PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 131, Number 5, Pages 1565-1572

S 0002-9939(02)06799-0

Article electronically published on October 24, 2002
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ABSTRACT. We show that the multi-quasi-ellipticity is a necessary and suf-
ficient condition for the property of elliptic iterates to hold for multi-quasi-
homogenous differential operators.

1. INTRODUCTION
Let Pj(z,D) = Y, ajo (x)D* j = 1,...,N, henceforth denoted (Pj)évzl , be
linear differential operators with C'*° coefficients in an open subset 2 of R™.
The aim of this work is to prove the property of elliptic iterates for multi-quasi-
elliptic systems of differential operators in generalized Gevrey spaces G7** (),

where F denotes Newton’s polyhedron of the system (Pj)N

i1 The property of

elliptic iterates for the system (Pj);.vz1 in the generalized Gevrey classes G7 % (Q)
means the following inclusion:

G (Q (Pj)j.vzl) c 6T (Q).
Definition 1. Newton’s polyhedron of the system (P; )jvzl at the point zg € , de-
noted F (o), is the convex hull of the set {ow € N*,3j € {1,...,N}; ajq (x0) # 0}.
A Newton’s polyhedron F is said to be regular if there exists a finite set @ (F) C
(Ri)n such that

F= ﬂ {aeRﬁ,(a,q) < 1}.

q€Q(F)
Set
k(a, F) = inf{t>0,t'aeF}, aeRy,
p(F) = max p;(F),
(F) = max ¢! j=1,...,n,
1 (F) x4 ]

0(F) — (u(F) M(}_)).

pa (F)" 7 i (F)
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Definition 2. Let F be a regular Newton’s polyhedron and s € Ry. We de-
fine the generalized Gevrey space G7* (Q) by the space of u € C* (Q2) such that
VH compact of ,3C > 0,Va € N,

(1.1) sup [Du| < C1M [T (u (F) k (, F) + 1)),
H
where I is the gamma function.

Remark 1. One can take supy |[D%ul or [[D*ul| 2z in the definition, according to
Sobolev imbedding theorems.

Definition 3. The system (Pj);yzl is said to be multi-quasi-elliptic in € if
1) The F (z) do not depend on z € Q, i.e. Vz,F (x) = F.
2) F is regular.
3) Ve € ,3C > 0,3R > 0,V € R, |¢| > R,

N
MNPl =C > g
j=1

a€ZYNF

Definition 4. Let (Pj)évzl be a system of linear differential operators satisfying

conditions 1) and 2) of Definition 3 and s € R, the space of Gevrey vectors of the
system (Pj);.vz1 , denoted G* (Q, (Pj)j.vzl) , is the space of u € C*° () such that
VH compact of 2,3C > 0,Vl € N;1 <4; <N,

(1.2) 1P Pl oy < CFH )™
The aim of this work is to show the following theorem.

Theorem 1. Let Q) be an open subset of R™, 0 > s > 1 and (Pj)j.vzl be a system of
linear differential operators with GV (Q) coefficients. Then

(Pj)j.vzl is multi-quasi-elliptic in Q <= G* (Q, (Pj)N ) cCGT(Q).

J=1

Some consequences of this theorem are given in section 4. For differential oper-
ators with constant coefficients we have shown in [3] a more general result.

2. SUFFICIENT CONDITION

The proof of the sufficient condition follows essentially the work of Zanghirati
[6], so we refer for details to this paper.

Instead of Q (F) , k (F,a), 1 (F),0 (F) we write, respectively, @, k (a) , u, 6. De-
note K = {k=k(a): « € N*}. If w is an open subset of R”, v € C* (w) and
k € K, define |uf, , = k((%:k [D%ul| 2, When u € Cg° (R™) we write |ul, .

Let (Pj);.v=1 be a system of linear differential operators with coefficients defined
in an open neighborhood € of the origin satisfying the following conditions:

(i) The system (Pj)j.vzl is multi-quasi-elliptic in 2.

(ii) The coefficients aj, € G%*(Q),Va € F,Vj € {1,...,N}.

n
For p > 0, we denote B, = {z € R", ) x?”j/” < p?}. We define for h € N,
i=1
P]h(x,D):Pj(x,D)o'-~0Pj(x,D),j:1,...,N.

h times
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From the multi-quasi-ellipticity of the system (P; )§V=1 and following the proof of
Lemma 3.4 of [6], we obtain

Lemma 1. There exist pg > 0 and C; > 0,Ve 6]0, i [ (v(n) denote the num-
ber of elements of K N [0,n[), 3C2(e) > 0,V6 €]0,1[,Vp > 0,B,15s C Bp,,Yu €
C* (B,,),¥p > n,

(2.1)

|u|p+1 B, = Z |Pn €, D p—n+1,B,15s +e |u|p+1,BP+5 + (66)771“ |u|p—n+1,BP+,§

1 _
+Z<p+ ) Cy (5)p+1 h|u|h}BP+5> ,

and for p < n, we have
(2.2)
N

(p+1)
[l 41,5, <Ch Z‘Pf(m,D)uLinH’BPM+€|u|p+17Bp+§ (e6)~ M|U|O7BM
j=1

Let A > 0 and R > 0. For p € N, we set
op (u,A) = (p)) A" sup (R—p)" |ul, 5
R/2<p<R
Lemma 2. Let py be as in the Lemma 1 and let 0 < R < 1 such that Br C B,,.
Then there exists Ag > 0 (/\0 depends only on R and (P, ) ) Yu € C®(B,,),
YA > Ao, Vp > n,

(2.3)
N P
opr1 (W A) < [(p=n+2) .. (p+ D™D opnir (Plu, ) + Y on(u,\)
j=1 h=0
and forp <mn-—1,
N
(2.4) pi1 (w,A) < (p+ DTS o (p;’“u, A) + o0 (u, \).

j=1
Proof. Let p > n, multiply both sides of (2.1) by (p + 1)!7#*X\"P=1 (R — p)"* | put
0= 1% and then taking the sup over p € [R/2, R[, we obtain
Opt1 (u,N) SOy (I +elp +e ™3 + 1Y)
where Iy, Is, I3 and I, are such that
N _ su
(2"6)” opt1 (U, A),

IN

I

IN

I3

IN

)\nO'p n+1 (’LL >\)

m P p—h
1, = Cj ) Z <CQ/\(€>> on (u, A) .

h=0

IN
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By a suitable choice of ¢, we find

s~ N =~
p—n+DN\*C " C.
Op+1 (’U,, A) S (W) )\—i Zap_n_H (Pj u, A) + )\—sap_n-{-l (U, )\)
j=1
~ ~ p—h
Cs & <c4>
+= - on (u,A).
A = A

It suffices to take A\g = 51 + 52 + 53 + 64 to get (2.3) . For the inequality (2.4) we

_p)(p+Dr
multiply both sides of inequality (2.2) by %, take § = ? and then we
follow the same procedure for obtaining (2.3). O

Lemma 3. Let po, R and Ao be as in Lemma 2. Then for any u € C* (B,,), VA >
Ao, Vp € N, we have

(2.5)
p+1 1
Opt1 (’U,, /\) < 2P+100 (’U,, /\) + Z 2p+1*lc’;)+1w Z oo (Pi1 - Pilu, /\) .
=1 ’ 1<41,..,5i <N
Proof. Tt is obtained by recurrence over p. O

Our first result is the following theorem, wich generalizes the results of [6], [7]
and [8] to systems.

Theorem 2. Let Q be an open subset of R", s > 1 and (P;(x, D));.V=1 be a system
of linear differential operators with G%* () coefficients. Then

(Pj);.v:1 is multi-quasi-elliptic in Q = G* (Q, (Pj)N ) cGFH(Q).

j=1

Proof. Tt is sufficient to check (1.1) in a neighborhood of every point = of Q. Let
us assume z is the origin. Then there exist pg, \g and R such that the precedent
lemmas hold. Let u € G*(£2, (Pj)évzl). Then there is C; > 0 such that

o0 (P, ... Pyu, o) < OV (I VI €N,
hence from (2.5), we obtain

opi1 (1, X0) < C1 (24 NCHPT Wp e N,
which gives
(2.6) [Ulpi1, 3,y < 0+ DIFCEFTH yp e N,
Following the same steps as in [6] we obtain
(2.7) ult, By < CH (T (k4 1)™ .

Consequently from (2.7) it is easy, as in [6], to obtain the estimate (1.1). O

3. NECESSARY CONDITION

In this section we prove the converse of Theorem 2. For this aim we need a

N
known

characterization of the multi-quasi-ellipticity of the system (P;(x, D))j=17

in the case of a scalar operator; see [4].
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Proposition 1. A system (Pj);,vzl, satisfying 1) and 2) of Definition 2, is multi-
quasi-elliptic in Q if and only if for any x € Q, Vq € Q,

N
Z|ij ($,§)| #07 erRn,flgn #Oa

j=1
where Pjq is the g-quasi-homogenous part of Pj, i.e.
Pig(,6) = Y aja(2)€™
(a,q)=1

Theorem 3. Let Q be an open subset of R™ and P; (x,D), j=1,...,N, be differ-
ential operators with G%7 (Q) coefficients. If s > o > 1, then

G* (Q, (Pj);v:l) CcGT(Q) = (Pj)j.vzl is multi-quasi-elliptic in Q.

Proof. Assume that the system (P; )jvzl is not multi-quasi-elliptic. Then there exist

r0 € Qg€ Qand & € S" 1, &1 ... &on # 0, such that
(31) ij(xo,fo)zo, \V’jzl,,N

We construct a function u € GS(Q,(Pj)évzl) such that u ¢ G7*(Q), which

contradicts the hypothesis. Put n = 17;5/ £ and choose ¢ satisfying
p(s—o) 1 ,
0<e<— < —-and < min 1-(6,q)).
S Sus—o O3 <6,q><1“( (B,))

Let 6 > 0 such that the ball By = B (zo,20) is relatively compact in © and
p € G (R™) with compact support in B (0,25) and ¢ (z) = 1 in B(0,0). The
desired function is defined by

+oo ) .
u(w) = / P 7 (= wo)] e E T 0 g,
1

where rfz = (rf'zy,r®xy, ..., r%x,).

Following [5] and [8] it is easy to show that u ¢ G”* (U) for any neighborhood
U of Zo-

Let us verify that u € G*(Q, (Pj)évzl). Since the coefficients of the operators P;

are in G%7 () € G47* (), then IM > 0, Va € B e I, Vx € By, Vr > 1,
Vj=1,...,N, such that

(3.2) |(DEP) (@, r50)| < MIPHY[D((B, ) + D] !~ (.

On the other hand in view of (3.1) it is easy to obtain V6 > 0, 3C7 > 0, Vr > 1,
Vo € Q, |z —xo| < 20r—°/#,¥j=1,...,N,

(3.3) |Pj (2,796)| < Cyrt=/k,

Now we need a convenient form of P, ...P;,u, for any integer £k > 1. The
generalized Leibniz formula P; (z, D) (uwv) = Y, %Pj(a)uDav gives

+o0 ‘ .
Pik s Piou ((E) = / Aik.uio ((E, T) eirne“xixo’r Eo>d7'a
1
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where 1 <4; < N, for any integer | < k, P;, designs the identity operator, and

Aig (z,7) = @ [r® (z — 20)],
(34) Aik-%—lvik“/io ((E, T) = Z LP‘(Q) (LL' rqgo) A'Lk .10 (LL',T) .

al ikl
(a,g)<1

To complete the proof we need the following

Lemma 4. 3L > 0,3Lg > 0,3Cy > 0,Vk € Zy, Vy € Z}, Vo € By, Vr > 1,
1D Aiy s (2,7)] < Co (Lore)wm Ik (r(l—e/“)k (7, q) + 1)]°"

(3.5) +[0((y, ) + K+ D) preo1/0)

Proof. It is obtained by recurrence over k. In fact for k = 0, the estimate (3.5)
means ¢ € GE7" (R™) . So suppose that the estimate (3.5) holds up to the order &
and let us check it at the order k4 1. Set A = #'1=¢/# and 7 = r*(>=1/#)_ Then the
estimate (3.5) is written as

DY Ai o (,7)] < Co (Lor®) TP LS (k).
where
S (k,B) = A [L((B, q) + 1) + [D((B,q) + k + 1)]7" 7.
Let w = 1r§r;i£1nqj. Then we have
(3.6) ANl g (kg4 a) <29 TS (k+1,8), (a,q) < 1.
From (3.4), we have

| DY Aiy 1o (,7)| < I+ T + I3,

where
I = |P“c+l Z rqgo)‘ |D¥A'Lk10 (LL',T)| )
I2 = Z (5) ‘D;_Bpik-H (x’rq£0)| ‘DfAlklo (l‘,?")| )
B<y
Is = Yoo ol ( ) ‘DV 5Pz(f+)1( 77”"50)‘ |D*P A4, o (2,7

0<(av,q)<1 <y

Since A;, . i, are functions of compact supports in B (xo, 257'*5/“) , and according
0 (3.3) and (3.6), we have

(3.7) I < 2% Co (Lor*) "0 S (k + 1,7) LP.
The estimates (3.2) and (3.6) give

L< ) (Ze) [T((y = B,q) + 1)]7* M =Py (Lore)
B<y
2% S (k4 1,8) LF.

On the other hand, using properties of the gamma function, we have

(35) (3) PGy = 8.0) + DI S (k, 8) < G508 (k).
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Thus we obtain

nMCTH MO+ 8,9) on _
I < Lmj Z( LO; ) rE2 S M Cy (Lor®) " S (k 4 1,7) LF.
$>0

Set C3 = > (%)«y’q> , take Lo > 2MC3" and r > 1, and then
a>0

(3.9) I < %c 2L HMCy (Lor) " S (k + 1,7) L*.
0

Finally in view of (3.2)
Is = Z Z (g) [T((y — B,q) + 1)]7* M =Pl 1= (e
0<({a,q)<1 B<y
xCo (L0T5)|5+0¢| S(k?,ﬁ—l-a) Lk.

For any @ € Z7%, 0 < (a,q) < 1, we have rl—{@atelama) < \1=(@a) p{ea) which
gives, with (3.6) and (3.8),

7]
I < ) Z<Lor€> 2U MOy L (Lor*)" S (k +1,7) LX,

0<(a,q)<1 B<vy

Put Ca= > L(()a,q>. Then we obtain
0<({a,q)<1
(3.10) Is < 2% T IMCLC5Ch (Lor®) " S (k + 1,~) LF.
If we choose
L>2w (01 + %cg + Mcgc4)

we get, from (3.7),(3.9) and (3.10),

I+ Iy + Is < Co (Lor®) " S (k + 1,4) L,
which means that (3.5) holds at the order k + 1. O
End of the Proof of Theorem 3. Applying the last lemma for v = 0, we find

(3.11) Ay (@,7)] < CRLF (P70 (tyor phe@=1/u )

1k...io

Thus we obtain

n n'
[ Aiio (2,7)] < CHLF (2570 (k1) [exp () +ew (7)] ,

where 1’ = % <n=1 since e < M.
u(s—o ns 2/15 e
Therefore
+oo 1
P’i Pz u(xr S QC’L/k k! S exp [ - dr

K 0 0 -

1
< Okt (k)I°H,

which means that u € G* (Q, (Pj)j.vzl) . U
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4. CONSEQUENCES

A first consequence of Theorem 2 is a result on Gevrey-hypoellipticity for multi-
quasi-elliptic systems.

Corollary 1. Under the assumptions of Theorem 2, the following propositions are

equivalent:
) ueD (Q), Pue GF*(Q), Vji=1,...,N.
(i) u € GT*(Q).

The theorems of this work unify the results of Bolley-Camus [I] and Métivier
[5] in the homogenous case, the results of Zanghirati [7] and [§] in the scalar quasi-
homogenous case and generalize them to quasi-homogenous systems.

N

=1 bea

Corollary 2. Let Q be an open subset of R™ and o > s > 1, and let (P;)
system of linear differential operators with coefficients in G (). Then

(Pj)évzl is q-quasi-elliptic in Q <= G° (Q, (Pj);v:l) C G¥°(Q).
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