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COUNTABLY GENERATED HILBERT MODULES,
THE KASPAROV STABILISATION THEOREM,

AND FRAMES IN HILBERT MODULES

IAIN RAEBURN AND SHAUN J. THOMPSON

(Communicated by David R. Larson)

Abstract. We consider a class of countably generated Hilbert modules in
which the generators are multipliers of the module, and prove a version of the
Kasparov Stabilisation Theorem for these modules. We then extend recent
work of Frank and Larson on frames in Hilbert modules.

The Kasparov Stabilisation Theorem says that every countably generated Hilbert
module over a C∗-algebra A is isomorphic to a direct summand of l2(A) = AA ⊗
l2C. In applications, one often has to assume that the C∗-algebra A is σ-unital,
otherwise modules such as AA and l2(A)A and their submodules are not countably
generated. Here we propose a more general notion of countably generated module
in which the generators can be multipliers of the module, and prove a version of
Kasparov’s theorem for these modules. With our definition, AA and l2(A) are
countably generated for any A, and hence applications of our theorem should not
require hypotheses on A.

We became interested in these ideas while studying recent work of Frank and
Larson on frames in Hilbert modules, which are, loosely speaking, sequences for
which one has a Parseval Identity and a reconstruction formula (see [5, 6]). The
Kasparov Stabilisation Theorem is used in [5] to prove that every countably gen-
erated Hilbert module over a unital C∗-algebra admits frames; with our version of
Kasparov’s theorem, we can see that every countably generated Hilbert module ad-
mits a frame of multipliers. We can then extend many of Frank and Larson’s results
to frames of multipliers in countably generated modules over arbitrary C∗-algebras.

Multipliers of Hilbert modules have been used implicitly for many years (in [1],
for example), and multiplier bimodules of imprimitivity bimodules were explicitly
studied in [4]. We review their properties in §1. In §2, we prove our version of
Kasparov’s theorem, following the argument of Mingo and Phillips ([9], see also
[8, 10]); the properties of multipliers considered in §1 turn out to be exactly what
is needed to make their proof work. We discuss frames in §3. We consider only
the standard normalised frames which generalise orthonormal bases, and prove
the reconstruction formula for such frames (Theorem 3.4); again, with appropriate
interpretation to accommodate multipliers, we can adapt arguments from [5]. The
main tool is the frame transform (Theorem 3.5), which shows how a frame for a
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Hilbert module HA gives an embedding of HA as a submodule of l2(A). We close
by briefly discussing other implications of our theorem, which include a new version
of the Brown-Green-Rieffel Theorem for non-σ-unital C∗-algebras.

Conventions. We use the theory of Hilbert modules as discussed in [8] and [10],
and in particular we use right modules throughout. If H and K are Hilbert modules
over the same C∗-algebra A, we denote by L(HA,KA) or L(H,K) the Banach space
of adjointable operators from H to K. We denote by Θk,h the rank-one operator
g 7→ k ·〈h, g〉A, and by K(HA,KA) the closed span of these operators in L(HA,KA).
We write l2(A) for the Hilbert A-module of sequences (an) in A such that

∑
a∗nan

converges in A, with inner product given by 〈(an), (bn)〉A :=
∑
a∗nbn; this module

is discussed in [10, §2.1], for example.

1. Multiplier modules

To motivate the next definition, recall that we can identify the multiplier algebra
M(A) with the algebra L(AA) of adjointable operators on the trivial module AA.
For those used to the double-centraliser definition of M(A), the identification takes
m ∈ M(A) to the left centraliser Lm : a 7→ ma; the existence of the adjoint is
equivalent to the existence of the right centraliser. Now for a Hilbert A-module H,
we define M(H) := L(AA,HA).

Remark 1.1. It is crucial in defining M(H) that we know which algebra A is the
coefficient algebra: given HA, we can view H as a Hilbert module over any C∗-
subalgebra of M(A) containing the range of the inner product, but the multi-
plier bimodule will change. For example, M(AA) = L(A,A) = M(A), whereas
M(AM(A)) = L(M(A), A) = A.

Proposition 1.2. The set M(H) is a Hilbert M(A)-module with (m·b)(a) := m(ba)
and 〈m,n〉M(A) := m∗ ◦ n for m,n ∈ M(H) and a ∈ M(A). For h ∈ H, ιH(h) :
a 7→ h ·a is adjointable with adjoint ιH(h)∗ : k 7→ 〈h, k〉A, and the map ιH embeds H
as a closed M(A)-submodule of M(H). We call M(H)M(A) the multiplier module
of HA.

Proof. Each m∗◦n is an adjointable operator on AA, and hence belongs to M(A) =
L(AA); it is a routine exercise to verify that M(H) is an inner-product M(A)-
module. To establish completeness of M(H) we use the following lemma, which
follows from a standard linking-algebra argument.

Lemma 1.3. Let H and K be Hilbert A-modules and T ∈ L(H,K) be an adjointable
operator. Then ‖T ∗ ◦ T ‖L(H) = ‖T ‖2L(H,K).

We know that M(H) = L(A,H) is complete in the operator norm, and the
lemma says that this agrees with the norm induced by the inner product. Thus
M(H) is a Hilbert M(A)-module.

The calculation

〈ιH(h)(a), k〉A = 〈h · a, k〉A = a∗〈h, k〉A = 〈a, 〈h, k〉A〉A
shows that k 7→ 〈h, k〉A is an adjoint for ιH(h). To see that ιH : H → M(H)
is an M(A)-module homomorphism, it suffices to show that it is an A-module
homomorphism. But then for h ∈ H and a, b ∈ A we have

(ιH(h) · b)(a) = ιH(h)(ba) = h · (ba) = (h · b) · a = ιH(h · b)(a),
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and hence ιH(h) · b = ιH(h · b). Another routine calculation shows that ιH respects
the inner products; this implies that ιH is isometric and hence has closed range. �

Just as we usually identify A with its canonical image in M(A), we usually
suppress the canonical map ιH, and think of H as a submodule of M(H). Then we
have:

Proposition 1.4. Let H be a Hilbert A-module and suppose m ∈ M(H). Then
m · a = m(a) belongs to H for every a ∈ A, and 〈m,h〉M(A) = m∗(h) belongs to A
for every h ∈ H.

Proof. Strictly speaking, these statements involve the map ιH. For example, the
first statement says m · a = ιH(m(a)). To verify it, let b ∈ A. Then (m · a)(b) =
m(ab) = m(a) · b = ιH(m(a))(b), as required. Similar arguments give the second
statement. �

2. The Kasparov Stabilisation Theorem

Definition 2.1. A Hilbert A-module H is countably generated in M(H) if there is
a sequence {hi} ⊆ M(H) such that the elements hi · a span a dense submodule of
H.

Example 2.2. The Hilbert A-module l2(A) is countably generated in M(l2(A))
for any C∗-algebra A. To see this, let i ∈ N, and define ei : A → l2(A) by
ei(a) := (0, 0, ..., 0, a, 0, ...); then ei is adjointable with adjoint e∗i : (an) 7→ ai, and
hence ei ∈M(l2(A)). We claim that for h ∈ l2(A),

h =
∞∑
i=1

ei · 〈ei, h〉M(A)

in the sense that the infinite sum converges in l2(A) to h; in particular, because we
know from Proposition 1.4 that 〈ei, h〉M(A) ∈ A, this implies that the {ei} generate
l2(A). Suppose h = (an). By Proposition 1.4, we have 〈ei, h〉M(A) = e∗i (h) = ai,
and hence ei · 〈ei, h〉M(A) = ei(ai). Thus

∑n
i=1 ei · 〈ei, h〉M(A) = (a1, ..., an, 0, ...),

and ∥∥∥h− n∑
i=1

ei · 〈ei, h〉M(A)

∥∥∥2

= ‖(0, ..., 0, an+1, an+2, ...)‖2 =
∥∥∥ ∞∑
j=n+1

a∗jaj

∥∥∥,
which converges to 0 as n→∞ because h = (an) ∈ l2(A).

Theorem 2.3 (The Kasparov Stabilisation Theorem). Suppose that H is a Hilbert
A-module which is countably generated in M(H). Then l2(A) is isomorphic as a
Hilbert A-module to H⊕ l2(A).

Following the argument in [10, §5.5], we let {mi} ⊆ M(H) be a generating
sequence for H, normalised so that ‖mi‖ = 1 for each i. Let {xi} ⊆ M(H) be a
sequence obtained by listing the generators mi in such a way that each appears
infinitely often. Let {ei} be the generating set for l2(A) described in Example 2.2.
We identify H and l2(A) with their images in H⊕ l2(A).

The next claim in [10] is that

(2.1) T :=
∞∑
n=1

2−nΘxn,en + 4−nΘen,en
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converges in norm to an operator T in K(l2(A),H ⊕ l2(A)). There is a potential
problem here, since Θxn,en , for example, is defined to be an operator from M(l2(A))
to M(H). However, the multiplier-like properties described in Proposition 1.4 are
exactly what we need to see that Θxn,en also maps l2(A) to H:

Lemma 2.4. Suppose H and K are Hilbert A-modules, and let m ∈ M(H), n ∈
M(K). Then the formula

Θn,m(h) = n · 〈m,h〉M(A)

defines an adjointable map Θn,m : H → K with adjoint Θm,n, and ‖Θn,m‖ ≤
‖m‖ ‖n‖.
Proof. For h ∈ H, Proposition 1.4 tells us that 〈m,h〉M(A) ∈ A and n ·〈m,h〉M(A) ∈
K. For h ∈ H, k ∈ K, we have

〈Θn,m(h), k〉A = 〈n · 〈m,h〉M(A), k〉A = 〈m,h〉∗M(A)〈n, k〉M(A)

= 〈h,m〉M(A)〈n, k〉M(A) = 〈h,m · 〈n, k〉M(A)〉A
= 〈h,Θm,n(k)〉A,

so Θm,n is an adjoint for Θn,m. The estimate for ‖Θn,m‖ is easy. �
Proof of Theorem 2.3. We now set Sn =

∑n
k=1 2−kΘxk,ek + 4−kΘek,ek . Then the

estimate in Lemma 2.4 shows that

(2.2) ‖Sm − Sn‖ =
∥∥ m∑
k=n+1

2−kΘxk,ek + 4−kΘek,ek

∥∥ ≤ m∑
k=n+1

2−k + 4−k,

which converges to 0 as m,n → ∞. So the series
∑∞
k=1 2−kΘxk,ek + 4−kΘek,ek

does still converge, though the sum T ∈ L(l2(A),H⊕ l2(A)) is now an adjointable
operator rather than a compact one.

Since 〈en, em〉M(A) = δm,n1M(A), we have T (em ·a) = 2−m(xm ·a)+4−m(em ·a),
and T (2m(em · a)) = (xm · a) + 2−m(em · a). Thus for all n ∈ N satisfying xn = xm,
we have T (2n(en · a)) = (xm · a) + 2−n(en · a), or, equivalently,

(2.3) xm · a = T (2n(en · a))− 2−n(en · a).

But there are infinitely many n ∈ N with xn = xm, so (2.3) holds for infinitely many
n ∈ N. Since 2−n(en · a) → 0 in l2(A), it follows that xm · a ∈ T (l2(A)). What is
more, T (4m(em · a)) = 2m(xm · a) + em · a, so em · a = T (4m(em · a))− 2m(xm · a)
also belongs to T (l2(A)). Since the elements xm · a span H, and em · a span l2(A),
it follows that H⊕ l2(A) = T (l2(A)).

The series
∑∞

n=1 2−nΘen,xn + 4−nΘen,en converges in norm to the adjoint T ∗ of
T , and similar arguments show that T ∗(4m(em ·a)) = em ·a for fixed a ∈ A, m ∈ N.
Thus l2(A) = T ∗(H⊕ l2(A)). By polar decomposing T we obtain a Hilbert-module
isomorphism of l2(A) onto H⊕ l2(A) (see, for example, [10, Lemma 2.34]). �

3. Frames in Hilbert modules

Definition 3.1. Let A be a C∗-algebra and H a Hilbert A-module. A sequence
{hi} ⊆M(H) is a standard normalised frame for H in M(H) if

(3.1) 〈h, h〉A =
∞∑
i=1

〈h, hi〉M(A)〈hi, h〉M(A) for every h ∈ H,

in the sense that the series converges in norm with sum 〈h, h〉A.
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If A is unital, then M(H) = H, this definition coincides with that in [5], and the
results of this section are all due to Frank and Larson. However, allowing hi to be
in M(H) rather than H is definitely more general:

Example 3.2. For any C∗-algebra A, the set {e1, e2, ...} is a standard normalised
frame for l2(A). To see this, let h = (an) ∈ l2(A). Then 〈ei, h〉M(A) = ai, so

n∑
i=1

〈h, ei〉M(A)〈ei, h〉M(A) =
n∑
i=1

a∗i ai;

this series converges in A because h = (an) belongs to l2(A), and the limit is 〈h, h〉A
by definition of the inner product on l2(A).

Every orthonormal basis for a Hilbert space is a standard normalised frame; a
main point of frame theory is that there are many more, including the image of any
orthonormal basis under an orthogonal projection. Hilbert modules, on the other
hand, do not usually have orthonormal bases. So it is quite remarkable that they
always admit frames:

Corollary 3.3. If A is a C∗-algebra and H is a Hilbert A-module which is countably
generated in M(H), then H has a standard normalised frame.

Before the proof, we make some general comments. Suppose M is a closed
submodule of a Hilbert module H. We say thatM is a complemented submodule of
H if the map ΣM : (m,n) 7→ m+ n is a Hilbert module isomorphism ofM⊕M⊥
onto H. If so, there is an orthogonal projection P : H → M characterised by the
property that for h ∈ H, Ph is the unique element of M such that h − Ph is in
M⊥. Just as for Hilbert spaces, and by essentially the same proof, the orthogonal
projections onto complemented submodules can be characterised as the adjointable
operators P ∈ L(H) satisfying P 2 = P = P ∗. If {ei} is a standard normalised
frame in the usual sense, then {P (ei)} is a standard normalised frame in PH. Here
we note that P ◦ ei belongs to M(PH) = L(AA, PH) for each i, and {P ◦ ei} is
then a standard normalised frame for PH in M(PH).

Proof of Corollary 3.3. Theorem 2.3 says there is an isomorphism T of H onto a
complemented submodule M of l2(A). Let P : l2(A) → M be the orthogonal
projection of l2(A) onto M. Then {T−1 ◦ P ◦ ei} is a standard normalised frame
for H in M(H). �

Theorem 3.4 (The reconstruction formula). Let H be a Hilbert A-module which
is countably generated in M(H). Suppose {hi} is a sequence in M(H). A sequence
{hi} in M(H) is a standard normalised frame for H in M(H) if and only if for
each h ∈ H we have

(3.2) h =
∞∑
i

hi · 〈hi, h〉M(A),

in the sense that this sum converges in norm to h.
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Suppose first that {hi} ⊆M(H) satisfies the reconstruction formula (3.2). Then

〈h, h〉A =
〈
h,

∞∑
i=1

hi · 〈hi, h〉M(A)

〉
M(A)

=
〈
h, lim

n→∞

n∑
i=1

hi · 〈hi, h〉M(A)

〉
M(A)

= lim
n→∞

n∑
i=1

〈h, hi〉M(A)〈hi, h〉M(A),

so that {hi} is a standard normalised frame for H.
For the converse, we use the following theorem which is of interest in its own

right.

Theorem 3.5 (The frame transform). Let H be a Hilbert A-module which is
countably generated in M(H), and let {hi} be a standard normalised frame for
H in M(H). The frame transform for {hi} is the map θ : H → l2(A) defined
by θ(h) = (〈hi, h〉M(A)). The frame transform preserves the inner product, and is
adjointable with adjoint θ∗ : l2(A)→ H satisfying θ∗ ◦ ei = hi.

Proof. Notice that each 〈hi, h〉M(A) belongs to A because hi is a multiplier, and
the sequence θ(h) belongs to l2(A) because {hi} is a standard normalised frame;
the frame identity (3.1) and the usual polarisation identity show that θ preserves
the inner product. As a first step in constructing θ∗, we claim that there is a
well-defined bounded linear map S : span{ei · a : a ∈ A, i ∈ N} → H which
satisfies S

(∑n
i=1 ei · ai

)
=
∑n

i=1 hi · ai. To see that S is well-defined, suppose∑n
i=1 ei · ai =

∑m
j=1 ej · bj . Then we have

ak =
〈
ek,

n∑
i=1

ei · ai
〉
M(A)

=
〈
ek,

m∑
j=1

ej · bj
〉
M(A)

= bk,

which implies that m = n and that
∑n

i=1 hi · ai =
∑n
j=1 hj · bj . Thus S is well-

defined.
Next, note that for h ∈ H, x =

∑n
i=1 ei · ai ∈ span{ei · a : a ∈ A}, we have

〈θh, x〉A =
〈

(〈hk, h〉M(A)),
n∑
i=1

ei · ai
〉
A

(3.3)

=
n∑
i=1

〈(〈hk, h〉M(A)), ei〉M(A)ai =
n∑
i=1

〈h, hi〉M(A)ai

=
〈
h,

n∑
i=1

hi · ai
〉
A

= 〈h, Sx〉A.

To see that S is bounded, let x =
∑n

i=1 ei · ai. Then, because θ preserves the inner
product and hence the norm, we deduce from (3.3) that

‖S(x)‖ = sup‖h‖=1‖〈S(x), h〉A‖ = sup‖h‖=1‖〈x, θh〉A‖ ≤ sup‖h‖=1‖x‖ ‖θh‖ = ‖x‖.

Now, because span{ei ·a} is dense in l2(A), there is a unique extension of S to a
bounded linear map T : l2(A)→ H. We have T ((ai)) =

∑
i hi · ai for (ai) ∈ l2(A)

by continuity of T , and letting n→∞ in (3.3) shows that T is an adjoint for θ. �
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To finish the proof of Theorem 3.4, let {hi} ⊆ M(H) be a standard normalised
frame for H, and let θ : H → l2(A) be the frame transform. Since θ preserves the
inner product, we have θ∗ ◦ θ = 1L(H). Then for h ∈ H,∥∥∥h− n∑

i=1

hi · 〈hi, h〉M(A)

∥∥∥ =
∥∥∥h− n∑

i=1

hi · h∗i (h)
∥∥∥

=
∥∥∥θ∗ ◦ θ(h) −

n∑
i=1

(θ∗ ◦ ei)(〈hi, h〉M(A))
∥∥∥

=
∥∥∥θ(h)−

n∑
i=1

ei · 〈hi, h〉M(A)

∥∥∥
=
∥∥∥θ(h)−

n∑
i=1

ei · 〈ei, θ(h)〉M(A)

∥∥∥
which converges to zero by (2.2). This gives the reconstruction formula (3.2).

4. Concluding remarks

4.1. The Brown-Green-Rieffel Theorem. The Brown-Green-Rieffel Theorem
asserts that two σ-unital C∗-algebras A and B are stably isomorphic if and only
if they are Morita equivalent, that is, if and only if there is an A-B imprimitivity
bimodule (see [3, Theorem 1.2] or [10, Theorem 5.55]). In Blackadar’s short proof
of this theorem [2], the σ-unital hypothesis is only used to ensure that every A-B
imprimitivity bimodule module X is countably generated over both A and B (this
follows from [10, Proposition 5.50] because K(XB) ∼= A and K(AX) ∼= B) and that
l2(B) is countably generated, so that he can apply the Kasparov Stabilisation The-
orem. By following Blackadar’s proof and using Theorem 2.3 in place of Kasparov’s
theorem, we can deduce that two C∗-algebras A and B are stably isomorphic if and
only if there is an A-B imprimitivity bimodule X which is countably generated in
M(X) both as an A-module and as a B-module. (We can see by considering a
non-separable Hilbert space that the hypothesis has to be imposed on both sides.)
This version of the Brown-Green-Rieffel Theorem makes it clear that the countabil-
ity hypotheses are intrinsic to the equivalence relations under consideration rather
than the underlying C∗-algebras.

4.2. K-theory. Kasparov originally proved his stabilisation theorem as a tool for
the construction of KK-theory, and it is often assumed in KK-theory that the
C∗-algebras are σ-unital. At this stage, it does not seem likely that our version will
allow all these hypotheses to be removed: they are also being used, for example, in
the proof of Kasparov’s Technical Theorem [7, Theorem 2.2.1].

4.3. Finitely generated modules. By saying that a Hilbert A-module H is
finitely generated, one usually means that there are elements {hi : 1 ≤ i ≤ n}
such that H = {

∑n
i=1 hi · ai : ai ∈ A} — in other words, no closure is taken.

We can now say that H is finitely generated in M(H) if we can find hi ∈ M(H)
which do the same thing; the property M(H) · A ⊂ H ensures that the finite sums
are in H. With this definition, AA is always singly generated by 1M(A), and An

is n-generated; this gives further evidence that we have hit on the right notion of
generator.
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If a Hilbert A-module H is finitely generated in M(H), we can follow the argu-
ments of Frank and Larson to see that H is a complemented submodule of some
An (see [5, Theorem 5.9]).
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