
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 131, Number 5, Pages 1361–1367
S 0002-9939(02)06822-3
Article electronically published on December 16, 2002

ON BIFURCATION POINTS OF A COMPLEX POLYNOMIAL

ZBIGNIEW JELONEK

(Communicated by Michael Stillman)

Abstract. Let f : Cn → C be a polynomial of degree d. Assume that the
set K̃∞(f) = {y ∈ C : there is a sequence xl → ∞ s.t. f(xl) → y and

‖df(xl)‖ → 0} is finite. We prove that the set K̃(f) = K0(f) ∪ K̃∞(f) of
generalized critical values of f (hence in particular the set of bifurcation points

of f) has at most (d− 1)n points. Moreover, #K̃∞(f) ≤ (d− 1)n−1. We also

compute the set K̃(f) effectively.

1. Introduction

Let f : Cn → C be a polynomial mapping. It is well-known that f is a fibration
outside a finite set. The smallest such set is called the bifurcation set of f ; we
denote it by B(f). It can be proved that the set K0(f), the set of critical values of
f, is contained in B(f). But in general the set B(f) is bigger than K0(f). It also
contains the set B∞(f) of bifurcations points at infinity. Briefly speaking the set
B∞(f) consists of points at which f is not a locally trivial fibration at infinity (i.e.,
outside a compact set). In the paper [8] we have estimated the number of points
in sets B(f) and B∞(f). The aim of this paper is to obtain a better estimation,
but only for a special class of polynomials (this class coincides with the class of all
polynomials for n = 1, 2 only). Let

K̃∞(f) = {y ∈ C : there is a sequence xl →∞ s.t. f(xl)→ y and ‖df(xl)‖ → 0}.
If c /∈ K̃∞(f), then we say that f satisfies Fedoryuk’s condition at c. This set
has been studied in [2] and [10]. It is well-known ([10]) that B∞(f) ⊂ K̃∞(f). In
particular B(f) ⊂ K̃(f) = K0(f) ∪ K̃∞(f). Moreover, if n = 2 we have B∞(f) =
K̃∞(f) and B(f) = K̃(f) (see [4], [5], [9]). In this paper we give a sharp estimation
of the numbers #K̃∞(f) and #K̃(f) (and hence also the numbers #B∞(f) and
#B(f)), provided #K̃∞(f) <∞. We also give an effective method to compute the
set K̃(f). Our main result is:

Theorem 1.1. Let f : Cn → C be a polynomial of degree d > 0. Assume that the
set K̃∞(f) is finite. Let a = #K̃∞(f) and b = #K̃(f). Then:

1) (d− 1)a+ b ≤ d(d− 1)n−1,
2) a ≤ (d− 1)n−1 and b ≤ (d− 1)n,
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3) if K̃∞(f) 6= ∅, then b ≤ max{1, (d− 1)n − d+ 1},
4) if e denotes the number of isolated critical points of f , then a+ e ≤ (d− 1)n

and da+ e ≤ d(d− 1)n−1,
5) moreover, if a > 0, then a+ e ≤ max{1, (d− 1)n − d+ 1}.

Corollary 1.1. Let f : Cn → C be a polynomial of degree d > 0. If #K̃∞(f) =
(d− 1)n−1, then K̃(f) = K̃∞(f) and f has no isolated critical points.

Proof. Indeed, we have (d−1)a+b ≤ d(d−1)n−1 and a ≤ b, hence a = b. Moreover,
since da+ e ≤ d(d− 1)n−1, we obtain e = 0. �

Remark 1.1. Let us note that for n = 2 the set K̃∞(f) is always finite and B∞(f) =
K̃∞(f) (see [4], [5], [9]). In particular, for n = 2 we recover a well-known fact ([3],
[9]) that #B∞(f) ≤ d−1. Moreover, we get a sharp estimation of numbers #B(f)
and #B∞(f) in the class of all polynomials f ∈ C[x, y] of degree d.

2. Preliminaries

Let us recall that a mapping f : Cn → Cm is not proper at a point y ∈ Cm if
there is no neighborhood U of y such that f−1(U)) is compact. In other words, f is
not proper at y if there is a sequence xl →∞ such that f(xl)→ y. Let Sf denote
the set of points at which the mapping f is not proper. We have the following
characterization of the set Sf (see [6], [7]):

Theorem 2.1. Let F = (F1, ..., Fm) : Cn → Cm be a generically-finite polynomial
mapping. Then the set SF is an algebraic subset of Cm and it is either empty or it
has pure dimension n− 1. Moreover, if n = m we have

deg SF ≤
(
∏n
i=1 degFi)− µ(F )
min1≤i≤n degFi

,

where µ(F ) denotes the geometric degree of F (i.e., it is a number of points in a
generic fiber of F ).

In the proof of Theorem 1.1 we need the following technical lemmas. The first
lemma follows from the Bezout theorem in the version of Vogel.

Lemma 2.1. Let A be an irreducible algebraic subvariety of CN and let H be a
linear subspace of CN . Assume that the set H ∩ A = {x1, ..., xr} is finite. Then
degA ≥ r. More precisely, if germ Axi have mi irreducible components, for i =
1, ..., r, then degA ≥

∑r
i=1mi.

The next lemma is:

Lemma 2.2. Let B ⊂ A be algebraic subsets of CN+1, dimB < dimA = n. Let L
be a line and M a linear subspace of CN+1, which contains L, dimM = n. Assume
that L 6⊂ B. Then there exists a linear projection p : CN+1 → M such that p
restricted to A is finite and L 6⊂ p(B). In particular p is proper on A.

Proof. Take a point a ∈ L\B. Let Λ be the Zariski closure of the cone
⋃
ax, x ∈ B.

It is easy to see that dim Λ ≤ n. Let H∞ be the hyperplane at infinity of C×CN .
For any Z ⊂ CN denote by Z̃ the projective closure of Z. Observe that

dimH∞ ∩ (Λ̃ ∪ Γ̃ ∩ M̃) ≤ n− 1.
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Thus, there is a projective subspace Q ⊂ H∞ of dimension N −n, which is disjoint
with (Λ̃∪ Ã∩ M̃). Denote by pQ : PN+1 \Q→ M̃ the linear projection determined
by the subspace Q.

Now, let p : CN+1 →M be the restriction of pQ to CN+1. It is easily seen that
p has desired properties, i.e., p : A→M is a finite mapping and a 6∈ L ∩ p(B). �

Lemma 2.3. Let Φ = (φ1, ..., φn) : Cn → Cm be a polynomial mapping with
deg φi = d, for i = 1, ...,m. Let r = dim Φ(Cn). Assume that there is a variety W ,
which contains Cn as a dense subset and a polynomial proper mapping Φ : W → Cn,
such that Φ = resCnΦ. Let q be a maximal number of connected components of
fibers of Φ. Then q ≤ dr. Moreover, if r = n and the mapping Φ is not proper, then
q ≤ dn − d.

Proof. First, taking the normalization we can assume that the variety W is normal.
Let Γ = cl(Φ(Cn)) and let p : Γ→ Cr be a finite linear projection. Take Φ′ = p◦Φ.
If q′ denotes a maximal number of connected components of fibers of Φ′, then it is
easy to see that q′ ≥ q. Moreover, if a projection p is sufficiently general, then we
have Φ′ = (φ′1, ..., φ

′
r), where deg φ′i = d, for i = 1, ..., r.

Consequently we can assume that Φ′ = Φ, i.e., that the mapping Φ is a dominant
mapping. By Bezout’s Theorem we have that a generic fiber of Φ has at most dr

irreducible components. It implies that a generic fiber of the mapping Φ also has
at most dr irreducible components. By the Stein Factorization Theorem there exist
a normal variety S, and regular surjective mappings p : W → S, q : S → Cr, such
that Φ = q◦p, where p has only connected fibers and q is finite. Moreover, it is easy
to see that the geometric degree µ(q) of the mapping q is estimated by dr. Since
varieties S,Cr are normal and the mapping q is finite, we have that every fiber of
the mapping q has at most dr points. Consequently, we obtain that every fiber of
Φ has at most dr connected components.

Now assume that r = n and the mapping Φ is not proper. In particular SΦ 6=
∅. By Theorem 2.1 we get that the geometric degree µ(Φ) of the mapping Φ is
estimated by dn − d(deg SΦ) ≤ dn − d. In particular a generic (and consequently
every) fiber of Φ has at most dn − d connected components. �

3. Estimations

Now we can pass to the proof of Theorem 1.1. In fact we prove slightly more
general results. Let a = #K̃∞(f) and b = #K̃(f). We begin with:

Theorem 3.1. Let f : Cn → C be a polynomial of degree d > 0. Assume that the set
K̃∞(f) is finite. Let Φ = ( ∂f∂x1

, ... ∂f∂xn ) and let r = dim Φ(Cn). Then b ≤ (d− 1)r.
Moreover, if K̃∞(f) 6= ∅, then we have better estimation b ≤ max{1, (d−1)n−d+1}.
Finally, if e denotes the number of isolated critical points of f , then a+e ≤ (d−1)n.
If K̃∞(f) 6= ∅, then we have better estimation a+ e ≤ max{1, (d− 1)n − d+ 1}.

Proof. For n = 1 the theorem is obviously true. Let n > 1. Consider the polynomial
mapping Φ = ( ∂f∂x1

, ..., ∂f∂xn ) : Cn → Cn. Let r = dim Φ(Cn). It is well-known
(see e.g., [7]) that there is a normal variety W , which contains Cn as a dense
subset and a polynomial proper mapping Φ : W → Cn, such that Φ = resCnΦ.
By a proper modification of W we can assume that the mapping f has a regular
extension f : W → P1(C) = C ∪ {∞}. Let A = Φ

−1
(0). It is easy to see that
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K̃(f) = f(A)\{∞}. It means that #K̃(f) is estimated by the number of connected
components of the set A. Consequently, by Lemma 2.3 we have that b ≤ (d− 1)r.

Moreover, if K̃∞(f) 6= ∅ and r = n, then we have better estimation b ≤
(d − 1)n − d + 1. If r < n, then b ≤ (d − 1)r ≤ max{1, (d − 1)n − d + 1}. Fi-
nally, if e denotes the number of isolated critical points of f , then a+ e ≤ (d− 1)n

and again, if K̃∞(f) 6= ∅, then a+ e ≤ max{1, (d− 1)n − d+ 1}. �

Corollary 3.1. Let f : Cn → C be a polynomial of degree d > 0. Assume that the
set K̃∞(f) is finite. Then

b ≤ (d− 1)n.

Theorem 3.2. Let f : Cn → C be a polynomial of degree d > 0. Assume that the
set K̃∞(f) is finite. Then

(d− 1)a+ b ≤ d(d− 1)n−1.

Proof. For n = 1 the theorem is obviously true. Let n > 1. Let us define a
polynomial mapping Ψ : Cn → C× Cn by

Ψ = (f,
∂f

∂x1
, ...,

∂f

∂xn
).

Denote Γ = Ψ(Cn), and by Γ its Zariski closure. Let r = dim Γ. Consider the line
L := C× {(0, ..., 0)} ⊂ C× Cn. We further identify this line with a copy of C. By
definition of K̃(f) we have

K̃(f) = L ∩ Γ.
We further identify this line with a copy of C. We have two possibilities:

1) r = n, i.e., Ψ is a generically finite mapping,
2) r < n, i.e., Ψ is not a generically-finite mapping.

Let us consider case 1). By the definition of K̃∞(f) and Ψ we have

K̃∞(f) = L ∩ SΨ,

where SΨ denotes the set of points at which the mapping Ψ is not proper. Recall
that by the assumption the set K̃∞(f) is finite, hence also #L ∩ SΨ <∞. Choose
a linear space M of dimension n, which contains the line L. Lemma 2.2 applied
to A = Γ and B = SΨ yields a projection p : Cn+1 → M which is finite on Γ and
such that L 6⊂ p(SΨ). Denote X = p(SΨ). Then K̃∞(f) ⊂ X and L 6⊂ X. Since p
is proper on Γ, we obtain that X = SF , where F = p ◦Ψ.

Moreover, we have Fi = ai0f +
∑n

k=1 aik
∂f
∂xi

. If we take a projection p to be
sufficiently general, then by a linear change of coordinates

T (x1, ..., xn) = (x1, x2 − (a20/a10)x1), ..., xn − (an0/a10)x1),

we get that T ◦F = (F1, ..., Fn), where deg F1 = d, deg Fi = d− 1 for i > 1. Hence
we can assume that F = (F1, ..., Fn), where deg F1 = d, deg Fi = d− 1 for i > 1.

Let us estimate the geometric degree µ(F ) of F . We have µ(F ) = µ(p ◦ Ψ) ≥
µ(resΓp) = deg Γ. Let us estimate the degree of Γ. Consider a linear subspace
H = L = C×{0, 0, ..., 0} and take A = Γ. It is easy to see that H ∩A = K̃(f). By
Lemma 2.1 we have deg A ≥ b, consequently µ(F ) ≥ b. Now Theorem 2.1 yields
that the degree of the variety X ⊂M is bounded by (d(d− 1)n−1− b)/(d− 1). So,
the set X ∩ L has no more than (d(d − 1)n − b)/(d− 1) points. Finally we obtain
that a ≤ (d(d − 1)n − b)/(d− 1) and that (d− 1)a+ b ≤ d(d− 1)n.
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Now let us consider case 2). It is easy to see that a = b. Choose a linear space
M ∼= Cr+1, which contains the line L. Lemma 2.2 applied to A = Γ and B = SΨ

yields a projection p : Cn+1 → M which is finite on Γ and such that L 6⊂ p(Γ).
Denote X = p(Γ). Then K̃(f) ⊂ X and L 6⊂ X. Let F = (F0, F1, ..., Fr) = p ◦ Ψ.
We have Fi = ai0f +

∑n
k=1 aik

∂f
∂xk

, where i = 0, 1, ..., r. Moreover, we can assume
that F0 = f. By a linear change of coordinates T (x0, ..., xn) = (x0, x1 − a10x1, ...,
xn − an0x1) we get that

T ◦ F = (f,
n∑
k=1

ak1
∂f

∂xk
, ...,

n∑
k=1

akr
∂f

∂xk
).

In particular we can assume that F = (f, F1, ..., Fr). Take a mapping Λ : Cr 3
(t1, ..., tr)→ (

∑r
k=1 a1ktk, ...,

∑r
k=1 anktk). Taking a projection p (and hence values

aij) sufficiently general, we can assume that the linear subspace Λ(Cr) meets the
fiber F−1(0) in the finite and non-empty set. This means that a mapping G :=
F ◦ Λ : Cr → X is generically-finite, in particular it must be dominant. By the
construction we have G = (g, ∂g∂t1 , ...,

∂g
∂tr

), where g = f ◦ Λ. Moreover, K̃(f) ⊂
X ∩ L = G(Cr) ∩ L = K̃(g) and we can use Theorem 3.1. Consequently b ≤
(d− 1)r ≤ (d − 1)n−1. Since a = b, we have (d − 1)a+ b = db ≤ d(d − 1)n−1. This
finishes the proof of Theorem 3.2. �

We can summarize our results as:

Corollary 3.2. Let f : Cn → C be a polynomial of degree d > 0. Assume that
the set K̃∞(f) is finite. Let Φ = ( ∂f∂x1

, ... ∂f∂xn ) and r = dim Φ(Cn). If r = n, then
a ≤ (d− 1)n−1 and b ≤ (d− 1)n. If r < n, then a = b ≤ (d− 1)r.

Proof. Indeed, if r < n, then it is easy to see that a = b (there is no isolated
critical points) and the corollary follows from Theorem 3.1. Let r = n. We have
(d − 1)a + b ≤ d(d − 1)n−1 and a ≤ b. Consequently da ≤ d(d − 1)n−1 and finally
a ≤ (d− 1)n−1. Moreover, b ≤ (d− 1)n by Theorem 3.1. �

Our last result is the following:

Theorem 3.3. Let f : Cn → C be a polynomial of degree d > 0. Assume that the
set K̃∞(f) is finite. If f has e isolated critical points, then

da+ e ≤ d(d − 1)n−1.

Proof. The proof goes along similar lines as the first part of the proof of Theorem
3.1. If e = 0, the result follows from Corollary 3.2. Hence, we can assume that
e > 0, in particular we can assume that the mapping Ψ (we take the notation from
the proof of Theorem 3.2) is generically finite. Let us consider mappings p, F and
set X as above. Note that X is exactly the set of points at which the mapping
F = p ◦Ψ is not proper. As above we can assume that F = (F1, ..., Fn), where deg
F1 = d, deg Fi = d− 1 for i > 1.

Now let us estimate the geometric degree µ(F ) of F more precisely. We have
µ(F ) = µ(p ◦ Ψ) = µ(Ψ)µ(resΓp) = µ(Ψ) deg Γ. Let us estimate the degree of Γ.
Consider a linear subspace H = L = C × {0, 0, ..., 0} and take A = Γ. It is easy
to see that H ∩A = K̃(f) := {a1, ..., ak}. Let mi denote the number of irreducible
components of (an analytic) germ Aai =

⋃mi
j=1 Bij . By Lemma 2.1 we have deg

A ≥
∑k

i=1 mi. Let c be an isolated critical point of f . We say that c lies over an
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irreducible component Bij of germ Aai if there is a small bal U around c, such that
Ψ(U) ⊂ Bij . It is easy to see that every critical point lies over some Bij and for
a fixed component Bij , there is at most µ(Ψ) critical points which lie over it. In
particular e ≤ (

∑k
i=1mi)µ(Ψ) ≤ (degA)µ(Ψ) = µ(F ). In fact, if we also consider

the points at infinity, which correspond to asymptotic values, we have stronger
inequality

e+ a ≤ (
k∑
i=1

mi)µ(Ψ) ≤ (degA)µ(Ψ) = µ(F ).

Now the degree of the variety X ⊂M is bounded by (d(d−1)n−1−e−a)/(d−1) by
Theorem 2.1. So, the set X ∩L has no more than (d(d−1)n−e−a)/(d−1) points.
Finally we obtain that a ≤ (d(d−1)n−e−a)/(d−1) and that da+e ≤ d(d−1)n. �

Example 3.1 (see [8]). We show that our estimate is sharp to both K̃∞(f) and
B∞(f). More precisely, we have:

For every d > 0 there are polynomials gn ∈ C[x1, ..., xn]; n = 1, 2, ..., and
fn ∈ C[x1, ..., xn]; n = 2, 3, ..., of degree d, with finite sets K̃∞(gn) and K̃∞(fn)
such that:

1) #K̃(gn) = #B(gn) = (d− 1)n;
2) #K̃∞(fn) = #B∞(fn) = (d− 1)n−1.
First we construct a polynomial gn. Let us consider a polynomial of one variable

h(t) := td/d− t and take

gn =
n∑
i=1

Aih(xi),

where numbers Ai are sufficiently general. It is easy to check that #K0(gn) =
(d−1)n. Put fn(x1, ..., xn) := gn−1(x1, ..., xn−1). It is easy to see that K0(gn−1) =
K̃∞(fn) = B∞(fn) and consequently #K̃∞(fn) = #B∞(fn) = (d− 1)n−1.

Remark 3.1. It is worth mentioning that the set K̃(f) can be computed effectively.
In particular we are in a position to effectively check whether the set K̃∞(f) is
finite. Indeed, let us recall that Ψ = (f, ∂f∂x1

, ..., ∂f∂xn ) = (ψ1, ..., ψn+1), Γ = Ψ(Cn),
L = C× {0, ..., 0} and K̃(f) = L ∩ Γ. Hence, it is enough to produce equations for
the hypersurface Γ. It can be done by using the Gröbner bases techniques.

Let us consider the ideal I given by polynomials {yi − ψi(x)}i=1,...,n+1 in the
ring

R = C[x1, ..., xn, y1, ..., yn+1].
In R we consider the lexicographic order, i.e., x1 > x2 > ... > xn > y1 >
... > yn+1. Now compute a Gröbner basis A of the ideal I in R and then take
B = A∩C[y1, ..., yn+1]. It is a standard fact that B is the Gröbner basis of the ideal
I(Γ) of the hypersurface Γ. Consequently, we have K̃(f) = {y1 ∈ C : h(y1, 0, ..., 0) =
0, for every h ∈ B}. In particular, the set K̃∞(f) is finite iff there exists a poly-
nomial h ∈ B, such that h(y1, 0, ..., 0) 6≡ 0.
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namica 9 (1984), 21-32.

4. H. V. Ha, Sur la fibration globale des polynômes de deux variables, CRAS 309 (1989),
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