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ON POINTWISE ESTIMATES
FOR THE LITTLEWOOD-PALEY OPERATORS

ANDREI K. LERNER

(Communicated by Andreas Seeger)

Abstract. In a recent paper we proved pointwise estimates relating some
classical maximal and singular integral operators. Here we show that inequal-
ities essentially of the same type hold for the Littlewood-Paley operators.

1. Introduction

Let ω be a non-negative, locally integrable function on Rn. Given a measurable
set E, let ω(E) =

∫
E ω(x)dx. The non-increasing rearrangement of a measurable

function f on Rn with respect to ω is defined by

f∗ω(t) = sup
ω(E)=t

inf
x∈E
|f(x)| (0 < t <∞).

If ω ≡ 1 we use the notation f∗(t).
Let us consider the maximal function (cf. [13])

mλf(x) = sup
Q3x

(fχ
Q

)∗(λ|Q|) (0 < λ < 1),

where the supremum is taken over all cubesQ containing x, χQ denotes the indicator
function of Q and |Q| denotes the Lebesgue measure of Q.

The function mλf , as well as the Hardy-Littlewood maximal function Mf , is
a pointwise majorant of |f |. However, mλf and f have the same integrability
properties in the Lp scale for any p > 0 (this follows, for example, from inequality
(3.1) below), unlike Mf for which it is true only for p > 1.

In [9], the following pointwise estimate was proved:

(1.1) mλ(T1f)(x) ≤ cλ,nT2f(x) + T1f(x),

where T1, T2 are certain maximal and singular integral operators. More precisely,
(1.1) was proved in the cases when either T1 or T2 is the Hardy-Littlewood max-
imal function, while T2 or T1 is the Fefferman-Stein sharp maximal function and
the Calderón-Zygmund maximal singular integral operator, respectively. Such es-
timates easily imply weighted rearrangement and Lp-inequalities with respect to a
weight satisfying the A∞ condition; BLO-inequalities can be derived as well (see
Lemma 1 in [9] for further details). Thus they allow us to unify and simplify some
basic techniques extensively applied to the above-mentioned operators.
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The aim of this paper is to show that estimates essentially of the same type
as (1.1) hold for the Littlewood-Paley operators. The role of these operators in
harmonic analysis is well-known (see, e.g., [12, Ch. 4]). Among numerous papers
on this subject, let us mention only those of specific interest to us, namely those
where “good-λ” [1, 4, 5, 10, 11], rearrangement [7] and BLO [8] inequalities were
proved.

Roughly speaking, our central result states that for certain Littlewood-Paley
operators T1 and T2 we have the pointwise estimates of the form

(1.2) mλ(T1f)(x) ≤ cλ,nmλ/4(T2f)(x) + T1f(x).

Below, in Lemma 3.5, we show that such estimates imply the results of no less
importance than (1.1) implies.

Two main approaches to the study of the Littlewood-Paley operators are well-
known. The first one is based on the vector-valued analysis, while the second is
based on the theory of harmonic functions. We shall use the latter approach, since
it is not quite clear how one can combine the rearrangement and vector-valued
techniques.

The paper is organized as follows. Section 2 contains some preliminaries. In
Section 3, we state the main results, Theorems 3.1–3.4, and show how to apply
them. In Section 4, we state and prove two lemmas which form the core of the
proofs of Theorems 3.1 and 3.2. In Section 5, we prove Theorems 3.1–3.4.

2. Preliminaries

Throughout the paper, u will be a harmonic function on the upper half space
Rn+1

+ = Rn × R+.
Define the truncated Lusin area integral and nontangential maximal function by

Sα,hu(x) =
(∫

Γα,h(x)

t1−n|∇u(y, t)|2dydt
)1/2

and
Nα,hu(x) = sup

(y,t)∈Γα,h(x)

|u(y, t)|,

respectively, where ∇u =
(
∂u
∂x1

, ..., ∂u∂xn ,
∂u
∂t

)
and Γα,h is the truncated cone with

vertex at x ∈ Rn and aperture α:

Γα,h(x) = {(y, t) ∈ Rn+1
+ : |y − x| < αt, 0 < t < h}.

When h = +∞ we drop the subscript h and write Sα, Nα,Γα. Also we consider the
Littlewood-Paley functions g and gµ defined by

g(u)(x) =
(∫ ∞

0

t|∇u(x, t)|2dt
)1/2

and

gµ(u)(x) =
(∫
Rn+1

+

( t

t+ |x− y|

)µn
t1−n|∇u(y, t)|2dydt

)1/2

(µ > 1).

Next, we define the vertical and box maximal functions by

N+u(x) = sup
t>0
|u(x, t)|
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and

Tµu(x) = sup
Q3x

( 1
|Q|µ

∫
T (Q)

t(µ−1)n−1|u(y, t)|2dydt
)1/2

(µ > 1),

respectively, where Q is a cube, T (Q) = {(x, t) : x ∈ Q, 0 < t < dQ}, and dQ
denotes the diameter of Q.

Following Strömberg [13], define the local square function by

S#
λ,αu(x) = sup

Q3x

(
(Sα,dQu)χQ

)∗ (λ|Q|) (0 < λ < 1).

Consider the “local nontangential” maximal function defined by

N#
λ,αu(x) = sup

Q3x
inf
c∈R

((
Nα,dQ(u − c)

)
χ
Q

)∗
(λ|Q|) (0 < λ < 1).

It is easy to see that S#
λ,αu(x) ≤ mλSαu(x) and N#

λ,αu(x) ≤ mλNαu(x).
Now, we recall some well-known facts concerning harmonic functions. First, by

Green’s Theorem,

(2.1)
∫
G

t|∇u(y, t)|2dydt =
∫
∂G

(
tu
∂u

∂n
− u2

2
∂t

∂n

)
dσ,

where G is a domain in Rn+1
+ with piecewise smooth boundary ∂G. Further, by

mean-value property we have for α < β, h < h′ (see [12, p. 207]),

(2.2) sup
(y,t)∈Γα,h(x)

t|∇u(y, t)| ≤ cNβ,h′u(x)

and

(2.3) sup
(y,t)∈Γα,h(x)

t|∇u(y, t)| ≤ cSβ,h′u(x),

where c = c(α, β, h, h′, n).
Recall that a weight ω satisfies Muckenhoupt’s condition A∞ if there exist

c, δ > 0 such that for any Q and E ⊂ Q,

ω(E) ≤ c(|E|/|Q|)δω(Q).

The space BLO [3] consists of all functions f ∈ L1
loc(Rn) such that

‖f‖BLO = sup
Q

1
|Q|

∫
Q

(
f(x)− inf

Q
f
)
dx <∞.

3. Main results and their applications

Our main results are the following.

Theorem 3.1. For any harmonic function u on Rn+1
+ and for all x ∈ Rn,

mλ(S2
αu)(x) ≤ cmλ/4(N2

βu)(x) + S2
αu(x) (0 < λ < 1, α < β),

where c is a constant depending on λ, α, β and n.

Theorem 3.2. For any harmonic function u on Rn+1
+ and for all x ∈ Rn,

mλ(Nαu)(x) ≤ cmλ/4(Sβu)(x) +N+u(x) (0 < λ < 1, α < β),

where c is a constant depending on λ, α, β and n.
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Theorem 3.3. For any harmonic function u on Rn+1
+ and for all x ∈ Rn,

mλ(g2u)(x) ≤ cmλ/4(N2
αu)(x) + g2u(x) (0 < λ < 1, α > 0),

where c is a constant depending on λ, α and n.

Theorem 3.4. For any harmonic function u on Rn+1
+ and for all x ∈ Rn,

mλ(g2
µ(u))(x) ≤ cmλ/4(T 2

µu)(x) + g2
µu(x) (0 < λ < 1, µ > 1),

where c is a constant depending on λ, µ and n.

The following result clarifies the sense of (1.2), or more precisely of Theo-
rems 3.1 – 3.4. As its counterpart for (1.1), Lemma 1 in [9], it serves as a bridge
between a certain relation for two functions and corresponding relations for their
rearrangements and norms.

Lemma 3.5. For any λ, 0 < λ ≤ 1/2, let there exist a constant cλ > 0, so that the
non-negative functions f, g satisfy the inequality

mλf(x) ≤ cλmλ/4g(x) + f(x)

for all x ∈ Rn, and let ω ∈ A∞. Then we have:
(i) there exist constants c1, c2 > 0, so that for all t > 0,

f∗ω(t) ≤ c1g∗ω(c2t) + f∗ω(2t);

(ii) if f∗ω(+∞) = 0, then

‖f‖Lpω ≤ cp‖g‖Lpω (0 < p <∞);

(iii) if g ∈ L∞, then f has bounded lower oscillation, f ∈ BLO, and

‖f‖BLO ≤ c‖g‖∞.

Since the proof goes along the same lines as Lemma 1 in [9], we outline it briefly.
Actually, all items of this lemma are an immediate combination of Lemma 1 in [9]
and the next inequality

(3.1) (mλf)∗ω(t) ≤ f∗ω(ct),

where c = c(λ, ω). To prove (3.1), observe that from the definition of the rearrange-
ment we have

{x : mλf(x) > α} ⊂ {x : Mχ{y:|f(y)|>α}(x) ≥ λ} (λ, α > 0).

On the other hand, it is well known (see, e.g., [2]) that a weight ω belongs to A∞
iff there exist k, r ≥ 1 so that

ω{x : Mf(x) > λ} ≤ k

λr

∫
Rn
|f(x)|rω(x)dx

for all measurable functions f on Rn and all λ > 0. Using these inequalities, we
obtain

ω{x : mλf(x) > α} ≤ cω{x : |f(x)| > α},
which proves (3.1).

Remark 3.6. It is easy to see that all assertions of Lemma 3.5 hold under the
assumption that non-negative functions f, g satisfy the inequality

mλf(x) ≤ cλmϕ(λ)g(x) + f(x),

where ϕ(λ) is a measurable function satisfying the only condition 0 < ϕ(λ) < 1.
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Theorems 3.1–3.4 together with (ii) of Lemma 3.5 give classical Lpω-estimates
obtained earlier with the help of “good-λ” inequalities. Also, using Theorems 3.1,
3.3, 3.4 and (iii) of Lemma 3.5, we get a new approach to BLO inequalities (cf. [8]).

Next we note that Theorems 3.1, 3.3, 3.4 and (i) of Lemma 3.5 give a refinement
of the rearrangement inequalities proved in [7].

Finally, we would like to point out that combining Theorem 3.2 and (i), (iii) of
Lemma 3.5 gives two new results concerning the nontangential maximal function.

Corollary 3.7. Let ω ∈ A∞. For any harmonic function u on Rn+1
+ we have:

(i) there exist constants c′, c′′ > 0 depending on α, β, ω, so that

(Nαu)∗ω(t) ≤ c′(Sβu)∗ω(c′′t) + (Nαu)∗ω(2t) (t > 0, α < β);

(ii) if Sβu ∈ L∞, then Nαu ∈ BLO, and

‖Nαu‖BLO ≤ c‖Sβu‖∞ (α < β).

4. Two lemmas

We shall establish pointwise relations between S#
λ,αu and N#

λ,αu. This is a key
ingredient in the proving Theorems 3.1 and 3.2. Note that we partially use the
arguments from [1, 5, 11].

Lemma 4.1. For all x ∈ Rn,

(4.1) S#
λ,αu(x) ≤ cN#

λ′,βu(x) (0 < λ′ < λ < 1, α < β),

where c = c(λ, λ′, α, β, n).

Proof. Let x ∈ Q. For δ > 0 let h = (1 + δ)dQ, and

A = {z ∈ Q : Nβ,hu(z) ≤
(
(Nβ,hu)χ

Q

)∗ ((λ − δ)|Q|)}.
It is clear that |A| ≥ (1−λ+δ)|Q|. Let E ⊂ Q be an arbitrary set with |E| = λ|Q|.
Then |E ∩A| ≥ δ|Q|.

Set D =
⋃
ξ∈E∩A Γα,dQ(ξ). Fubini’s theorem yields

inf
z∈E

S2
α,dQu(z) ≤ 1

|E ∩A|

∫
E∩A

S2
α,dQu(z)dz

≤ 1
δ|Q|

∫
D

t1−n|∇u(y, t)|2|{ξ ∈ E ∩A : (y, t) ∈ Γα,dQ(ξ)}|dydt

≤ c

|Q|

∫
D

t|∇u(y, t)|2dydt.(4.2)

Now one can estimate the last integral in a standard way. We approximate D
by a family of subdomains Dε ⊂ D with sufficiently smooth boundaries (see [12,
p. 206]). It is easy to see that σ(Dε) ≤ c|Q|. Applying (2.1) and (2.2), we get∫
Dε

t|∇u(y, t)|2dydt ≤
∫
∂Dε

(
t|u(y, t)||∇u(y, t)|+ |u(y, t)|2/2

)
dσ

≤ cσ(∂Dε) sup
z∈A

N2
β,hu(z) ≤ c|Q|

(
(N2

β,hu)χ
Q

)∗
((λ − δ)|Q|).

Letting Dε → D as ε→ 0+ and using (4.2), we have

inf
z∈E

Sα,dQu(z) ≤ c
(
(Nβ,hu)χQ

)∗
((λ − δ)|Q|).
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Taking the supremum over all sets E ⊂ Q with |E| = λ|Q| yields

((Sα,dQu)χ
Q

)∗(λ|Q|) ≤ c
(
(Nβ,hu)χ

Q

)∗ ((λ− δ)|Q|)
≤ c

(
(Nβ,hu)χ(1+δ)Q

)∗ (λ′|(1 + δ)Q|),
where λ′ = (λ−δ)/(1+δ)n. This completes the proof, since Sα,dQ(u−c) = Sα,dQ(u).

�

Now we introduce the following notation. Let α′ = max(1/α, 1). If x ∈ Q, we set

ũ(y, t) = u(y, t)− u(x, α′dQ).

Lemma 4.2. For any cube Q ⊂ Rn and all x ∈ Q,(
(Nα,dQ ũ)χQ

)∗ (λ|Q|) ≤ cmλ/2Sβu(x) (0 < λ < 1, α < β),

where c = c(λ, α, β, n).

Proof. Let x ∈ Q. For δ > 0 let h = (1+ δ)α′dQ, Sβ(Q) = ((Sβ,hu)χ
Q

)∗((λ− δ)|Q|)
and

A = {z ∈ Q : Sβ,hu(z) ≤ Sβ(Q)}.
Let E ⊂ Q be an arbitrary set with |E| = λ|Q|. Then |E ∩A| ≥ δ|Q|.

For any z ∈ E ∩ A there exists a point (y, t) ∈ Γα,dQ(z) so that Nα,dQũ(z) ≤
2|ũ(y, t)|. Let ξ ∈ B(z, αt), where B(z, αt) is the ball centered at z of radius αt.
Since (ξ, t), (y, t) ∈ Γα,dQ(z), all points of the segment with the end points (ξ, t)
and (y, t) belong to Γα,dQ(z). Using Mean Value Theorem, (2.3), and the fact that
∇ũ = ∇u, we obtain

|ũ(y, t)| ≤ cSβ(Q) + inf
ξ∈B(z,αt)

|ũ(ξ, t)|.

The balls B(z, 2αt) form the covering of the set E ∩ A. Using Besicovitch’s
theorem [6, p. 5], choose a finite number of pairwise disjoint balls B(zi, 2αti) (i =
1, ..., k) so that

∑k
i=1 |B(zi, αti)| ≥ c|E ∩A| ≥ c′|Q|. Then

inf
z∈E

Nα,dQũ(z) ≤ min
1≤i≤k

Nα,dQũ(zi)(4.3)

≤ c(Sβ(Q) + min
1≤i≤k

inf
ξ∈B(zi,αti)

|ũ(ξ, ti)|).

Now set D =
⋃k
i=1 Γα,dQ(zi) \ Γα,ti(zi). Let us denote ∂D+ = {(y, dQ) ∈ ∂D}

and ∂D− = ∂D \ ∂D+. Since B(zi, 2αti) are disjoint and ξ 6∈ B(z, 2αt) implies
Γα,t(ξ) ∩ Γα,t(z) = ∅, we see that

⋃k
i=1{(ξ, ti) : ξ ∈ B(zi, αti)} ⊂ ∂D−. Therefore,

min
1≤i≤k

inf
ξ∈B(zi,αti)

|ũ(ξ, ti)| ≤ min
1≤i≤k

( 1
|B(zi, αti)|

∫
B(zi,αti)

ũ2(ξ, ti)dξ
)1/2

≤
( 1∑k

i=1 |B(zi, αti)|

k∑
i=1

∫
B(zi,αti)

ũ2(ξ, ti)dξ
)1/2

≤
( c

|Q|

∫
∂D−

ũ2dσ
)1/2

.(4.4)

It is easy to see that |∂t/∂n| ≤ 1, σ(∂D) ≤ c|Q| and −∂t/∂n ≥ c > 0 for
(y, t) ∈ ∂D−. Thus, by (2.1) we obtain

(4.5)
∫
∂D−

ũ2dσ ≤ c
(∫

∂D+
ũ2dσ +

∫
∂D

t|ũ||∇u|dσ +
∫
D

t|∇u(y, t)|2dydt
)
.
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Let (y, dQ) ∈ ∂D. There exists zi ∈ A so that |y− zi| < αdQ. Besides, |x− zi| <
dQ ≤ α · α′dQ. Since (y, dQ) and (x, α′dQ) belong to Γα(zi), using Mean Value
Theorem and (2.3), we have

|ũ(y, dQ)| ≤ cSβ,hu(zi) ≤ cSβ(Q).

Hence,

(4.6)
∫
∂D+

ũ2dσ ≤ c|Q|S2
β(Q).

Next, by (2.3) and Hölder’s inequality,∫
∂D

t|ũ||∇u|dσ =
∫
∂D+

t|ũ||∇u|dσ +
∫
∂D−

t|ũ||∇u|dσ

≤ c|Q|S2
β(Q) +

(∫
∂D−

(t|∇u|)2dσ
)1/2(∫

∂D−
ũ2dσ

)1/2

≤ c|Q|S2
β(Q) + c|Q|1/2Sβ(Q)

(∫
∂D−

ũ2dσ
)1/2

.(4.7)

Let us estimate the last term in (4.5). We invoke the following geometrical
observation (see [5]): for any point ξ ∈ Rn there exists z ∈ A so that(⋃

η∈A
Γα,dQ(η)

)
∩ Γ(β−α)/2,dQ(ξ) ⊂ Γβ,dQ(z).

It follows from this that for all ξ ∈ Rn,

(4.8)
∫

Γ β−α
2 ,dQ(ξ)

t1−n|∇u(y, t)|2χ ⋃
η∈A

Γα,dQ
(η)(y, t)dydt ≤ S2

β(Q).

Note that
⋃
η∈A Γα,dQ(η) ⊂ c′Q×dQ ⊂

⋃
ξ∈c′Q Γ(β−α)/2,dQ(ξ), with c′ = 2α

√
n+1.

Integrating (4.8) over c′Q and using Fubini’s theorem, we get∫
D

t|∇u(y, t)|2dydt ≤
∫

⋃
η∈A

Γα,dQ (η)

t|∇u(y, t)|2dydt

≤ c

∫
⋃
η∈A

Γα,dQ (η)

t1−n|∇u(y, t)|2|{x′ ∈ c′Q : (y, t) ∈ Γ β−α
2 ,dQ

(x′)}|dydt

≤ c|c′Q|S2
β(Q) ≤ c|Q|S2

β(Q).

From this and (4.5)–(4.7) we obtain∫
∂D−

ũ2dσ ≤ c|Q|S2
β(Q) + c|Q|1/2Sβ(Q)

(∫
∂D−

ũ2dσ
)1/2

.

This yields
∫
∂D−

ũ2dσ ≤ c|Q|S2
β(Q). Hence, from this and (4.3), (4.4) we get

(4.9) inf
z∈E

Nα,dQũ(z) ≤ c((Sβ,hu)χ
Q

)∗((λ− δ)|Q|).

Choosing δ = λ/2 and taking the supremum over all E ⊂ Q with |E| = λ|Q|
completes the proof of Lemma 4.2. �
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Remark 4.3. It is easy to see that (4.9) implies the inequality

N#
λ,αu(x) ≤ cS#

λ′min(αn,1),βu(x) (0 < λ′ < λ < 1, α < β),

where c = c(λ, λ′, α, β, n). Hence, for α ≥ 1 we have the inequality “converse”
to (4.1).

5. Proofs of main results

Here we always suppose that x, z ∈ Q.

Proof of Theorem 3.1. Let as above α′ = max(1/α, 1). Since

Kα(t) = {y : |y − z| < αt} \ {y : |y − x| < αt} ⊂ {y : αt− dQ ≤ |y − z| < αt},

for t > α′dQ we get

|Kα(t)| ≤ cnnαn−1dQt
n−1.

From this and (2.2) we obtain∫ ∞
α′dQ

∫
{|y−z|<αt}

t1−n|∇u(y, t)|2dydt

≤
∫ ∞
α′dQ

∫
Kα(t)

t1−n|∇u(y, t)|2dydt

+
∫ ∞
α′dQ

∫
{|y−x|<αt}

t1−n|∇u(y, t)|2dydt

≤ cdQN2
βu(z)

∫ ∞
α′dQ

dt

t2
+ S2

αu(x) ≤ cN2
βu(z) + S2

αu(x).

If α < 1, then using (2.2) again, we get∫ α′dQ

dQ

∫
{|y−z|<αt}

t1−n|∇u(y, t)|2dydt ≤ cN2
βu(z)

∫ α′dQ

dQ

dt

t
≤ cN2

βu(z).

Thus, two last estimates show that for any α > 0 and for all z ∈ Q,

S2
αu(z) = S2

α,dQu(z) +
∫ ∞
dQ

∫
{|y−z|<αt}

t1−n|∇u(y, t)|2dydt

≤ S2
α,dQu(z) + cN2

βu(z) + S2
αu(x).

From this and (4.1) we have

((S2
αu)χQ)∗(λ|Q|) ≤ ((S2

α,dQu)χQ)∗(λ/2|Q|) + c((N2
βu)χQ)∗(λ/2|Q|) + S2

αu(x)

≤ cmλ/4N
2
βu(x) + cmλ/2N

2
βu(x) + S2

αu(x)

≤ cmλ/4N
2
βu(x) + S2

αu(x)

(with λ′ = λ/2 in (4.1)). Taking the upper bound over all Q 3 x completes the
proof of the theorem. �
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Proof of Theorem 3.2. We use here the notation from Lemma 4.2. Let (y, t) ∈
Γα(z). If t ≥ dQ, then (x, α′t) ∈ Γα(z). Using Mean Value Theorem and (2.3), we
obtain

|u(y, t)| ≤ |u(y, t)− u(x, α′t)|+N+u(x) ≤ cSβu(z) +N+u(x).

Hence,

Nαu(z) = max
(

sup
(y,t)∈Γα,dQ(z)

|u(y, t)|, sup
(y,t)∈Γα\Γα,dQ (z)

|u(y, t)|
)

≤ max
(
Nα,dQ ũ(z) +N+u(x), cSβu(z) +N+u(x)

)
≤ Nα,dQũ(z) + cSβu(z) +N+u(x).

From this and Lemma 4.2 we get

((Nαu)χQ)∗(λ|Q|) ≤ ((Nα,dQ ũ)χQ)∗(λ|Q|/2) + c((Sβu)χQ)∗(λ|Q|/2) +N+u(x)

≤ cmλ/4Sβu(x) + cmλ/2Sβu(x) +N+u(x)

≤ cmλ/4Sβu(x) +N+u(x),

which implies the desired result. �

Proof of Theorem 3.3. It suffices to prove the theorem for 0 < α < 1. Let η < α.
If t > dQ/η, then (x, t) ∈ Γη(z). Using Mean Value Theorem and (2.2), we have∣∣|∇u(z, t)|2 − |∇u(x, t)|2

∣∣ ≤ (
|∇u(z, t)|+ |∇u(x, t)|

)∣∣∣|∇u(z, t)| − |∇u(x, t)|
∣∣∣

≤ c
|z − x|
t

Nαu(z)
∣∣∣∇|∇u(ξ, t)|

∣∣∣ ≤ cdQ
t3
N2
αu(z),

where (ξ, t) is a point on the line with the end points (z, t) and (x, t). From this
and (2.2) we obtain∫ ∞

dQ

t|∇u(z, t)|2dt =
∫ dQ/η

dQ

t|∇u(z, t)|2dt+
∫ ∞
dQ/η

t|∇u(z, t)|2dt

≤ cN2
αu(z)

∫ dQ/η

dQ

dt

t
+ cdQN

2
αu(z)

∫ ∞
dQ

dt

t2
+
∫ ∞
dQ

t|∇u(x, t)|2dt

≤ cN2
αu(z) + g2u(x).(5.1)

Next, we note that besides the well-known inequality g(x) ≤ cS(x) (see [12]),
one can prove its “truncated” variant using exactly the same argument:∫ dQ

0

t|∇u(z, t)|2dt ≤ cη,nS2
η,dQu(z).

Thus, applying Lemma 4.1 and (5.1), we get(
(g2u)χQ

)∗
(λ|Q|) ≤ c

(
S#
λ/2,ηu(x)

)2

+ cmλ/2N
2
αu(x) + g2u(x)

≤ cmλ/4(N2
αu)(x) + g2u(x),

as required. �

Proof of Theorem 3.4. Note, that in [10] the “good-λ” inequality relating gµ and
Tµ have been proved. Using essentially the same arguments, one can prove the
desired pointwise estimate. So, we shall omit some details in the proof.
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We shall use the following inequalities [10], [12, p. 275]:

(5.2) Nαu(x) ≤ cTµu(x),

(5.3) |∇u(y, t)|2 ≤ ct−2 1
tn+1

∫
Bt/2(y,t)

u2(ξ, η)dξdη,

where Bt/2(y, t) is the ball centered at (y, t) of radius t/2.
We split the integral defining gµ into two as follows:

g2
µ(u)(z) =

∫
T (3Q)

( t

t+ |z − y|
)µn

t1−n|∇u(y, t)|2dydt

+
∫
Rn+1

+ \T (3Q)

( t

t+ |z − y|
)µn

t1−n|∇u(y, t)|2dydt

≡ gµ,1u(z) + gµ,2u(z).

Using (5.3) and the standard techniques for maximal functions, one can show that

gµ,2u(z) ≤ cT 2
µu(z) + g2

µ(x).

Now we set A = {z ∈ Q : Tµu(z) ≤
(

(Tµu)χQ
)∗

(λ|Q|/2)}. Let E ⊂ Q, |E| = λ|Q|.
Then |E ∩A| ≥ λ|Q|/2. Denote D =

⋃
z∈A Γ1,3dQ(z). We have

inf
z∈E

gµ,1u(z) ≤ 1
|E ∩A|

∫
E∩A

∫
T (3Q)

( t

t+ |z − y|
)µn

t1−n|∇u(y, t)|2dydtdz

≤ c

|Q|

∫
T (3Q)∩D

∫
A

( t

t+ |z − y|
)µn

t1−n|∇u(y, t)|2dzdydt

+
c

|Q|

∫
T (3Q)\D

∫
A

( t

t+ |z − y|
)µn

t1−n|∇u(y, t)|2dzdydt.(5.4)

Since
∫
Rn

t(µ−1)n

(t+|z−y|)µn dz ≤ cµ,n, we see that∫
T (3Q)∩D

∫
A

( t

t+ |z − y|
)µn

t1−n|∇u(y, t)|2dzdydt ≤ c
∫
D

t|∇u(y, t)|2dydt.

Using (5.2) and the same arguments as in Lemma 4.1, we obtain∫
D

t|∇u(y, t)|2dydt ≤ c|Q| sup
z∈A

N2
αu(z)

≤ c|Q| sup
z∈A

T 2
µu(z) ≤ c|Q|

(
(T 2
µu)χQ

)∗
(λ|Q|/2).

The last integral in (5.4) is estimated exactly as in [10], by applying Whitney’s
decomposition to the set 3Q \A. Then, using (5.3), one can show that∫
T (3Q)\D

∫
A

(
t

t+ |z − y|

)µn
t1−n|∇u(y, t)|2dzdydt ≤ c|Q|

(
(T 2
µu)χQ

)∗
(λ|Q|/2).

Combining the obtained estimates gives

((gµ,1u)χQ)∗(λ|Q|) ≤ c
(
(T 2
µu)χQ

)∗
(λ|Q|/2).
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Hence,(
(g2
µu)χQ

)∗
(λ|Q|) ≤ c

(
(T 2
µu)χQ

)∗
(λ|Q|/4) + c

(
(T 2
µu)χQ

)∗
(λ|Q|/2) + g2

µu(x)

≤ c
(
(T 2
µu)χQ

)∗
(λ|Q|/4) + g2

µu(x),

which proves the theorem. �
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