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EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS
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Abstract. This paper establishes a new criterion for global existence and
nonexistence of positive solutions of the non-local degenerate parabolic system

ut = vp
(

∆u+ a

∫
Ω
vdx

)
,

vt = uq
(

∆v + b

∫
Ω
udx

)
, x ∈ Ω, t > 0,

with homogeneous Dirichlet boundary conditions, where Ω ⊂ RN is a bounded
domain with a smooth boundary ∂Ω and p, q, a, b are positive constants. For
all initial data, it is proved that there exists a global positive solution iff∫
Ω
ϕ(x)dx ≤ 1/

√
ab, where ϕ(x) is the unique positive solution of the linear

elliptic problem −∆ϕ(x) = 1, x ∈ Ω;ϕ(x) = 0, x ∈ ∂Ω.

1. Introduction

In [1], the authors investigate the global existence and nonexistence of positive
solutions of the strongly coupled degenerate parabolic system

(1.1)
ut = vp(∆u+ au),

vt = uq(∆v + bv), x ∈ Ω, t > 0,

with homogeneous Dirichlet boundary conditions. It is shown that there exists a
global positive solution if and only if λ1 ≥ min{a, b}, where λ1 is the first Dirichlet
eigenvalue for the Laplacian on Ω.

In this paper, we study a new parabolic system with a non-local source

(1.2)

ut = vp
(

∆u + a

∫
Ω

vdx

)
,

vt = uq
(

∆v + b

∫
Ω

udx

)
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω ⊂ RN is a bounded domain with a smooth boundary ∂Ω and p, q, a, b are
positive constants.
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Over the past several years, a variety of non-local parabolic equations were stud-
ied by many authors (see [2]–[10] and references therein). In particular, some
authors [8]–[10] studied a class of non-local degenerate parabolic equations which
arise in a model of population that communicates through chemical means.

In order to motivate the main result for system (1.2), we recall a classical result
of Galaktionov et al. (see [12], [13]) for the system

ut = ∆uν+1 + vp,
(1.3)

vt = ∆vµ+1 + uq, x ∈ Ω, t > 0

with homogeneous Dirichlet boundary conditions. It is shown that if pq <
(1 + µ)(1 + ν), every solution of (1.3) is global, while if pq > (1 + µ)(1 + ν),
there are solutions that blow up and others that are global. In the critical case
where p = 1 + µ, q = 1 + ν, they proved that:

(1) If λ1 > 1, all solutions of (1.3) are global.
(2) If λ1 < 1, there are no nontrivial global solutions of (1.3).

Their results show that the first eigenvalue λ1 plays a crucial role in the critical
case pq = (1 + µ)(1 + ν) (see also [14], [15]).

Similar results have also been obtained for the scalar equation

ut = up(∆u+ u).

It was shown that there exists a unique positive solution which blows up in finite
time if λ1 < 1 and exists globally if λ1 ≥ 1 (see [16]–[18] and the references therein).
But, for system (1.2), it seems that λ1 no longer takes action. Motivated by these
results, in this paper we will establish a new criterion for global existence and
nonexistence of solutions for system (1.2).

Throughout this paper, the initial values and the boundary ∂Ω are assumed to
satisfy

∂Ω ∈ C2+α,

u0(x), v0(x) ∈ C1(Ω), u0(x), v0(x) > 0 in Ω,(H1)

u0(x) = v0(x) = 0, ∂u0/∂n, ∂v0/∂n < 0 on ∂Ω.

Definition 1.1. A positive solution of the system (1.2) is a vector function (u, v) ∈
C(Ω× [0, T ∗))∩C2,1(Ω× (0, T ∗)), positive in Ω× (0, T ∗) and satisfying (1.2), where
T ∗ is the maximal existence time of the solution. If T ∗ =∞, we say (u, v) is global.

In our considerations a crucial role is played by

(1.4) µ =
∫

Ω

ϕ(x)dx,

where ϕ(x) is the unique positive solution of the following linear elliptic problem

(1.5) −∆ϕ(x) = 1, x ∈ Ω; ϕ(x) = 0, x ∈ ∂Ω.

Then, let us state our main result.

Theorem 1.2. Assume that (H1) holds. Then there exists a global positive solution
of (1.2) iff µ2 ≤ 1/(ab).
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We are also interested in another non-local degenerate parabolic system, which
is of the form

(1.6)
ut = vp

(
∆u+ a

∫
Ω

udx

)
,

vt = uq
(

∆v + b

∫
Ω

vdx

)
, x ∈ Ω, t > 0,

with similar initial-boundary conditions as in (1.2). For system (1.6), we get a
different criterion as follows.

Theorem 1.3. Assume that (H1) holds. Then there exists a global positive solution
of (1.6) iff 1/µ ≥ min{a, b}.

The result shows that for system (1.6), it is not λ1 but 1/µ that plays a crucial
role. We will not discuss (1.6) in detail since it can be easily proved by combining
the present arguments with those in [1].

Remark 1.4. Combining the arguments in [1] and in the present paper, we can show
that λ2

1 ≥ ab is the critical condition of system

ut = vp(∆u+ av), vt = uq(∆v + bu).

We will not give the proof here, since this paper is concerned about the non-local
problem.

This paper is organized as follows. Section 2 establishes the local theory. Section
3 gives the proof of the main result.

2. Local existence

Set QT = Ω× (0, T ], ST = ∂Ω× (0, T ] for 0 < T <∞. We first give a maximum
principle for non-local systems, of which the proof is standard, and omit its proof.

Proposition 2.1. Suppose that w1(x, t), w2(x, t) ∈ C(QT ) ∩ C2,1(QT ) satisfy

w1t − d1∆w1 ≥ c11w1 + c12w2 + c13w1w2

+ c14

∫
Ω

c15w1(x, t)dx + c16

∫
Ω

c17w2(x, t)dx,

w2t − d2∆w2 ≥ c21w1 + c22w2 + c23w1w2

+ c24

∫
Ω

c25w1(x, t)dx + c26

∫
Ω

c27w2(x, t)dx, (x, t) ∈ QT ,

w1(x, t) ≥ 0, w2(x, t) ≥ 0, (x, t) ∈ ST ,
w1(x, 0) ≥ 0, w2(x, 0) ≥ 0, x ∈ Ω,

where di(x, t), cij(x, t) (i = 1, 2; j = 1, . . . , 7) are bounded functions and

d1, d2, c12, c21, c1j , c2j ≥ 0, j = 4, . . . , 7 in QT .

Then wj(x, t) ≥ 0 on QT .

Proposition 2.2. Let (ũ, ṽ) ∈ C(QT ) ∩ C2,1(QT ) and (ū, v̄) ∈ C(QT ) ∩ C2,1(QT )
be a nonnegative subsolution and a nonnegative supersolution of (1.2), respectively.
Assume that (ū, v̄) ≥ δ > 0 and either

(2.1) ∆ũ+ a

∫
Ω

ṽdx ≥ 0, ∆ṽ + b

∫
Ω

ũdx ≥ 0
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or

(2.2) ∆ū+ a

∫
Ω

v̄dx ≥ 0, ∆v̄ + b

∫
Ω

ūdx ≥ 0

hold. Then (ũ, ṽ) ≤ (ū, v̄) on QT if (ũ0, ṽ0) ≤ (ū0, v̄0).

Proof. This proposition is a direct consequence of Proposition 2.1. �

Next, in this section, we will give the local existence of the solution for system
(1.2) by the same method utilized in [1]. For system (1.2) we introduce, for n =
1, 2, . . ., the following regularized system:

(2.3)

unt = vpn

(
∆un + a

∫
Ω

vndx

)
,

vnt = uqn

(
∆vn + b

∫
Ω

undx

)
, x ∈ Ω, t > 0,

un(x, t) = vn(x, t) = 1/n, x ∈ ∂Ω, t > 0,

un(x, 0) = u0(x) + 1/n, vn(x, 0) = v0(x) + 1/n, x ∈ Ω.

By a similar discussion as in [7], under (H1), we can show that (2.3) has a classical
solution (un, vn) with un, vn ≥ 1/n, defined on Ω× [0, T ∗n), where T ∗n is the maximal
existence time.

Now we construct a uniform upper bound for (un, vn). Consider the ordinary
differential equation

(2.4)
H ′(t) = â(H(t))p̂,

H(0) = max{max
x∈Ω

u0(x) + 1,max
x∈Ω

v0(x) + 1},

where â = max{a|Ω|, b|Ω|}, p̂ = max{p+ 1, q + 1}. Obviously, there exists T0 > 0
such that (2.4) has a non-decreasing solution H(t) > 0 on [0, T0]; namely, 0 <
H(0) ≤ H(t) ≤ H(T0) <∞. Using Proposition 2.2 for system (2.3), we obtain the
following lemma.

Lemma 2.3. There exist T0 and an a priori bound H(t) depending only on u0, v0, â
and p̂ such that for all n ≥ 1 the solution of (2.3) satisfies un, vn ≤ H(t) on QT0 .

Denote by λ1 > 0 and φ(x) the first eigenvalue and the corresponding eigenfunc-
tion of the following eigenvalue problem

−∆φ(x) = λφ(x), x ∈ Ω; φ(x) = 0, x ∈ ∂Ω.

It is well known that φ(x) may be normalized as φ(x) > 0 in Ω and maxΩ φ(x) = 1.
Thus, by Proposition 2.1, we have

Lemma 2.4. Let h(x, t) = ke−ρtφ(x), where k is small such that u0, v0 ≥ kφ(x)
and ρ = max{λ1(H(T0))p, λ1(H(T0))q}. Then for all n ≥ 1, it holds that un, vn ≥
h(x, t) in QT0 .

In proving there exists a positive solution of (1.2), we still need the following
regularity lemma, whose proof is similar to [1, Lemma 2.3].

Lemma 2.5. un, vn ∈ V 1,0
2 (QT0)(see [19, p. 6]).
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Then by the so-called extension method (for details see [1]), we have that there
exists a subsequence {ni} of {n} such that

(2.5) lim
i→∞

(uni , vni) = (u, v) in C2,1(QT0).

Similarly, we can show that u, v are continuous at any point (y, t), y ∈ ∂Ω and
u(y, t) = 0 (see [16], [20]), and continuous up to {t = 0} (see [21], [22]).

Let T ∗ be the supremum over T0 for which (u, v) exists on (0, T0). Thus, we
have

Theorem 2.6. Assume that (H1) holds. Then there exists a positive solution of
(1.2) on (0, T ∗). Moreover, if T ∗ <∞, then

lim sup
t→T∗

‖u(x, t)‖L∞ = +∞ or lim sup
t→T∗

‖v(x, t)‖L∞ = +∞.

Remark 2.7. Obviously, all discussions of this section are applicable to system (1.6).

3. Proof of the main result

In order to prove the main result, we give an auxiliary lemma first. Let G be a
bounded smooth domain of RN . Consider the problem

(3.1)

wt = dwr
(

∆w + a0

∫
G

wdx

)
, x ∈ G, t > 0,

w(x, t) = c, x ∈ ∂G, t ≥ 0,

w(x, 0) = c, x ∈ G,
where 0 < r < 1 and a0, c, d are positive constants. By the standard method (see
[7], [10]), it follows that (3.1) has a unique classical solution w(x, t) and w(x, t) ≥ c.
Denote by ϕ0(x) the unique positive solution of the linear elliptic problem

−∆ϕ0(x) = 1, x ∈ G; ϕ0(x) = 0, x ∈ ∂G.
Set µ0 =

∫
G
ϕ0(x)dx. Thus, we have

Lemma 3.1. If µ0 > 1/a0, then the positive solution of (3.1) blows up in finite
time.

Proof. Set F (t) =
∫
G
w1−rϕ0dx; then

1
1− rF

′(t) = d

(∫
G

∆wϕ0dx+ a0

∫
G

wdx

∫
G

ϕ0dx

)
≥ d(a0µ0 − 1)

∫
G

wdx(3.2)

≥ d(a0µ0 − 1)
(∫

G

wϕ0dx

)/
M,

where M = maxx∈G{ϕ0(x)}. Letting z = w1−r in (3.2) yields∫
G

zt(x, t)ϕ0dx ≥ d(1− r)(a0µ0 − 1)
(∫

G

z1/(1−r)ϕ0dx

)/
M.

Since 1
1−r > 1, by the Jensen inequality, it follows that∫
G

zt(x, t)ϕ0dx ≥ d(1− r)(a0µ0 − 1)(µ0)−r/(1−r)
(∫

G

zϕ0dx

)1/(1−r)
/
M.
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That is,
F ′(t) ≥ C0(F (t))1/(1−r),

where C0 = d(1 − r)(a0µ0 − 1)(µ0)−r/(1−r)
/
M > 0. In view of 1/(1 − r) > 1 and

F (0) > 0, it follows that there exists T < ∞ such that limt→T F (t) = +∞, and
hence w(x, t) blows up in finite time. �

Lemma 3.2. Assume that (H1) holds. Then there exist positive constants k1, k2

such that u(x, t) ≥ k1ϕ, v(x, t) ≥ k2ϕ for (x, t) ∈ Ω× [0, T ∗) if µ2 ≥ 1/(ab).

Proof. From (H1), since µ2 ≥ 1/(ab) we see that there exist positive constants k1

and k2 such that

(3.3) u0(x) ≥ k1ϕ(x), v0(x) ≥ k2ϕ(x), x ∈ Ω,

and

(3.4) aµ ≥ k1/k2 ≥ 1/(bµ).

Let w(x, t) = u(x, t)− k1ϕ(x), s(x, t) = v(x, t)− k2ϕ(x). Then we obtain, by (3.4),
for any T ∈ (0, T ∗),

(3.5)

wt = ut = vp
(

∆u + a

∫
Ω

vdx

)
= vp

(
∆w + a

∫
Ω

sdx

)
+ vp(−k1 + ak2µ)

≥ vp
(

∆w + a

∫
Ω

sdx

)
,

st ≥ uq
(

∆s+ b

∫
Ω

wdx

)
, x ∈ Ω, 0 < t ≤ T,

w(x, t) = s(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.
By Proposition 2.1, it follows from (3.3) and (3.5) that w ≥ 0, s ≥ 0 and hence
u ≥ k1ϕ, v ≥ k2ϕ on Ω × [0, T ]. The arbitrariness of T shows that the result
holds. �

Lemma 3.3. Assume that (H1) holds. Then no global solution of (1.2) exists if
µ2 > 1/(ab).

Proof. Denote by ϕ1(x) the unique positive solution of the linear elliptic problem

−∆ϕ1(x) = 1, x ∈ Ω1; ϕ1(x) = 0, x ∈ ∂Ω1.

Here Ω1 ⊂⊂ Ω. Since the function U := ϕ−ϕ1 ≥ 0 is harmonic in Ω1 and satisfies
U ≤ ϕ on ∂Ω1, we have ‖ϕ − ϕ1‖∞ ≤ ‖ϕ‖L∞(∂Ω1) by the maximum principle.
By the continuity of ϕ it follows that ‖ϕ − ϕ1‖∞ → 0, as dist(∂Ω1, ∂Ω) → 0.
Let µ1 =

∫
Ω1
ϕ1(x)dx. The above discussion implies, in particular, µ1 → µ, as

dist(∂Ω1, ∂Ω)→ 0.
Therefore, in view of µ2 > 1/(ab), we can choose a smooth sub-domain Ω1 ⊂⊂ Ω

such that µ2
1 > 1/(ab). Denote

δ =
1
2

min{k1 min
Ω1

ϕ, k2 min
Ω1

ϕ}.

Then δ > 0 and

u(x, t) ≥ 2δ, v(x, t) ≥ 2δ, ∀(x, t) ∈ Ω1 × [0, T ∗),
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by Lemma 3.2. Then (u, v) in Ω1 × (0, T ∗) satisfies

ut = vp
(

∆u+ a

∫
Ω

vdx

)
≥ vp

(
∆u+ a

∫
Ω1

vdx

)
,

vt ≥ uq
(

∆v + b

∫
Ω1

udx

)
, x ∈ Ω1, t ∈ (0, T ∗),(3.6)

u(x, t) ≥ 2δ, v(x, t) ≥ 2δ, x ∈ ∂Ω1, t ∈ (0, T ∗),

u(x, 0) ≥ 2δ, v(x, 0) ≥ 2δ, x ∈ Ω1.

Now, we consider the system

(3.7)

ut = vp
(

∆u+ a

∫
Ω1

vdx

)
,

vt = uq
(

∆v + b

∫
Ω1

udx

)
, x ∈ Ω1, t > 0,

u(x, t) = f(t), v(x, t) = g(t), x ∈ ∂Ω1, t > 0,

u(x, 0) = v(x, 0) = δ, x ∈ Ω1,

where f(t), g(t) satisfy

f(t), g(t) ∈ C∞([0,∞)), f ′(t), g′(t) > 0, f(t), g(t) ≤ 2δ,

f(0) = g(0) = δ, f ′(0) = a|Ω1|δp+1, g′(0) = b|Ω1|δq+1.

A similar discussion as in [7] shows that there exists a unique classical solution
(u, v) ∈ C2+β,1+β/2(Ω1 × [0, T1)) for some β ∈ (0, 1), where T1 is the maximal
existence time, and

(3.8) u, v ≥ δ in Ω1 × [0, T1).

Since the initial data is a subsolution of (3.7), we have ut, vt ≥ 0 in Ω1 × [0, T1)
and hence

(3.9) ∆u+ a

∫
Ω1

vdx ≥ 0, ∆v + b

∫
Ω1

udx ≥ 0 in Ω1 × [0, T1).

Thus from Proposition 2.2, we have T1 ≥ T ∗ and

u(x, t) ≥ u(x, t), v(x, t) ≥ v(x, t) in Ω1 × [0, T ∗).

Therefore, it suffices to show that (u, v) blows up in finite time, because if so, its
upper bound (u, v) does exist up to a finite time T ∗.

By (3.8) and (3.9), we have

(3.10)
ut ≥ δp−rvr

(
∆u + a

∫
Ω1

vdx

)
,

vt ≥ δq−rur
(

∆v + b

∫
Ω1

udx

)
in Ω1 × (0, T1)

with the corresponding initial and boundary conditions and 0 < r < 1.
By use of µ2

1 > 1/(ab), there exist positive constants l1, l2 with l1, l2 > 1, and l
such that

(3.11) aµ1 >
l1
l2
>

1
bµ1

, µ1 >
1
l
>

l1
al2

, µ1 >
1
l
>

l2
bl1
.
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Choose

(3.12) d = min{δp−r, δq−r}, γ = min{1/l1, 1/l2}.

Denote by z(x, t) the unique positive solution of the problem

(3.13)

zt = dzr
(

∆z + l

∫
Ω1

zdx

)
, x ∈ Ω1, t > 0,

z(x, t) = γδ, x ∈ ∂Ω1, t ≥ 0,

z(x, 0) = γδ, x ∈ Ω1,

where l, d, γ satisfy (3.11) and (3.12). By Lemma 3.1, it follows that z(x, t) blows
up in finite time T0 < ∞. Moreover, zt ≥ 0, i.e., ∆z + l

∫
Ω1
zdx ≥ 0, since the

initial data is a subsolution of (3.13). Let

w(x, t) = l1z(x, t), s(x, t) = l2z(x, t).

Thus, from (3.11)–(3.13) and l1, l2 > 1, we have

wt − δp−rsr
(

∆w + a

∫
Ω1

sdx

)
= l1dz

r

(
∆z + l

∫
Ω1

zdx

)
− l1δp−r(l2z)r

(
∆z + (al2/l1)

∫
Ω1

zdx

)
≤ 0,

st − δq−rwr
(

∆s+ b

∫
Ω1

wdx

)
≤ 0, x ∈ Ω1, 0 < t < T0,(3.14)

w(x, t) = l1γδ ≤ δ, s(x, t) = l2γδ ≤ δ, x ∈ ∂Ω1, 0 ≤ t < T0,

w(x, 0) = l1γδ ≤ δ, s(x, 0) = l2γδ ≤ δ, x ∈ Ω1.

By use of Proposition 2.2, it follows from (3.8), (3.10), (3.14) and ∆z+l
∫

Ω1
zdx ≥ 0

that

(u, v) ≥ (l1z, l2z) in Ω1 × (0, T1).

Hence (u, v) blows up in finite time since z(x, t) does. Therefore, (u, v) exists no
later than T0 <∞. This completes the proof. �

Lemma 3.4. Assume that (H1) holds. Then the positive solution (u, v) of (1.2)
defined by (2.5) is global if µ2 ≤ 1/(ab).

Proof. Applying µ2 ≤ 1/(ab) and (H1) we see that there exist large positive con-
stants K1 and K2 such that

(3.15) aµ ≤ K1/K2 ≤ 1/(bµ)

and

(3.16) u0(x) ≤ K1ϕ(x), v0(x) ≤ K2ϕ(x), ∀x ∈ Ω.
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Let W (x, t) = K1ϕ(x) − u(x, t), S(x, t) = K2ϕ(x) − v(x, t). Then, from (3.15), we
obtain, for any T ∈ (0, T ∗),

(3.17)

Wt = −ut = −vp
(

∆u+ a

∫
Ω

vdx

)
= vp

(
∆W + a

∫
Ω

Sdx

)
+ vp(K1 − aK2µ)

≥ vp
(

∆W + a

∫
Ω

Sdx

)
,

St ≥ uq
(

∆S + b

∫
Ω

Wdx

)
, x ∈ Ω, 0 < t ≤ T,

W (x, t) = S(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.
By Proposition 2.1, it follows from (3.16) and (3.17) that W ≥ 0, S ≥ 0 and hence
u ≤ K1ϕ, v ≤ K2ϕ on Ω× [0, T ]. The arbitrariness of T shows that u ≤ K1ϕ, v ≤
K2ϕ on Ω × [0, T ∗). Therefore, the solution (u, v) of (1.2) defined by (2.5) exists
globally. �

From Lemma 3.3 and Lemma 3.4, it follows that Theorem 1.2 holds.

Remark 3.5. From Lemma 3.2 and Lemma 3.4, we have that if µ2 = 1/(ab), there
exist positive constants k1, k2,K1 and K2 such that k1ϕ ≤ u(x, t) ≤ K1ϕ, k2ϕ ≤
u(x, t) ≤ K2ϕ for x ∈ Ω and t > 0.

Remark 3.6. Theorem 1.3 for system (1.6) can be proved by combining the present
arguments (for system (1.2)) with those in [1] (for system (1.1)).
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