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Abstract. In this paper, we discuss finite rank operators in a closed maximal
triangular algebra S. Based on the following result that each finite rank oper-
ator of S can be written as a finite sum of rank one operators each belonging

to S, we proved that (S ∩ F(H))w
∗

= {T ∈ B(H) : TN ⊆ N∼,∀N ∈ N},
where N∼ = N , if dimN 	 N− ≤ 1; and N∼ = N−, if dimN 	 N− = ∞.
We also proved that the Erdos Density Theorem holds in S if and only if S is
strongly reducible.

1. Introduction

Finite rank operators and rank one operators are important to the theory of nest
algebras. In a nest algebra, each finite rank operator can be written as a finite sum
of rank one operators which belong to itself (This result is in [6], but belongs to
Ringrose); the w∗-closure of all finite rank operators is the whole of the nest algebra
([6], it is known as the famous Erdos Density Theorem). Naturally, we may ask
what happens in the case of maximal triangular algebras?

We have proved in [4] that each finite rank operator of a closed maximal trian-
gular algebra S can be represented as a finite sum of rank one operators in S. This
is first appeared in [4], but for completeness and reader-friendly reasons, we state it
in Section 2. In Section 3, using the decomposability of finite rank operators in S
and the technique of annihilators, we calculate the w∗-closure of all finite rank op-
erators in S. In the last section, we give some remarks on Rosenthal’s famous note
[16], and obtain a sufficient and necessary condition for which the Erdos Density
Theorem holds in S.

Now we give some notation and terminology. Let H be a complex separable
infinite–dimensional Hilbert space, B(H) the set of all bounded operators on H
and F(H) the set of all finite rank operators in B(H). A nest N is a chain of
closed subspaces of Hilbert space H containing (0) and H which is closed under
intersection and closed span. For N ∈ N , define

N− =
∨
{N

′
∈ N : N

′
< N}.
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If N 6= N−, the subspace N 	N− is called an atom of N . If dimN 	N− ≤ 1 for
any N ∈ N , N is called a maximal nest. If N is a nest, the nest algebra T (N ) is
the set of all operators T such that TN ⊆ N for every element N in N .

Let S be a subalgebra of B(H), and define S∗ = {A∗ : A ∈ S}. Following
Kadison and Singer [8], we shall say that S is a triangular algebra if D = S ∩ S∗ is
a maximal abelian subalgebra of B(H). The maximal abelian ∗–algebra D is called
the diagonal of S. A maximal triangular algebra is a triangular algebra which is
not properly contained in any other such algebra. Applying Zorn’s Lemma, we
conclude that any triangular algebra is contained in a maximal triangular algebra
with the same diagonal.

Let S be a maximal triangular algebra over H. It is shown in [8], Lemma 2.3.3,
that LatS is totally ordered by inclusion. Hence it forms a nest N , we shall call N
the hull nest of S and T (N ) the hull nest algebra of S. In general, the hull nest N
is quasi–maximal, that is the subspace N 	 N− has dimension 0, 1 or infinity for
any N ∈ N (see [5], Theorem 1). Following [8], we shall say that S is irreducible
if the hull nest N = {(0),H}, and that S is strongly reducible if N is maximal. It
is shown in [11] and [12] that not all maximal triangular algebras are norm closed.
However, one feels that non-norm-closed maximal triangular algebras are rather
pathological and that the proper objects for study should at least be complete. If
a triangular algebra is norm-closed, we shall simply say it is closed.

Suppose that S is a subspace of B(H), if S ∩F(H) is weakly dense in S, we say
that the Erdos Density Theorem holds in S.

2. Finite rank operators

Definition 2.1. Let A be a subalgebra of B(H), and let n be a positive integer.
A is n-fold transitive if for any choice of elements x1, . . . , xn, y1, . . . , yn ∈ H with
{xi}ni=1 linearly independent, there exists a sequence {Ak} ⊆ A such that

lim
k
Akxi = yi, ∀1 ≤ i ≤ n.

Thus A is 1-fold transitive if and only if LatA = {(0),H}.

Lemma 2.2. Let S be a closed irreducible triangular algebra, then S is n-fold
transitive, ∀n ≥ 1.

Proof. Since the Hilbert space H is separable infinite–dimensional, then the diag-
onal D = S ∩ S∗ is a countably decomposable maximal abelian ∗–subalgebra of
B(H), and since S is irreducible, so by [1], Theorem 3.3, S is strongly dense in
B(H).

Suppose that x1, . . . , xn, y1, . . . , yn ∈ H with {xi}ni=1 linearly independent. By
the Hahn-Banach Theorem, we can choose bounded operators F1, . . . , Fn such that
Fi(xj) = δij . Set

Tx =
n∑
i=1

Fi(x)yi.

Then T ∈ B(H) and Txi = yi. Since S is strongly dense in B(H), we can find, for
each k ≥ 1, an Ak ∈ S such that

‖ Akxi − Txi ‖≤ 1/k, i = 1, 2, . . . , n.

Hence limk Akxi = Txi = yi, proving that S is n-fold transitive. �
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If x, y are nonzero vectors in H, we define the rank one operator x⊗ y by

(x⊗ y)(z) = (z, y)x, ∀z ∈ H.

Lemma 2.3 (F.Y. Lu [10]). Let S be a norm-closed subalgebra of B(H) that satisfies
the following conditions:

(1) I ∈ S;
(2) LatS = {(0), H};
(3) S ∩ S∗ abelian.

Then S contains no rank one operators.

Proof. Suppose that there is a nonzero rank one operator x⊗ y ∈ S. Since LatS =
{(0), H} and I ∈ S, it follows that [Sx] = H. Hence for any z ∈ H, there exists
{Sα} ⊆ S such that limα Sαx = z. Since S is norm-closed, it follows that

z ⊗ y = (lim
α
Sαx)⊗ y = lim

α
Sα(x⊗ y) ∈ S.

Since LatS∗ is also trivial, similarly, for any w ∈ H there exists {Sβ} ⊆ S such
that limβ S

∗
βy = w. Hence,

z ⊗ w = lim
β
z ⊗ (S∗βy) = lim

β
(z ⊗ y)Sβ ∈ S.

Thus S contains all rank one operators in B(H).
Now suppose that u, v are linearly independent vectors inH and (u, v) 6= 0. Then

the self-adjoint rank one operators u⊗ u and v ⊗ v belong to S ∩ S∗. However,

(u ⊗ u)(v ⊗ v) = (v, u)u⊗ v 6= (u, v)v ⊗ u = (v ⊗ v)(u ⊗ u);

this contradicts condition (3). �

Proposition 2.4. Let S be a closed irreducible triangular algebra, then S contains
no nonzero finite rank operators.

Proof. Suppose that there exists a rank n operator F in S. Set

F =
n∑
i=1

xi ⊗ zi,

where {xi}ni=1 and {zi}ni=1 are both linearly independent.
Following Lemma 2.2, S is n-fold transitive. So there exists a sequence {Ak} ⊆ S

such that
lim
k
Akx1 = x1 and lim

k
Akxi = 0, 1 < i ≤ n.

Since S is norm-closed, then

x1 ⊗ z1 = lim
k
Ak(

n∑
i=1

xi ⊗ zi) = lim
k
AkF ∈ S.

This is a contradiction to Lemma 2.3. Hence S does not contain nonzero finite rank
operators. �

Lemma 2.5. Let S be a maximal triangular algebra with hull nest N . If N ∈ N
and dim(N 	N−) ≤ 1, then P (N)TP (N−)⊥ ∈ S, ∀T ∈ B(H).

Proof. Following the proof of [15], Lemma 5.2. �

For the purpose of this paper, we give another form of [10], Theorem 5.2.3.
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Lemma 2.6. Suppose that S is a closed maximal triangular algebra. Then a rank
one operator x⊗ y ∈ S if and only if there exists an element N in N such that:

(1) if dimN 	N− ≤ 1, x ∈ N and y ∈ N⊥− ;
(2) if dimN 	N− =∞, x ∈ N, y ∈ N⊥; or x ∈ N−, y ∈ N⊥− .

Proof. Sufficiency. It follows from Lemma 2.5 and [8], Lemma 2.3.2.
Necessity. Since x ⊗ y ∈ S ⊆ T (N ), there exists an element N ∈ N such that

x ∈ N and y ∈ N⊥− . Write

x = x1 + x2 ∈ N− ⊕ (N 	N−),
y = y1 + y2 ∈ (N 	N−)⊕N⊥,

then
x⊗ y = x1 ⊗ y + x2 ⊗ y2 + x2 ⊗ y1.

It follows from [8], Lemma 2.3.2 that x1 ⊗ y and x2 ⊗ y2 belong to S; thus, x2 ⊗ y1

also belongs to S.
If dimN	N− =∞, following the proof of [5], Theorem 1, P (N	N−)SP (N	N−)

is a closed irreducible triangular algebra in B(N 	N−). Thus by Proposition 2.4,

x2 ⊗ y1 = P (N 	N−)(x2 ⊗ y1)P (N 	N−) = 0.

Then x2 = 0 or y1 = 0. If x2 = 0, x ∈ N− and y ∈ N⊥− ; if y1 = 0, x ∈ N and
y ∈ N⊥.

If dimN 	N− ≤ 1, x ∈ N and y ∈ N⊥− . �

Theorem 2.7. Suppose that S is a closed maximal triangular algebra, and F is a
finite rank operator in S, then F can be written as a finite sum of rank one operators
each belonging to S, and the number of rank one operators necessary to form F is
bounded above 3 times the rank of F .

Proof. Set N to be the hull nest of S, and let F be a rank n operator in S.
Since F ∈ S ⊆ T (N ), then by [6], Theorem 1, there exist {Ni}ni=1 ⊆ N and
{xi}ni=1, {yi}ni=1 with xi ∈ Ni, yi ∈ N⊥i−, i = 1, 2, . . . , n such that

F = x1 ⊗ y1 + x2 ⊗ y2 + · · ·+ xn ⊗ yn.
Write

xi = x1
i + x2

i ∈ Ni− ⊕ (Ni 	Ni−),
yi = y1

i + y2
i ∈ (Ni 	Ni−)⊕N⊥i ;

then

F =
n∑
i=1

(x1
i ⊗ y1

i + xi ⊗ y2
i + x2

i ⊗ y1
i ) = F1 + F2

with F1 =
n∑
i=1

(x1
i ⊗y1

i +xi⊗y2
i ), F2 =

n∑
i=1

(x2
i ⊗y1

i ). Following [8], Lemma 2.3.2, the

rank one operators x1
i ⊗ y1

i and xi⊗ y2
i (i = 1, 2, . . . , n) belong to S. Hence F1 ∈ S,

so F2 ∈ S. In the following, we shall prove that x2
i ⊗ y1

i ∈ S, i = 1, 2, . . . , n.
Without loss of generality, let

N1 ≤ N2 ≤ · · · ≤ Nn.
If Ni = Ni−, then x2

i = y1
i = 0. So we can suppose that Ni 6= Ni−, ∀1 ≤ i ≤ n. For

a fixed i, suppose that

Ni−q−1 < Ni−q = · · · = Ni = · · · = Ni+p < Ni+p+1.
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Since P (N) ∈ S ∩ S∗ for any N ∈ N , then

(P (Ni)− P (Ni−))F2(P (Ni)− P (Ni−)) =
i+p∑
j=i−q

x2
j ⊗ y1

j ∈ S.

Now we distinguish two cases.
Case 1. dimNi	Ni− =∞. Following the proof of [5], Theorem 1, we have that

P (Ni	Ni−)SP (Ni	Ni−) is a closed irreducible triangular algebra in B(Ni	Ni−).
Thus by Proposition 2.4, P (Ni	Ni−)SP (Ni 	Ni−) does not contain any nonzero

finite rank operators. Hence, if
i+p∑
j=i−q

x2
j ⊗ y1

j 6= 0, we have

i+p∑
j=i−q

x2
j ⊗ y1

j 6∈ S.

This is a contradiction, so
i+p∑
j=i−q

x2
j ⊗ y1

j = 0.

Case 2. dimNi 	Ni− = 1. Following Lemma 2.5, we have

x2
j ⊗ y1

j ∈ S, j = i− q, . . . , i+ p.

Since the hull nest is quasi–maximal, the two cases are jointly exhaustive. Since
i is arbitrary, we obtain that F2 is also a finite sum of rank one operators in S.
So any rank n operator can be written as a finite sum of rank one operators each
belonging to S. �

3. The w∗-closure of finite rank operators

In this section, we will describe the w∗-closure of finite rank operators in S. Set

W = {X ∈ B(H) : XN ⊆ Ñ , ∀N ∈ N},

where Ñ = N− if dimN 	N− ≤ 1; and Ñ = N if dimN 	N− =∞.

Lemma 3.1. W is a weakly closed T (N )–ideal determined by the order homomor-
phism N → Ñ of N into itself; and a rank one operator x ⊗ y ∈ W if and only
if there exists an element N in N such that x ∈ N, y ∈ N⊥∼ , where N∼ = N , if
dimN 	N− ≤ 1; N∼ = N−, if dimN 	N− =∞.

Proof. The fact thatW is a weakly closed T (N )–ideal is obvious from the definition
of W .

By virtue of [7], Lemma 1.1, a rank one operator x⊗ y ∈ W if and only if there
exists an element N ∈ N such that x ∈ N, y ∈ N⊥∼ . In the following, we will
compute N∼. For any N ∈ N , we consider separately three cases. Recall that
N∼ =

∨
{N ′ : Ñ ′ < N} defined in [7].

Case 1. dimN 	 N− = 1. In this case, Ñ = N− < N . If N ′ > N , N ′− ≥ N .
Thus Ñ ′ ≥ N . So N∼ = N .

Case 2. dimN 	 N− = ∞. In this case, Ñ = N . Since Ñ− ≤ N− < N ,
N∼ = N−.

Case 3. dimN 	N− = 0. Thus, Ñ = N− = N . In this case, we can prove that

{N ′ ∈ N : N ′ < N} = {N ′ ∈ N : Ñ ′ < N}.
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Indeed, since Ñ ′ ≤ N ′, we have that {N ′ ∈ N : N ′ < N} ⊆ {N ′ ∈ N : Ñ ′ < N}.
Conversely, if N ′ 6∈ {N ′ ∈ N : N ′ < N}, that is N ′ ≥ N and Ñ ′ ≥ Ñ = N . So
N ′ 6∈ {N ′ ∈ N : Ñ ′ < N}. Hence {N ′ ∈ N : N ′ < N} ⊇ {N ′ ∈ N : Ñ ′ < N}.
Therefore,

N∼ =
∨
{N ′ ∈ N : Ñ ′ < N} =

∨
{N ′ ∈ N : N ′ < N} = N− = N.

Since the hull nest N is quasi-maximal, the three cases are jointly exhaustive. This
completes the proof. �

Set C1(H) as the ideal of all trace class operators in B(H).

Theorem 3.2. Suppose that S is a closed maximal triangular algebra with hull
nest N , then ρ ∈ B(H)∗ annihilates S ∩ F(H) if and only if ρ is of the form

ρ(·) = tr(X ·),

where X is a trace class operator in W.

Proof. Necessity. If ρ ∈ B(H)∗ ∼= C1(H), there exists an operator X ∈ C1(H) such
that ρ(·) = tr(X ·) and ρ annihilates S ∩F(H). For any Y ∈ F(H) and N ∈ N , by
[8], Lemma 2.3.2 and Lemma 2.5, the operator P (N)Y P (Ñ)⊥ ∈ S ∩ F(H). Thus

tr(P (Ñ )⊥XP (N)Y ) = tr(XP (N)Y P (Ñ)⊥) = 0, ∀Y ∈ F(H).

From F(H)w
∗

= B(H) and the w∗-continuity of the map tr(P (Ñ )⊥XP (N) ·) it
follows that

tr(P (Ñ )⊥XP (N)Y ) = 0, ∀Y ∈ B(H).

Then
P (Ñ)⊥XP (N) = 0, ∀N ∈ N .

So
X ∈ W ∩ C1(H).

Sufficiency. If X ∈ W ∩ C1(H), let x ⊗ y be any rank one operator of S. Then,
by Lemma 2.6, there exists an element N ∈ N such that:

(1) if dimN 	N− ≤ 1, then x ∈ N and y ∈ N⊥− . Since Ñ = N−, we have that

tr(X(x⊗ y)) = tr(XP (N)(x ⊗ y)P (N−)⊥)
= tr(P (N−)⊥XP (N)(x⊗ y)) = 0.

(2) if dimN 	N− =∞, we distinguish two cases.
Case 1. x ∈ N, y ∈ N⊥. Since Ñ = N ,

tr(X(x ⊗ y)) = tr(P (N)⊥XP (N)(x⊗ y)) = 0.

Case 2. x ∈ N−, y ∈ N⊥− . Since X ∈ W , XN− ⊆ Ñ− ⊆ N−. Thus,

tr(X(x ⊗ y)) = tr(P (N−)⊥XP (N−)(x⊗ y)) = 0.

Therefore the map tr(X ·) annihilates any rank one operators in S. Since the map
tr(X ·) is linear, it follows from Theorem 2.7 that

tr(XF ) = 0, ∀F ∈ S ∩ F(H).

So ρ(·) = tr(X ·) annihilates S ∩ F(H). �
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Theorem 3.2 tells us that (S∩F(H))⊥ =W∩C1(H). Since (S∩F(H))∩K(H) =
S ∩ F(H), Theorem 3.2 also shows that (S ∩ F(H))⊥ =W ∩ C1(H).

In order to calculate the annihilator of W ∩ C1(H), we need some results about
weakly closed T (N )–modules. These results have their own interest. Note that the
symbol “∼” in the following results 3.3–3.5 is not the same as that defined in the
beginning of Section 3.

Lemma 3.3. Suppose that E, Ẽ are comparable projections in B(H). If A ∈ C1(H)
and (I − Ẽ)AE = 0, then A can be decomposed as A = A1 +A2 such that

1) (I − Ẽ)A1 = 0, A2E = 0;
2) ‖ A ‖1=‖ A1 ‖1 + ‖ A2 ‖1 .

Proof. We consider separately two cases.
Case 1. Ẽ ≤ E. We decompose H as Ẽ ⊕ (E 	 Ẽ)⊕E⊥. Since (I − Ẽ)AE = 0,

corresponding to the decomposition of H, the trace class operator A has the matrix
form

A =

 B11 B12 B13

0 0 B23

0 0 B33

 .

Thus, following [9], Lemma 3.3, A can be written as

A =

 B11 B12 C
0 0 0
0 0 0

+

 0 0 D
0 0 B23

0 0 B33

 = A1 +A2

and ‖ A ‖1=‖ A1 ‖1 + ‖ A2 ‖1. It follows from the matrix form of A1, A2 that
(I − Ẽ)A1 = 0 and A2E = 0.

Case 2. E ≤ Ẽ. Decompose H as E ⊕ (Ẽ 	 E) ⊕ Ẽ⊥. In this case A has the
matrix form

A =

 B11 B12 B13

B21 B22 B23

0 B32 B33

 .

Similarly, by [9], Lemma 3.3, we have

A =

 B11 C12 C13

B21 C22 C23

0 0 0

+

 0 D12 D13

0 D22 D23

0 B32 B33

 = A1 +A2

and ‖ A ‖1=‖ A1 ‖1 + ‖ A2 ‖1. Following the matrix form of A1, A2, we have that
(I − Ẽ)A1 = 0 and A2E = 0. �

Lemma 3.4. Let U = {X ∈ B(H) : XN ⊆ Ñ, ∀N ∈ N}, where the map N → Ñ

is an order homomorphism of N into N . Then P (Ñ)TP (N)⊥ ∈ U , for any N ∈
N , T ∈ B(H).

Proof. The proof is routine. �

Proposition 3.5. Suppose that U is a weakly closed T (N )–module determined
by the order homomorphism N → Ñ , then each extreme point of the unit ball
b1(U ∩ C1(H)) is a norm-one rank one operator in U ∩ C1(H).
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Proof. Suppose that A is an extreme point of b1(U ∩ C1(H)). First, we shall prove
that there exists an element N0 ∈ N such that A = P (N0∗)AP (N0)⊥. Recall that
N0∗ =

∧
{Ñ : N > N0, ∀N ∈ N} defined in [7].

For N ∈ N , suppose that A 6= P (Ñ)A and AP (N) 6= 0. Since A ∈ U and
N, Ñ ∈ N , we have that (I − P (Ñ))AP (N) = 0 and P (N), P (Ñ) are compara-
ble projections. Thus, it follows from Lemma 3.3 that the trace class operator
A can be decomposed as A = A1 + A2 and P (Ñ)⊥A1 = 0, A2P (N) = 0. So
A1P (N) = AP (N), P (Ñ)⊥A2 = P (Ñ)⊥A. Owing to the hypothesis A 6= P (Ñ)A
and AP (N) 6= 0, we have that A2 6= 0 and A1 6= 0. Now we shall prove that
A1, A2 ∈ U ∩ C1(H). Following Lemma 3.3 (2), we only need to prove A1, A2 ∈ U .
Since P (Ñ)⊥A1 = 0,

A1 = P (Ñ)A1 = P (Ñ)A1P (N) + P (Ñ)A1P (N)⊥

= P (Ñ)AP (N) + P (Ñ)A1P (N)⊥.

Since A ∈ U , P (Ñ), P (N) ∈ T (N ) and U is a weakly closed T (N )–module, the
operator P (Ñ)AP (N) ∈ U ; and by virtue of Lemma 3.4, P (Ñ)A1P (N)⊥ ∈ U .
Hence A1 ∈ U . Similarly, we can prove A2 ∈ U . Thus, it follows from Lemma
3.3 (2) that A is not an extreme point of b1(U ∩ C1(H)). This is a contradiction.
Therefore, for any N ∈ N , either A = P (Ñ)A or AP (N) = 0. Set

N0 =
∨
{N ∈ N : AP (N) = 0}.

Naturally, AP (N0) = 0 and for any N > N0, A = P (Ñ)A. Thus we have

A = P (Ñ)AP (N0)⊥, ∀N > N0.

Taking a limit, it follows from the definition of N0∗ that

A = P (N0∗)AP (N0)⊥.

In the following, we shall prove that A is a rank one operator. Since A ∈ C1(H) ⊆
K(H), A can be written as

A =
+∞∑
k=1

λkek ⊗ fk,

where
∑

is convergent according to the norm topology, {λk} are s-numbers of A
and ‖ ek ‖=‖ fk ‖= 1. Thus,

A = P (N0∗)AP (N0)⊥ =
+∞∑
k=1

λkP (N0∗)(ek ⊗ fk)P (N0)⊥.

Since ‖ A ‖1=
∑+∞
k=1 λk ≤

∑+∞
k=1 λk ‖ P (N0∗)(ek ⊗ fk)P (N0)⊥ ‖1, we have

λk = λk ‖ P (N0∗)(ek ⊗ fk)P (N0)⊥ ‖1, ∀k = 1, 2, · · · .
Therefore, if λk 6= 0, we have ‖ P (N0∗)ek ‖ · ‖ P (N0)⊥fk ‖= 1. Hence

ek ∈ N0∗ and fk ∈ N⊥0 .
By [7], Lemma 1.1, for any k ≥ 1, ek⊗fk ∈ U ∩C1(H). Since A is an extreme point
of b1(U ∩ C1(H)),

λ2 = λ3 = · · · = 0.
Thus A is a norm-one rank one operator. �
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We come back to study finite rank operators in S.

Lemma 3.6. The unit ball b1(W ∩ C1(H)) is the norm-closed convex hull of its
extreme points, where W is defined in the beginning of Section 3.

Proof. Following Theorem 3.2 and S ∩ F(H) = (S ∩ F(H)) ∩ K(H), we obtain

(S ∩ F(H)‖·‖)⊥ = (S ∩ F(H))⊥ =W ∩ C1(H).

Hence,

W ∩ C1(H) ∼= (K(H)/S ∩ F(H)‖·‖)∗.

By virtue of the Krein-Milman Theorem, b1(W ∩ C1(H)) is the w∗- closed convex
hull of its extreme points. It follows from [3], Corollary 16.4, that the boundary
points of b1(W∩C1(H)) belong to the norm-closed convex hull of its extreme points.
Therefore b1(W ∩ C1(H)) is the norm-closed convex hull of its extreme points. �

Now we are in the position to compute the (W ∩ C1(H))⊥. Set

V = {T ∈ B(H) : TN ⊆ N∼, ∀N ∈ N},

where N∼ = N , if dimN 	N− ≤ 1; and N∼ = N−, if dimN 	N− =∞.

Theorem 3.7. (W ∩ C1(H))⊥ = V .

Proof. Suppose that T ∈ (W ∩ C1(H))⊥. For any N ∈ N , nonzero vectors x ∈ N
and y ∈ N⊥∼ . By virtue of Lemma 3.1, the rank one operator x ⊗ y belongs to
W ∩F(H) ⊆ W ∩ C1(H). Hence

0 = tr(Tx⊗ y) = (Tx, y), ∀x ∈ N, y ∈ N⊥∼ .

So TN ⊆ N∼ for any N ∈ N , and T ∈ V . Thus, (W ∩ C1(H))⊥ ⊆ V .
Conversely, let T ∈ V . For any N ∈ N , x ∈ N and y ∈ N⊥∼ , we have that

tr(Tx⊗ y) = (Tx, y) = (P (N∼)⊥TP (N)x, y) = 0.

Thus, T annihilates all rank-one operators in W . It follows from Lemma 3.1 and
Proposition 3.5 that T annihilates all extreme points of b1(W ∩ C1(H)). Thus
by Lemma 3.6, T annihilates b1(W ∩ C1(H)) and T ∈ (W ∩ C1(H))⊥. Therefore
(W ∩ C1(H))⊥ = V . �

Theorem 3.8. (S ∩ F(H))w
∗

= V = {T ∈ B(H) : TN ⊆ N∼, ∀N ∈ N}, where
N∼ = N , if dimN 	N− ≤ 1; N∼ = N−, if dimN 	N− =∞.

Proof. It follows from Theorem 3.2 and Theorem 3.7 that

(S ∩ F(H))w
∗

= [(S ∩ F(H))⊥]⊥ = (W ∩ C1(H))⊥ = V .

�

Corollary 3.9. (S ∩ F(H))w = (S ∩ F(H))s = (S ∩ F(H))w
∗

= V.

Proof. Since V is weakly closed and (S ∩F(H))w
∗

= V , we have (S ∩F(H))w = V .
Owing to the convexity of S ∩ F(H), (S ∩ F(H))w = (S ∩ F(H))s. �
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4. The Erdos density theorem in S

In this section, we will prove that the Erdos Density Theorem holds in S if and
only if S is strongly reducible.

Proposition 4.1. Suppose that S is a maximal triangular algebra, and that N is
the hull nest of S. Then S is weakly dense in T (N ).

Proof. SetA = Sw. It is easy to show that LatA = LatS = N andA ⊇ S∩S∗, soA
is a weakly closed algebra which contains a m.a.s.a and LatA is completely ordered.
Following [13], Theorem 9.24, A is a reflexive algebra. Hence A = AlglatA =
AlgN = T (N ), that is, Sw = T (N ). �

Note that in Proposition 4.1, S is not assumed to be closed. Following Propo-
sition 4.1, we can obtain [16] Rosenthal’s famous result: a weakly closed maximal
triangular algebra is hyper-reducible, that is, S = T (N ). If a maximal triangular
algebra S is not weakly closed, we have Sw ⊃ S. Owing to the maximality of S, Sw
is not a triangular algebra. Hence Rosenthal’s result does not imply Proposition
4.1, which is more general. Now we give an application of Proposition 4.1.

Corollary 4.2. Let S be a maximal triangular algebra, then S′ = CI.

Proof. Following [2], Lemma 3.6, the commutant of a nest algebra is trivial. So

S′ = (Sw)′ = T (N )′ = CI.

�
Theorem 4.3. Suppose that S is a closed maximal triangular algebra, then S ∩
F(H) is weakly dense in S if and only if S is strongly reducible.

Proof. If S is strongly reducible, it follows from Corollary 3.9 that (S ∩F(H))w =
T (N ). Thus S ∩ F(H) is weakly dense in S.

Suppose, on the contrary, that S ∩ F(H) is weakly dense in S. It follows from
Corollary 3.9 and Proposition 4.1 that

V = (S ∩ F(H))w = Sw = T (N ).

Thus T (N ) = V = {T ∈ B(H) : TN ⊆ N∼, ∀N ∈ N}, where N∼ = N , if
dimN 	 N− ≤ 1; and N∼ = N−, if dimN 	 N− = ∞. It is easy to prove that
dimN 	 N− ≤ 1 for any N ∈ N . Indeed, suppose that there exists an element
N in N such that dimN 	 N− = ∞. In this case, N∼ = N−. So the identity
operator I ∈ T (N ) and I 6∈ V . This contradicts T (N ) = V . Hence for any N ∈ N ,
dimN 	N− ≤ 1. Thus S is strongly reducible. �
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