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ENDPOINT ESTIMATES
FOR THE CIRCULAR MAXIMAL FUNCTION

SANGHYUK LEE

(Communicated by Andreas Seeger)

Abstract. We consider the problem of endpoint estimates for the circular
maximal function defined by

Mf(x) = sup
1<t<2

∣∣∣∣∫
S1
f(x− ty)dσ(y)

∣∣∣∣
where dσ is the normalized surface area measure on S1. Let ∆ be the closed tri-
angle with vertices (0, 0), (1/2, 1/2), (2/5, 1/5). We prove that for (1/p, 1/q) ∈
∆ \ {(1/2, 1/2), (2/5, 1/5)}, there is a constant C such that ‖Mf‖Lq(R2) ≤
C‖f‖Lp(R2). Furthermore, ‖Mf‖L5,∞(R2) ≤ C‖f‖L5/2,1(R2).

1. Introduction and statement of results

Bourgain [B1] showed that the circular maximal function defined by

sup
t>0

∣∣∣∣∫
S1
f(x− ty)dσ(y)

∣∣∣∣
is bounded on Lp(R2) if p > 2. Mockenhaupt, Seeger and Sogge [MSS] later found
a new proof of this result based on their local smoothing estimates. Their result
actually implies that if one modifies the definition so that the supremum is taken
over 1 < t < 2, then the resulting maximal operator M (see below) is bounded
from Lp(R2) to Lq(R2) for some q > p. Here M is defined by

(1.1) Mf(x) = sup
1<t<2

∣∣∣∣∫
S1
f(x− ty)dσ(y)

∣∣∣∣ .
Let ∆ be the closed triangle with vertices P = (2/5, 1/5), Q = (1/2, 1/2), R = (0, 0).
Schlag [S] showed M is bounded from Lp(R2) → Lq(R2) if (1/p, 1/q) lies in the
interior of ∆. His result was obtained using a combinatorial method. A different
proof was later obtained by Schlag and Sogge [SS] which was based on some local
smoothing estimates. It can easily be shown that M cannot be bounded from
Lp(R2) to Lq(R2) if (1/p, 1/q) ∈ ([0, 1] × [0, 1] \ ∆) ∪ {(1/2, 1/2)} (see [S], [SS]).
Thus, when (1/p, 1/q) ∈ (R,P ]∪ [P,Q), the Lp−Lq estimates for M are still open.
In this note these remaining endpoint estimates are considered. The following is
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our main result which gives the complete type set for M except for the L5/2 − L5

estimate.

Theorem 1.1. Let M be defined by (1.1). Then for (1/p, 1/q) ∈ ∆ \ {P,Q}, there
is a constant C such that

‖Mf‖Lq(R2) ≤ C‖f‖Lp(R2).

Furthermore ‖Mf‖L5,∞(R2) ≤ C‖f‖L5/2,1(R2).

Theorem 1.1 will be proven using some sharp Carleson-Sjölin type estimate for
the 2-dimensional wave equation. Let us define

Utf(x) =
∫
R2
ei〈x,ξ〉+it|ξ|f̂(ξ)dξ.

In Section 2, we will show the following Lp − Lq local smoothing estimates.

Proposition 1.2. If supp f̂ ⊂ {ξ ∈ R2 : |ξ| ∼ N}, then for 1/p + 3/q = 1,
14/3 < q ≤ ∞,

(1.2)
(∫

R2

∫ 2

1

|Utf(x)|qdtdx
)1/q

≤ CN3/2−6/q‖f‖Lp(R2).

This is a slight improvement of the results obtained by Schlag and Sogge [SS], and
Tao and Vargas [TV2, section 4]. In particular, the ε-loss on regularity is removed.
For the proof of (1.2) we use the bilinear cone restriction estimate of Wolff [W]
and Tao [T] together with a modification of an argument in [TV2, section 4]. Let
Γ = {(ξ, τ) ∈ R2 × R : |ξ| = τ, 1 ≤ τ ≤ 2} and let Ω1, Ω2 be closed subsets of
S1 with dist(Ω1,Ω2) comparable to 1. Now set Γi = {(ξ, τ) ∈ Γ : ξ/τ ∈ Ωi} for
i = 1, 2. The following is the bilinear cone restriction estimate in R3 due to Wolff
[W] (for r > 5/3) and Tao [T] (for r = 5/3):

If supp f ⊂ Γ1 and supp g ⊂ Γ2, then for r ≥ 5/3

(1.3) ‖f̂dµĝdµ‖r ≤ C‖f‖2‖g‖2
where dµ is the surface measure of Γ.

Once Proposition 1.2 has been established, the proof of Theorem 1.1 is straight-
forward.

Proof of Theorem 1.1. It is well-known that

d̂σ(ξ) = ei|ξ|a+(ξ) + e−i|ξ|a−(ξ)

where a± are smooth functions satisfying |∂αa±(ξ)| ≤ Cα(1 + |ξ|)−1/2−|α|. There-
fore, it is sufficient to show that the maximal operator M defined by

Mf(x) = sup
1<t<2

∣∣∣∣∫ ei〈x,ξ〉+it|ξ|a+(tξ)f̂(ξ)dξ
∣∣∣∣

satisfies the estimates in Theorem 1.1 in place of M . Let β ∈ C∞0 (1/2, 2) satisfying∑
β(·/2j) = 1 and let βj(ξ) = β(|ξ|/2j). Let fj , f0 be defined by f̂j = βj f̂ ,

f0 =
∑

j≤0 fj, respectively. Set Mjf =Mfj. Trivially, we have

Mf(x) ≤Mf0(x) +
∑

j≥1Mjf(x).

It is easy to see that ‖Mf0‖q ≤ C‖f‖p for 1 ≤ p ≤ q, so we only need to consider∑
j≥1Mjf . Now we need the following well-known lemma.
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Lemma 1.3. Let I be an interval and let F be a smooth function defined on Rn×I.
Then, for 1 < p ≤ ∞,

‖ sup
t∈I
|F (x, t)|‖Lp(Rn) ≤ C(‖F‖Lp(Rn×I) + ‖F‖(p−1)/p

Lp(Rn×I)‖∂tF‖
1/p
Lp(Rn×I)).

By Lemma 1.3 and Plancherel’s theorem it is easy to see that for j ≥ 1,

(1.4) ‖Mjf‖2 ≤ C‖f‖2.

Let I be the interval [1, 2]. Using Lemma 1.3 and Hölder’s inequality, we have

‖Mjf‖q ≤ C2−j/2‖Utf1
j ‖Lq(R2×I) +C2−j/2+j/q(‖Utf2

j ‖Lq(R2×I) + ‖Utf3
j ‖Lq(R2×I))

where the supports of the Fourier transforms of f1
j , f

2
j and f3

j are contained in
the set {ξ ∈ R2 : |ξ| ∼ 2j}, and ‖f1

j ‖p, ‖f2
j ‖p and ‖f3

j ‖p are bounded by C‖f‖p.
Applying Proposition 1.2 to the last inequality, it is easy to see that for 1/p+3/q = 1
and q > 14/3,

‖Mjf‖q ≤ C2j(1−5/q)‖f‖p.
A complex interpolation between this and (1.4) shows that if (1/p, 1/q) is contained
in the closed triangle with vertices (1, 0),(5/14, 3/14),(1/2, 1/2) but is not on the
closed line segment [(1/2, 1/2), (5/14, 3/14)], then

(1.5) ‖Mjf‖q ≤ C2j(3/p−1/q−1)/2‖f‖p.

Using (1.5) and Lemma 2.6 (in Section 2) with n = 1, we have for (1/p, 1/q) ∈
[P,Q),

(1.6) ‖Mf‖q,∞ ≤ C‖f‖p,1.

Since M is a local operator, an interpolation (real interpolation) between these
estimates and the trivial L∞−L∞ estimate completes the proof of Theorem 1.1. �

We point out that similar endpoint estimates hold for the spherical maximal
function in Rn, n ≥ 3. Set

Mnf(x) = sup
1<t<2

∣∣∣∣∫
Sn−1

f(x− ty)dσn(y)
∣∣∣∣

where dσn is the normalized surface area measure on Sn−1. Set P1 = (0, 0), P2 =
((n−1)/n, (n−1)/n), P3 = ((n−1)/n, 1/n), P4 = ((n2−n)/(n2+1), (n−1)/(n2+1)).
Let Q be the closed quadrangle with vertices P1, P2, P3, P4. It was shown in [SS]
that ‖Mnf‖q ≤ C‖f‖p if (1/p, 1/q) is contained in the interior of Q and that these
maximal inequalities can never hold if (1/p, 1/q) is outside of Q. Using an argument
similar to the one used for the circular maximal function, we can show the following.

Theorem 1.4. Suppose Mn is defined as in the above for n ≥ 3. Then there is a
constant C such that

‖Mnf‖Lq(Rn) ≤ C‖f‖Lp(Rn)

if (1/p, 1/q) is contained in Q \ {P2, P3, P4}. Furthermore,

‖Mnf‖Lq,∞(Rn) ≤ C‖f‖Lp,1(Rn)

if (1/p, 1/q) = P2, P3, P4.
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Proof of Theorem 1.4. Now recall d̂σn(ξ) = ei|ξ|a+(ξ) + e−i|ξ|a−(ξ) with |∂αξ a±(ξ)|
≤ Cα(1 + |ξ|)−(n−1)/2−|α|. Define

Mf(x) = sup
1<t<2

∣∣∣∣∣
∫
Rn
ei〈x,ξ〉+it|ξ|

f̂(ξ)
(1 + |ξ|)(n−1)/2

dξ

∣∣∣∣∣ .
It is sufficient to consider M instead of Mn. As before, by Littlewood-Paley de-
composition, f = f0 +

∑
j≥1 fj. Set Mjf = M(fj). It can be easily seen that

‖M0f‖q ≤ C‖f‖p for 1 ≤ p ≤ q. Theorem 1.4 follows from Lemma 2.6 and the
following estimates. There is a constant C such that for j ≥ 1,

‖Mjf‖1 ≤ C2j‖f‖1,(1.7)

‖Mjf‖∞ ≤ C2j‖f‖1,(1.8)

‖Mjf‖2 ≤ C2−j
n−2

2 ‖f‖2,(1.9)

‖Mjf‖2(n+1)/(n−1) ≤ C2−j
n2−2n−1

2n+2 ‖f‖2.(1.10)

Interpolations (by Lemma 2.6) between (1.7) and (1.9), (1.8) and (1.9), (1.8)
and (1.10) give the restricted weak types (n/(n − 1), n/(n − 1)), (n/(n − 1), n),
((n2 + 1)/(n2−n), (n2 + 1)/(n− 1)), respectively. Therefore, we only need to show
(1.7), (1.8), (1.9), (1.10).

It is easy to see that (1.8) and (1.9) follow from the fact that if β ∈ C∞0 (Rn \ 0),∣∣∣∣∫
Rn
ei〈x,ξ〉+it|ξ|

β(ξ/2j)
(1 + |ξ|)(n−1)/2

dξ

∣∣∣∣ ≤ C min(2j , 2j(n+1)/2(1 + 2j||x| − t|)−N )

for every N . Using Lemma 1.3 and Plancherel’s theorem, we have (1.9). To see
(1.10), let Utf(x) =

∫
Rn e

i〈x,ξ〉+it|ξ|f̂(ξ)dξ and use Lemma 1.3 to get

‖Mjf‖
L

2n+2
n−1 (Rn)

≤ C2−j
n−1

2 ‖Utf1
j ‖

L
2n+2
n−1 (Rn×I)

(1.11)

+ C2−j
n−1

2 2j
n−1
2n+2 (‖Utf2

j ‖
L

2n+2
n−1 (Rn×I)

+ ‖Utf3
j ‖

L
2n+2
n−1 (Rn×I)

)

where the supports of the Fourier transforms of f1
j , f

2
j and f3

j are contained in the
set {ξ ∈ Rn : |ξ| ∼ 2j}, and ‖f1

j ‖p, ‖f2
j ‖p and ‖f3

j ‖p are bounded by C‖f‖p. By
the Strichartz estimates and re-scaling we can see that for l = 1, 2, 3,

‖Utf lj‖
L

2n+2
n−1 (Rn×I)

≤ C2j/2‖f‖2.

Putting this into (1.11) yields (1.10). �

Finally, we mention that an analogue of Theorem 1.4 holds for the maximal
operators associated with smoothly varying hypersurfaces, which were considered
in [SS] (Theorem 4.1). This can be shown in the same way.

2. Proof of Proposition 1.2

This section is devoted to the proof of the sharp local smoothing estimate (1.2).
It will be deduced from (1.3) and the following proposition. We only need to set
r0 = 5/3 in Proposition 2.1.
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Proposition 2.1. Let I be the interval [1, 2]. Suppose that (1.3) holds for r ≥ r0,
r0 < 2. Then for every f with supp f̂ ⊂ {ξ ∈ R2 : |ξ| ∼ N},

(2.1) ‖Utf‖Lq(R2×I) ≤ CN3/2−6/q‖f‖Lp(R2)

provided (3 + r0) < q ≤ ∞ and 3/q + 1/p = 1.

Let f be a function with supp f̂ ⊂ {ξ ∈ R2 : |ξ| ∼ N}. Without loss of generality
we may assume the support of f̂ is contained in a small conic neighborhood of the
direction (1, 0).

To exploit the bilinear estimates, we use a decomposition technique which was
used in [TV2, section 4]. For each j ≥ 1, let us dyadically divide the circle S1 into
2j arcs Ijk of length π21−j . We will write Ijk ∼ Ijk′ to mean that Ijk and Ijk′ are
not adjacent but have adjacent parent arcs of length π22−j . Then, by a Whitney
decomposition of S1 × S1 away from the diagonal D of S1 × S1 (see [TVV]), we
have

S1 × S1 \D =
⋃

j≥1

⋃
(k,k′):Ijk∼I

j

k′
Ijk × I

j
k′ .

Let ψ be a smooth function in C∞0 ([1/2, 4]) satisfying ψ(x) = 1 if 1 ≤ x ≤ 2. Let
f jk be given in polar coordinates by

f̂ jk(r, θ) = f̂(r, θ)χIjk (θ)ψ(r/N).

Since the support of f̂ is contained in a small conic neighborhood of the direction
(1, 0), we may assume that all the Ijk are contained in a small neighborhood of
(1, 0). Trivially, it follows that

Utf(x) · Utf(x) =
∑

j≥1

∑
(k,k′):Ijk∼I

j

k′
Utf

j
k(x) · Utf jk′(x).

Thus, it is more convenient to consider a bilinear operator than a linear one. For
each j ≥ 1, define a bilinear operator BNj by

BNj (f, g)(x) =
∑

Ijk∼I
j

k′
Utf

j
k(x) · Utgjk′(x).

We want to compute the operator norm ofBNj from Lp(R2)×Lp(R2) to Lq/2(R2×I).

Lemma 2.2. Suppose for some p, q satisfying 4 ≤ q, 2 ≤ p and 1/2 ≤ 1/q + 1/p,
there is a constant B such that if Ijk ∼ I

j
k′ , then

(2.2) ‖Utf jk · Utg
j
k′‖L q2 (R2×I) ≤ B‖f

j
k‖Lp(R2)‖gjk′‖Lp(R2).

Then there is a constant C, independent of j and N , such that

(2.3) ‖BNj (f, g)‖
L
q
2 (R2×I) ≤ CB‖f‖Lp(R2)‖g‖Lp(R2).

Proof. Since the Ijk are contained in a small neighborhood of (1,0), it is easy to
see that if Ijk ∼ Ijk′ , then supp f̂ jk + supp ĝjk is contained in the set {ξ ∈ R2 :
dist(ξ/|ξ|, Ijk) ≤ 24−j}. From this we can see that the Fourier supports of {Utf jk ·
Utg

j
k′}(k,k′):Ijk∼Ijk′ are contained in essentially disjoint rectangles and the overlap

among these rectangles is uniformly bounded in j. Now we use a lemma in [TV2],
which can be proven using Plancherel’s theorem and a standard argument.
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Lemma 2.3 ([TV2], Lemma 7.1). Let {Rk} be a collection of rectangles in fre-
quency space such that the dilates {2Rk} are essentially disjoint, and suppose that
{Fk} are a collection of functions whose Fourier supports are contained in Rk.
Then for 1 ≤ p ≤ ∞ we have

(
∑

k‖Fk‖p
∗

p )1/p∗ . ‖
∑

kFk‖p . (
∑

k‖Fk‖p∗p )1/p∗

where p∗ = min(p, p′) and p∗ = max(p, p′).

Using this and the observation made above, we have for q/2 ≥ 2,

‖
∑

Ijk∼I
j

k′
Utf

j
k · Utg

j
k′‖L q2 (R2)

≤ C(
∑

Ijk∼I
j

k′
‖Utf jk · Utg

j
k′‖

( q2 )′

L
q
2 (R2)

)1− 2
q

with C independent of j and t. After raising both sides to the power q/2, we
integrate on the interval I to get

‖
∑

Ijk∼I
j

k′
Utf

j
k · Utg

j
k′‖

q
2

L
q
2 (R2×I)

≤ C
∫
I

(
∑

Ijk∼I
j

k′
‖Utf jk · Utg

j
k′‖

( q2 )′

L
q
2 (R2)

)
q
2−1dt.

Since q/2 ≥ 2, by Minkowski’s inequality

‖BNj (f, g)‖
L
q
2 (R2×I) ≤ C(

∑
Ijk∼I

j

k′
‖Utf jk · Utg

j
k′‖

( q2 )′

L
q
2 (R2×I)

)1− 2
q .

From (2.2) we have ‖BNj (f, g)‖
L
q
2 (R2×I) ≤ CB(

∑
Ijk∼I

j

k′
‖f jk‖

( q2 )′

Lp ‖g
j
k′‖

( q2 )′

Lp )1− 2
q .

Since there are at most four values of k associated to each k′, it follows from
Schwarz’s inequality and the condition 1/2− 1/q ≤ 1/p that

‖BNj (f, g)‖
L
q
2 (R2×I) ≤ CB(

∑
k‖f jk‖

p
Lp)

1/p(
∑

k‖gjk‖
p
Lp)

1/p.

Now it is sufficient to show (
∑

k‖f jk‖
p
Lp)

1/p ≤ C‖f‖Lp for p ≥ 2. But this follows
from Lemma 2.3, because the Fourier supports of f jk are contained in essentially
disjoint rectangles. �

In view of Lemma 2.2, to compute the norm of BNj it is sufficient to consider
Utf

j
k · Utg

j
k′ when Ijk ∼ Ijk′ . This will be done by treating the cases 2j > N

1
2 and

2j ≤ N 1
2 separately. By rotation, we may assume that f̂ jk and ĝjk′ are supported on

the sets

{ξ ∈ R2 : ξ1 ∼ N, |ξ2| ∼ N2−j}, {ξ ∈ R2 : η1 ∼ N, |ξ2| � N2−j},
respectively.

First we claim that if 2j > N
1
2 , then for p ≤ q, 1/p+ 3/q = 1,

(2.4) ‖Utf jk · Utg
j
k′‖Lq/2(R2×I) ≤ CN (3−12/q)2−j(1−4/q)‖f jk‖p‖g

j
k′‖p.

To see this, note that f̂ jk is supported in a rectangle of size N ×N2−j. By dilation
(ξ1, ξ2)→ (Nξ1, N2−jξ2)

Utf
j
k(x) = N22j

∫
R2
ei〈x,(Nξ1,N2−jξ2)〉+it|(Nξ1,N2−jξ2)|β(ξ1, ξ2)f̂ jk(Nξ1, N2−jξ2)dξ

where β ∈ C∞0 ([1/2, 4] × [−2, 2]) and β ≡ 1 on the set [1, 2] × [−1, 1]. For ξ ∈
[1/2, 4]× [−2, 2], we have

t|(Nξ1, N2−jξ2)| = tNξ1

√
1 + (2−j

ξ2
ξ1

)2 = tNξ1 +O(t2−2jN).
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Since 2j > N
1
2 , eiO(t2−2jN)β is uniformly contained in C∞0 ([1/2, 4]× [−2, 2]), so it

can be expanded in a Fourier series so that eO(t2−2jN)β =
∑

l∈Z2 Cl(t)ei〈ξ,l〉 with∑
l∈Z2 |Cl(t)| < M uniformly in t. By re-scaling, (ξ1, ξ2)→ (ξ1/N, 2jξ2/N)

Utf
j
k(x) =

∑
l∈Z2

Cl(t)
∫
R2
ei〈x,ξ〉+itξ1ei〈(ξ1/N,2

jξ2/N),l〉f̂ jk(ξ)dξ.

This is essentially a sum of Fourier transforms. We need the following elementary
lemma known as Bernstein’s inequality.

Lemma 2.4. If f̂ is supported on a rectangle Q, then for 1 ≤ p ≤ q ≤ ∞
‖f‖q ≤ |Q|

1
p−

1
q ‖f‖p.

Using this, we can easily see that for 1 ≤ p ≤ q,
‖Utf jk‖Lq(R2×I) ≤ CN2(1/p−1/q)2−j(1/p−1/q)‖f jk‖p

because f̂ jk is supported in a rectangle of size N ×N2−j. In particular, if one sets
1/p = 1− 3/q, then

‖Utf jk‖Lq(R2×I) ≤ CN (3/2−6/q)2−j(1/2−2/q)‖f jk‖p
because 2j ≥ N1/2 and q ≥ 4. The same estimates also hold for gjk′ . Thus, by
Hölder’s equality, we can see that (2.4) follows. From Lemma 2.2 and (2.4), it
follows that if 2j > N1/2, then for 1/p+ 3/q = 1, p ≥ 2 and q ≥ 4,

(2.5) ‖BNj (f, g)‖Lq/2(R2×I) ≤ CN (3−12/q)2−(1−4/q)j‖f‖p‖g‖p.

Now we turn to the case 2j ≤ N
1
2 . To begin with, we want to show that if

2j ≤ N 1
2 , then

(2.6) ‖Utf jk · Utg
j
k′‖L∞(R2×I) ≤ CN2−2j‖f jk‖∞‖g

j
k′‖∞.

Dividing the arc Ijk into
√
N2−j sub-arcs Ijk,n, we decompose f jk into

√
N2−j func-

tions {f jk,n}n such that the f̂ jk,n are supported on rectangles of size N×N1/2, whose
major directions are (1, θn). Then using the same method as in the previous case,
for these decomposed functions we linearize the phase t|ξ| to obtain

(2.7) Utf
j
k(x) =

∑
n

∑
l∈Z2

Cl,n(t)
∫
R2
ei〈x,ξ〉ei(tξ1+tξ2θn)(1+θ2

n)−1/2
ei〈ξ/N,l〉f̂ jk,n(ξ)dξ

with
∑
l∈Z2 |Cl,n(t)| < M uniformly in t, n. Indeed, after the dilation ξ → Nξ

on the support of f̂ jk,n(·N), we have t|(Nξ1, Nξ2)| = (tNξ1 + tNξ2θn)/
√

1 + θ2
n +

Nξ1O((ξ2/ξ1−θn)2). Since the diameter of the angular support of f̂ jk,n(·N) is about
N−1/2, we have Nξ1O((ξ2/ξ1 − θn)2) = O(1). Introducing a cut-off function β, we
expand βeiNξ1O((ξ2/ξ1−θn)2) in a Fourier series

∑
l∈Z2 Cl,n(t)ei〈ξ,l〉 and re-scale by

ξ → Nξ to get (2.7). Since the number of n is about
√
N2−j, an application of

Lemma 2.4 to each f jk,n in (2.7) gives

‖Utf jk‖L∞(R2×I) ≤ C
√
N2−j‖f jk‖∞.

Trivially, the same estimate holds for gjk′ . Therefore, (2.6) follows.
Now we want to show that if Ijk ∼ I

j
k′ , then

(2.8) ‖Utf jk · Utg
j
k′‖Lr(R2×I) ≤ CN2−3/r2j(3/r−1)‖f jk‖2‖g

j
k′‖2.
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By re-scaling it suffices to show the following.

Lemma 2.5. Suppose (1.3) holds. If f̂ and ĝ are supported on the sets {ξ ∈ R2 :
ξ1 ∼ 1, |ξ2| ∼ 2−j} and {ξ ∈ R2 : ξ1 ∼ 1, |ξ2| � 2−j}, respectively, then

‖Utf · Utg‖Lr(R2×R) ≤ C2j(3/r−1)‖f‖2‖g‖2.

Proof. By Plancherel’s theorem, it is sufficient to show

‖f̂dµĝdµ‖r ≤ C2−j23j/r‖f‖2‖g‖2
whenever f and g are supported on the sets {(ξ, τ) ∈ Γ : ξ1 ∼ 1, |ξ2| ∼ 2−j} and
{(ξ, τ) ∈ Γ : ξ1 ∼ 1, |ξ2| � 2−j}, respectively. To obtain this from the bilinear cone
restriction estimate, observe that the cone Γ can be rotated without affecting the
estimate (1.3). Now make a coordinate transform given by

η1 =
τ + ξ1√

2
, η2 =

τ − ξ1√
2
, ρ = ξ2.

This rotation will move the forward light cone Γ to the cone Γ̃ which is tangent
to the η2-axis. Note that the defining equation for Γ (i.e. τ2 = ξ2

1 + ξ2
2 , τ ∼ 1) is

transformed to 2η1η2 = ρ2 with η1 ∼ 1. Therefore, f̂dµ is essentially the same as

Tf(x, t) =
∫

Γ̃

ei〈x,(η1,ρ)〉+itρ2/2η1f(η, ρ)dµ̃(η, ρ)

where dµ̃ is the surface measure on Γ̃. It is sufficient to consider Tf · Tg instead
of f̂dµĝdµ. In (η, ρ)-coordinates the conditions imposed on the supports of f, g
should be read as: the supports of f, g are contained in {(η, ρ) ∈ Γ̃ : η1 ∼ 1, ρ ∼
2−j}, {(η, ρ) ∈ Γ̃ : η1 ∼ 1, |ρ| � 2−j}, respectively. Now make the change of
variables ρ → 2−jρ to get Tf(x, t) = 2−jT (f(·, 2−j·))(x1, 2−jx2, 2−2jt). For the
bilinear operator

Tf(x, t) · Tg(x, t) = 2−2jTf(·, 2−j·)(x1, 2−jx2, 2−2jt) · Tg(·, 2−j·)(x1, 2−jx2, 2−2jt)

the functions f(·, 2−j·) and g(·, 2−j·) have disjoint angular supports with distance
comparable to 1, contained in the cone Γ̃. Therefore, by the bilinear cone restriction
estimate (1.3) we see that ‖Tf(·, 2−j·) · Tg(·, 2−j·)‖r ≤ C2j‖f‖2‖g‖2. Now, by re-
scaling it follows that

‖Tf · Tg‖r ≤ C2−j23j/r‖f‖2‖g‖2.

This completes the proof. �

Since for some fixed Ijk and Ijk′ , the expression Utf
j
k ·Utg

j
k′ can be considered as

a bilinear operator, an interpolation between (2.6) and (2.8) shows that if Ijk ∼ I
j
k′ ,

then for p, q satisfying q ≥ 2r and 1/p = r/q,

‖Utf jkUtg
j
k′‖q/2 ≤ CN

−6/q+2/p+12j(6/q+2/p−2)‖f jk‖p‖g
j
k′‖p

with C independent of Ijk, Ijk′ . Therefore, from Lemma 2.2 and the above it follows
that if 2j ≤ N1/2, then for p, q satisfying q ≥ 2r, 1/p = r/q, and 1/p+ 1/q ≥ 1/2,
p ≥ 2, q ≥ 4,

(2.9) ‖BNj (f, g)‖Lq/2 ≤ CN−6/q+2/p+12j(6/q+2/p−2)‖f‖p‖g‖p.
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To sum up the last estimates, we use the following lemma which is a multilinear
extension of a result implicit in [B3]. An explicit statement can also be found in
[CSW]. We denote by Lp,r the Lorentz spaces.

Lemma 2.6 (An interpolation lemma). Let ε1, ε2 > 0. Suppose that {Tj} is a
sequence of n-linear (or sublinear) operators such that for some 1 ≤ pi1, p

i
2 < ∞,

i = 1, . . . n and 1 ≤ q1, q2 <∞,

‖Tj(f1, . . . , fn)‖q1 ≤M12ε1j
∏
‖f i‖pi1 , ‖Tj(f1, . . . , fn)‖q2 ≤M22−ε2j

∏
‖f i‖pi2 .

Then T =
∑
Tj is bounded from Lp

1,1 × · · · × Lpn,1 to Lq,∞ with

‖T (f1, . . . , fn)‖Lq,∞ ≤ CMθ
1M

1−θ
2

∏
‖f i‖Lpi,1

where θ = ε2/(ε1 + ε2), 1/q = θ/q1 + (1− θ)/q2, 1/pi = θ/pi1 + (1− θ)/pi2.

Proof of Lemma 2.6. Let N ∈ Z, which will be chosen later. Let E1, . . . , En be
measurable sets and let λ > 0. Set TN =

∑N
−∞ Tj and TN =

∑∞
N+1 Tj. Note

‖TN‖Lp1
1×···×Lpn1→Lq1 ≤ CM12Nε1 , ‖TN‖Lp1

2×···×Lpn2→Lq2 ≤ CM22−Nε2

and |{x : |T (χE1 , . . . , χEn)(x)| > λ}| ≤ |{x : |TN (χE1 , . . . , χEn)(x)| > 1
2λ}|+ |{x :

|TN(χE1 , . . . , χEn)(x)| > 1
2λ}|. By Tchebyshev’s inequality, the measure of the set

{x : |T (χE1, . . . , χEn)(x)| > λ} is bounded above by

C(M q1
1 2ε1Nq1

∏
|Ei|q1/p

i
1λ−q1 +M q2

2 2−ε2Nq2
∏
|Ei|q2/p

i
2λ−q2).

Now choosing N which optimizes this yields

|{x : |T (χE1 , . . . , χEn)(x)| > λ}| ≤ C(Mθ
1M

1−θ
2

∏
|Ei|1/p

i

λ−1)q.

This completes the proof. �

Using Lemma 2.6 and (2.9), we see that if 1/p + 3/q = 1 and q = r + 3 (note
that 4 < q ≤ 5 and the conditions imposed on p, q in (2.9) are satisfied),

(2.10) ‖
∑

2j≤N1/2BNj (f, g)‖Lq/2,∞(R2×I) ≤ CN3−12/q‖f‖p,1‖g‖p,1.

Indeed, observe that in (2.9) the exponent on 2j is negative if 3/q + 1/p > 1, and
positive if 3/q + 1/p < 1. Use Lemma 2.6, and solve the conditions 1/p+ 3/q = 1
and 1/p = r/q to get (2.10) (which is an estimate at the point of intersection of
these two lines). Since (1.3) holds for r0 ≤ r, it follows that for 1/p+ 3/q = 1 and
r0 + 3 ≤ q ≤ 5,

‖
∑

2j≤N1/2BNj (f, g)‖Lq/2,∞(R2×I) ≤ CN3−12/q‖f‖p,1‖g‖p,1.

Since q/2 > 2, by real interpolation for bilinear operators between these estimates
(note that r0 + 3 < 5), the Lq/2,∞-norm in the left-hand side can be replaced by
an Lq/2-norm (see [BL], Exercise 3.13.5). Therefore we have that for 1/p+ 3/q = 1
and r0 + 3 < q < 5,

‖
∑

2j≤N1/2BNj (f, g)‖Lq/2(R2×I) ≤ CN3−12/q‖f‖p,1‖g‖p,1.
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Recall that (Utf)2 =
∑

j≥1B
N
j (f, f). Since q > 4, by the last inequality and

(2.5) we have

‖Utf‖2q ≤ ‖
∑

2j>N1/2BNj (f, f)‖q/2 + ‖
∑

2j≤N1/2BNj (f, f)‖q/2

≤ CN (3−12/q)(
∑

2j≥N1/22−(1−4/q)j + 1)‖f‖2p,1
≤ CN (3−12/q)‖f‖2p,1

provided that 1/p+ 3/q = 1 and r0 + 3 < q < 5. This can be interpolated (via real
interpolation) with the trivial estimate ‖Utf‖L∞(R×I) ≤ CN3/2‖f‖1 to replace the
Lp,1-norm by an Lp-norm. This completes the proof of Proposition 2.1.
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