T ) ⊆ {λ̄ : λ ∈ σp(T ∗)}, we find 1 ∈ σp(T ∗), that
is, T ∗(x) = x (so that 〈x, T ∗x〉 = ‖x‖2) for some x ∈ SX . But 1 ∈ σr(T ) implies
ker(I − T ) = {0}, so we have x 6= Tx. Combining these two observations, we get

0 < ‖Tx− x‖2 = ‖Tx‖2 + ‖x‖2 − 2 Re 〈x, T ∗x〉 = ‖Tx‖2 − 1,

contradicting ‖T ‖ = 1.
Assume next that 1 ∈ σc(T ) so that cl((I − T )(X)) = X. Then there exists a

sequence xk in X such that xk − Txk → y as k → ∞. So, for each ε > 0, there
exists a k0 > 0 such that, for every n ∈ N,∥∥T nxk − T n+1xk − T ny

∥∥ = ‖T n(xk − Txk − y)‖ ≤ ‖xk − Txk − y‖ < ε

whenever k ≥ k0. Therefore,

(8)
∥∥T nxk − T n+1xk − T ny

∥∥→ 0 uniformly as k →∞.
Moreover, (‖T n(xk − Txk − y)‖) converges as n → ∞ since T is a contraction.
Therefore, by using the asymptotic regularity of T,

lim
n→∞

∥∥T nxk − T n+1xk − T ny
∥∥ ≥ lim

n→∞

∣∣∥∥T nxk − T n+1xk
∥∥− ‖T ny‖∣∣ = α.

So, by (8) and the Moore-Osgood theorem, we get

α≤ lim
k→∞

lim
n→∞

∥∥T nxk − T n+1xk − T ny
∥∥= lim

n→∞
lim
k→∞

∥∥T nxk − T n+1xk − T ny
∥∥=0.

This contradiction completes the proof. �
We next extend Lemma 4.1 to the case of a real Hilbert space X . The complexifi-

cation of X, denoted XC, is the additive group X⊕iX with the scalar multiplication
(a+ib)(x+iy) := (ax−by)+i(ay+bx). There are numerous ways of norming XC in
such a way that X would be embedded in XC (cf. [14]). A particularly convenient
way of doing this for our purposes is through endowing XC with a suitable inner
product. To this end, we define the map 〈·, ·〉∗ : XC ×XC → C by

〈x+ iy, z + iw〉∗ = 〈x, z〉+ 〈y, w〉+ i (〈y, z〉 − 〈x,w〉)
and note that (XC, 〈·, ·〉∗) is a complex Hilbert space in which X is naturally em-
bedded. Moreover, if ‖·‖∗ stands for the norm induced by 〈·, ·〉∗ , then we have
the identity ‖x+ iy‖2∗ ≡ ‖x‖

2 + ‖y‖2 . Finally, notice that every (real-)linear oper-
ator T on X uniquely extends to a (complex-)linear operator TC on XC through
the formula TC(x + iy) = Tx + iT y. We denote the operator norm on B(XC) by
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‖·‖∗ . Obviously, B(X) can be identified with a real subspace of B(XC). Moreover,
if T ∈ B(X), then, since TC extends T, we have ‖TC‖∗ ≥ ‖T ‖ . Conversely, for any
x, y ∈ X, we have

‖T ‖2 ‖x+ iy‖2∗ = (‖T ‖ ‖x‖)2 + (‖T ‖ ‖y‖)2 ≥ ‖Tx‖2 + ‖Ty‖2 = ‖Tx+ iT y‖2∗
= ‖TC(x+ iy)‖2∗

so that ‖TC‖∗ ≤ ‖T ‖ . That is, ‖TC‖∗ = ‖T ‖ for any T ∈ B(X).
With this preparation, the main result of this section is easily proved.

Theorem 4.1. Let X be a real Hilbert space and let T ∈ B(X) be power-bounded
and uniformly asymptotically regular. Then T has a nonzero fixed point if and only
if it is not strongly stable.

Proof. By induction, (T n)C = T nC and (T n − T n+1)C = T nC − T n+1
C , so ‖T nC ‖∗ =

‖T n‖ and
∥∥T nC − T n+1

C
∥∥
∗ =

∥∥T n − T n+1
∥∥ for each n ∈ N. Thus TC ∈ B(XC) is

power-bounded and uniformly asymptotically regular. But it is obvious that TC
is not strongly stable, and hence, by Lemma 4.1, there exist x, y ∈ X such that
TC(x+ iy) = x+ iy where either x or y is not zero. Any nonzero member of {x, y}
is a fixed point of T. �
Remark 4.1. The postulated inner product structure is essential for the validity of
Theorem 4.1. For instance, let X := C[0, 1] and consider the contraction T ∈ B(X)
defined by T (f)(t) := tf(t) for each t ∈ [0, 1]. While T lacks a nonzero fixed point
and is not strongly stable, it is uniformly asymptotically regular, for∥∥T n − T n+1

∥∥
∞ = sup

f∈SX
sup

0≤t≤1

∣∣tnf(t)− tn+1f(t)
∣∣

≤ sup
0≤t≤1

∣∣tn − tn+1
∣∣→ 0 as n→∞.

We conclude by noting that it is not known if the qualifier “uniformly” can be
omitted in the statement of Theorem 4.1.
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Birkhäuser, Boston. MR 98g:47004

http://www.ams.org/mathscinet-getitem?mr=82c:47068
http://www.ams.org/mathscinet-getitem?mr=90d:47001
http://www.ams.org/mathscinet-getitem?mr=32:8155b
http://www.ams.org/mathscinet-getitem?mr=29:1521
http://www.ams.org/mathscinet-getitem?mr=29:2646
http://www.ams.org/mathscinet-getitem?mr=92c:47070
http://www.ams.org/mathscinet-getitem?mr=99f:60119
http://www.ams.org/mathscinet-getitem?mr=88e:47006
http://www.ams.org/mathscinet-getitem?mr=12:341b
http://www.ams.org/mathscinet-getitem?mr=98g:47004


NONZERO FIXED POINTS OF LINEAR OPERATORS 1551

[11] Lasota, A. (1980), “A fixed point theorem and its application in ergodic theory,” Tohôku
Math. J., 48, 51-56. MR 82c:47071

[12] Lin, P. K. (1985), “Unconditional bases and fixed points of nonexpansive mappings,” Pacific
J. Math., 116, 69-76. MR 86c:47075

[13] Megginson, R. E. (1998), An Introduction to Banach Space Theory, Springer, New York. MR
99k:46002
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