PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 5, Pages 1405–1413 S 0002-9939(02)06896-X Article electronically published on December 6, 2002

ON QUASI-AFFINE TRANSFORMS OF READ'S OPERATOR

THOMAS SCHLUMPRECHT AND VLADIMIR G. TROITSKY

(Communicated by David R. Larson)

ABSTRACT. We show that C. J. Read's example of an operator T on ℓ_1 which does not have any non-trivial invariant subspaces is not the adjoint of an operator on a predual of ℓ_1 . Furthermore, we present a bounded diagonal operator D such that even though D^{-1} is unbounded, the operator $D^{-1}TD$ is a bounded operator on ℓ_1 with invariant subspaces, and is adjoint to an operator on c_0 .

1. Introduction

In this note we deal with the Invariant Subspace Problem, the problem of the existence of a closed non-trivial invariant subspace for a given bounded operator on a Banach space. The problem was solved in the positive for certain classes of operators (see [RR73, AAB98] for details), however in the mid-seventies P. Enflo [Enf76, Enf87] constructed an example of a continuous operator on a Banach space with no invariant subspaces, thus answering the Invariant Subspace Problem for general Banach spaces in the negative. In [Read85] C. J. Read presented an example of a bounded operator T on ℓ_1 with no invariant subspace. Recently V. Lomonosov suggested that every adjoint operator has an invariant subspace. In the first part of this note we show that the Read operator T is not an adjoint of any bounded operator defined on some predual of ℓ_1 .

Suppose that A has a non-trivial invariant (or a hyperinvariant) subspace, and suppose that B is similar to A, that is, $B = CAC^{-1}$ for some invertible operator C. Clearly, B also has a non-trivial invariant (respectively hyperinvariant) subspace. Moreover, it is known (see [RR73, Theorem 6.19]) that if A has a hyperinvariant subspace and B is quasi-similar to A (that is, CA = BC and AD = DB, where C and D are two bounded one-to-one operators with dense range), then B also has a hyperinvariant subspace. To our knowledge it is still unknown whether or not A has a non-trivial invariant subspace if and only if B has a non-trivial invariant subspace, assuming A and B are quasi-similar.

Recall (cf. [Sz-NF68]) that an operator A is said to be a *a quasi-affine transform* of B if CA = BC, for some injective operator C with dense range. In the second part of this paper we construct an injective diagonal operator D on ℓ_1 such that even though D^{-1} is unbounded, the operator $S = D^{-1}TD$ (T being Read's operator)

Received by the editors November 30, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A15; Secondary 47B37.

The first author was supported by the NSF. Most of the work on the paper was done during the Workshop on linear analysis and probability at Texas A&M University, College Station.

is bounded and has an invariant subspace. Thus, we show that a quasi-affine transform of an operator with no non-trivial invariant subspace might have a non-trivial invariant subspace. Furthermore, S is the adjoint of a bounded operator on c_0 .

Although we prove our statement for a specific choice of D, it is true for a much more general choice, and it seems to be true for any diagonal operator D that $S = D^{-1}TD$ has a non-trivial invariant subspace, whenever S is an adjoint of an operator on c_0 . More generally, the following question is of interest in view of the above-mentioned conjecture by V. Lomonosov.

Question. Does every quasi-affine transform of Read's operator, which is an adjoint of an operator on c_0 , have a non-trivial invariant subspace?

We introduce the following notations. Following [Read86] we denote by F the vector space of all eventually vanishing scalar sequences, and by (f_i) the standard unit vector basis of F. For an $x = \sum a_i f_i \in F$, we define the *support of* x to be the set $\{i \in \mathbb{N} : a_i \neq 0\}$ and denote it by $\operatorname{supp}(x)$. The linear span of some subset A of a vector space is denoted by $\operatorname{lin} A$.

2. Read's operator is not adjoint

We begin by reminding the reader of the construction of the operator T in [Read85, Read86]. It depends on a strictly increasing sequence $\mathbf{d} = (a_1, b_1, a_2, b_2, \ldots)$ of positive integers which has to be chosen to be sufficiently rapidly increasing. Also let $a_0 = 1$, $v_0 = 0$, and $v_n = n(a_n + b_n)$ for $n \ge 1$.

Read's operator T is defined by prescribing the orbit $(e_i)_{i\geqslant 0}$ of the first basis element f_0 .

Definition 2.1. There is a unique sequence $(e_i)_{i=0}^{\infty} \subset F$ with the following properties:

- (0) $f_0 = e_0$;
- (A) if integers r, n, and i satisfy $0 < r \le n$, $i \in [0, v_{n-r}] + ra_n$, we have

$$f_i = a_{n-r}(e_i - e_{i-ra_n});$$

(B) if integers r, n, and i satisfy $1 \le r < n$, $i \in (ra_n + v_{n-r}, (r+1)a_n)$, (respectively, $1 \le n$, $i \in (v_{n-1}, a_n)$), then

$$f_i = 2^{(h-i)/\sqrt{a_n}} e_i$$
, where $h = (r + \frac{1}{2})a_n$ (respectively, $h = \frac{1}{2}a_n$);

(C) if integers r, n, and i satisfy $1 \leqslant r \leqslant n$, $i \in [r(a_n + b_n), na_n + rb_n]$, then

$$f_i = e_i - b_n e_{i-b_n};$$

(D) if integers r, n, and i satisfy $0 \le r < n$, $i \in (na_n + rb_n, (r+1)(a_n + b_n))$, then

$$f_i = 2^{(h-i)/\sqrt{b_n}} e_i$$
, where $h = (r + \frac{1}{2})b_n$.

Indeed, since $f_i = \sum_{j=0}^i \lambda_{ij} e_j$ for each $i \ge 0$ and λ_{ii} is always nonzero, this linear relation is invertible. Further,

$$\lim \{e_i \mid i = 1, \dots, n\} = \lim \{f_i \mid i = 1, \dots, n\} \text{ for every } n \ge 0.$$

In particular, all e_i are linearly independent and also span F. Then Read defines $T: F \to F$ to be the unique linear map such that $Te_i = e_{i+1}$. Read proves that T can be extended to a bounded operator on ℓ_1 with no invariant subspaces provided \mathbf{d} increases sufficiently rapidly.

Proposition 2.2. T is not the adjoint of an operator $S: X \to X$ where X is a Banach space whose dual is isometric to ℓ_1 .

Proof. Assume that our claim is not true. Then there is a local convex topology τ on ℓ_1 so that

- (a) τ is weaker than the norm topology of ℓ_1 ;
- (b) $B(\ell_1)$ is sequentially compact with respect to τ ;
- (c) if $(x_n) \subset \ell_1$ converges with respect to τ to x, then $\liminf_{n\to\infty} ||x_n|| \ge ||x||$;
- (d) T is continuous with respect to τ .

Note that with respect to any predual X of ℓ_1 the weak* topology has properties (a)–(d). Let $s \in \mathbb{N}$ be fixed, and n > s. Then $f_{(n-s)a_n} = a_s(e_{(n-s)a_n} - e_0)$ by (A) above. It follows that $T^{v_s+1}f_{(n-s)a_n} = a_s(e_{(n-s)a_n+v_s+1} - e_{v_s+1})$. Further, it follows from (B) that $e_{(n-s)a_n+v_s+1}$ equals $2^{(1+v_s-\frac{1}{2}a_n)/\sqrt{a_n}}f_{(n-s)a_n+v_s+1}$ and converges to zero in norm (and, hence, in τ) as $n \to \infty$. Therefore

(1)
$$\tau - \lim_{n \to \infty} T^{v_s+1} f_{(n-s)a_n} = -a_s e_{v_s+1} = T^{v_s+1} (-a_s e_0).$$

Notice that T^{v_s+1} is τ -continuous and one-to-one because its null space is T-invariant. By sequential compactness of $B(\ell_1)$, the sequence $f_{(n-s)a_n}$ must have a τ -convergent subsequence. Then, by (1), the limit point has to be $-a_se_0$. Since that argument applies to any subsequence, we deduce that

(2)
$$\tau\text{-}\lim_{n\to\infty} f_{(n-s)a_n} = -a_s e_0.$$

Since $||f_{(n-s)a_n}|| = 1$ for each n and s while $||a_se_0|| = a_s > 1$, this contradicts (2).

Remark. The statement of the theorem remains valid if we consider an equivalent norm on ℓ_1 . Indeed, suppose $\frac{1}{K} \| \| \cdot \| \le \| \cdot \| \le K \| \cdot \|$. Then $\| f_{(n-s)a_n} \| \le K$ for each n and s, but since $\lim_{n\to\infty} a_n = \infty$, we can choose a_s in (2) so that $\| a_s e_0 \| > K$.

3. An adjoint operator with invariant subspaces of the form $D^{-1}TD$

Define a sequence of positive reals (d_i) as follows:

(3)
$$d_i = \begin{cases} \frac{1}{r} & \text{if } ra_m \leqslant i \leqslant ra_m + v_{m-r} \text{ for some } 0 < r \leqslant m, \\ 1 & \text{otherwise.} \end{cases}$$

Let D be the diagonal operator with diagonal (d_i) , that is, $Df_i = d_i f_i$ for every i. Define $S = D^{-1}TD$. Clearly, S is defined on F. Once we write S in matrix form it will be clear that it is bounded on F and, therefore, can be extended to ℓ_1 . Let $\hat{e}_i = D^{-1}e_i$, in particular $\hat{e}_0 = e_0$. Then $S\hat{e}_i = D^{-1}Te_i = \hat{e}_{i+1}$, so that the sequence (\hat{e}_i) is the orbit of e_0 under S.

Next, we examine Definition 2.1 to represent the f_i 's in terms of \hat{e}_i 's.

- $(\widehat{0})$ $f_0 = e_0 = \widehat{e}_0;$
- $(\widehat{\mathbf{A}})$ if i satisfies $i \in [0, v_{n-r}] + ra_n$ for some $0 < r \leqslant n$, then

$$f_i = d_i D^{-1} f_i = d_i D^{-1} (a_{n-r} (e_i - e_{i-ra_n})) = \frac{a_{n-r}}{r} (\hat{e}_i - \hat{e}_{i-ra_n});$$

($\hat{\mathbf{B}}$) if integers r, n, and i satisfy $1 \leqslant r < n$, $i \in (ra_n + v_{n-r}, (r+1)a_n)$, (respectively, $1 \leqslant n$, $i \in (v_{n-1}, a_n)$), then

$$f_i = d_i D^{-1} f_i = 2^{(h-i)/\sqrt{a_n}} \hat{e}_i$$
, where $h = (r + \frac{1}{2}) a_n$ (respectively, $h = \frac{1}{2} a_n$);

- ($\hat{\mathbf{C}}$) if integers r, n, and i satisfy $1 \leqslant r \leqslant n$, $i \in [r(a_n + b_n), na_n + rb_n]$, then $f_i = d_i D^{-1} f_i = \hat{e}_i b_n \hat{e}_{i-b_n}$;
- ($\hat{\mathbb{D}}$) if integers r, n, and i satisfy $0 \leqslant r < n$, $i \in (na_n + rb_n, (r+1)(a_n + b_n))$, then

$$f_i = d_i D^{-1} f_i = 2^{(h-i)/\sqrt{b_n}} \hat{e}_i$$
, where $h = (r + \frac{1}{2})b_n$.

We see that it differs from Definition 2.1 only in case (\widehat{A}) . Now we can actually write the matrix of S:

write the matrix of
$$S$$
:
$$\begin{cases} 2^{(1-\frac{1}{2}a_1)/\sqrt{a_1}}f_1 & \text{if } i=0,\\ f_{i+1} & \text{if } i\in[0,v_{n-r})+ra_n,\\ & \text{with } r=1,2,\dots,n, \end{cases} \\ f_{i+1} & \text{if } i\in[r(a_n+b_n),na_n+rb_n),\\ & \text{with } r=1,2,\dots,n, \end{cases} \\ f_{i+1} & \text{if } i\in[r(a_n+b_n),na_n+rb_n),\\ & \text{with } r=1,2,\dots,n, \end{cases} \\ 2^{1/\sqrt{a_n}}f_{i+1} & \text{if } i\in(ra_n+v_{n-r},(r+1)a_n-1),\\ & \text{with } r=1,2,\dots,n-1\\ & \text{or } i\in(v_{n-1},a_n-1),\\ & \text{if } i\in(na_n+rb_n,(r+1)(a_n+b_n)-1)\\ & \text{with } r=0,1,\dots,n-1, \end{cases} \\ \frac{a_{n-r}}{r}(\varepsilon_1f_{i+1}-\varepsilon_2f_{v_{n-r}+1}) & \text{if } i=ra_n+v_{n-r},\\ & \text{with } r=1,2,\dots,n-1, \end{cases} \\ Sf_i = \begin{cases} \frac{a_{n-r}}{r}(\varepsilon_1f_{i+1}-\varepsilon_2f_{v_{n-r}+1}) & \text{if } i=ra_n+v_{n-r},\\ & \text{with } r=1,2,\dots,n, \end{cases} \\ \varepsilon_2 = 2^{(1+v_{n-r}-\frac{1}{2}a_{n-r+1})/\sqrt{a_{n-r+1}}} & \text{if } r< n \text{ and }\\ \varepsilon_1 = 2^{(1+v_{n-r}-\frac{1}{2}a_n)/\sqrt{b_n}} & \text{if } r=n,\\ 2^{(1-\frac{1}{2}a_n)/\sqrt{a_n}}[f_0 + \frac{(r+1)f_{i+1}}{a_{n-r-1}}] & \text{if } i=(r+1)a_n-1\\ & \text{with } r=0,1,\dots,n-1, \end{cases} \\ \varepsilon_1 = 2^{(1+na_n-\frac{1}{2}b_n)/\sqrt{b_n}} & \text{if } i=na_n+rb_n\\ & \text{where} & \text{with } r=1,2,\dots,n, \end{cases} \\ \varepsilon_2 = 2^{(1+na_n-\frac{1}{2}b_n)/\sqrt{b_n}} & \text{if } r< n, \text{ and }\\ \varepsilon_1 = 2^{(v_n+1-\frac{1}{2}a_{n+1})/\sqrt{b_n}} & \text{if } r< n, \text{ and }\\ \varepsilon_1 = 2^{(v_n+1-\frac{1}{2}a_{n+1})/\sqrt{b_n}} & \text{if } r=n,\\ 2^{-((r+1)a_n+\frac{1}{2}b_n-1)/\sqrt{b_n}} & \text{if } i=(r+1)(a_n+b_n)-1\\ & \cdot \left[\sum_{j=0}^r b_j^j f_{j-jb_n+1} + b_n^{r+1} (f_0 + \frac{(r+1)f_{(r+1)a_n}}{a_{n-r-1}})\right] & \text{with } r=0,1,\dots,n-1. \end{cases}$$
Inspecting the matrix line by line we observe that, assuming (a_n) and (b_n) are increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently, regidily, it follows that $\|S\| \leq 2$. Again, by increasing antificiently $\|S\| \leq 2$.

Inspecting the matrix line by line we observe that, assuming (a_n) and (b_n) are increasing sufficiently rapidly, it follows that $||S|| \leq 2$. Again by inspecting each line of the matrix, we deduce that if f_j^* is the j-th coordinate functional on ℓ_1 , $j \geq 0$, it follows that $\lim_{i \to \infty} f_j^*(S(f_i)) = 0$. In other words, the rows of the matrix converge to zero. Therefore S is the adjoint of a linear bounded operator on c_0 .

Theorem 3.1. S has a non-trivial closed invariant subspace.

We shall show that S has an invariant subspace by producing a vector x_{∞} such that the linear span of the orbit of x_{∞} stays away from e_0 , hence its closure is a non-trivial S-invariant subspace.

We will introduce the following notations.

First we choose two sequences of positive integers (m_i) and (r_i) as follows. Let $m_0 \ge 2$ be arbitrary, put $r_0 = 1$. Once m_i and r_i are defined, choose $r_{i+1} \in \mathbb{N}$ so that

(4)
$$r_{i+1} \in [a_{m_{i-1}} \cdot \max_{\ell \leqslant v_{m_{i-1}}} \|\hat{e}_{\ell}\|, 1 + a_{m_{i-1}} \cdot \max_{\ell \leqslant v_{m_{i-1}}} \|\hat{e}_{\ell}\|]$$

and let

$$(5) m_{i+1} = m_i + r_{i+1}.$$

Define an increasing sequence (j_i) of positive integers inductively: pick any

$$(6) j_0 \in [r_0 a_{m_0}, r_0 a_{m_0} + v_{m_0 - r_0}],$$

and once j_i is defined, put

$$(7) j_{i+1} = j_i + r_i b_{m_i} + r_{i+1} a_{m_{i+1}}.$$

Finally, for each $i \ge 0$ define

(8)
$$p_i = \prod_{k=0}^{i} b_{m_k}^{-r_k},$$

$$(9) z_i = f_{j_i+r_ib_{m_i}} + b_{m_i}f_{j_i+(r_i-1)b_{m_i}} + \dots + b_{m_i}^{r_i-1}f_{j_i+b_{m_i}} + \frac{r_{i+1}f_{j_{i+1}}}{a_{m_i}},$$

$$(10) \quad x_i = p_{i-1}\hat{e}_{j_i}.$$

We note the following easy-to-prove properties for our choices.

Proposition 3.2. For each $i \ge 0$ the following statements hold:

- (a) $j_i \in [r_i a_{m_i}, r_i a_{m_i} + v_{m_i r_i}];$
- (b) $x_{i+1} = x_i + p_i z_i$, and thus $x_i = \hat{e}_{j_0} + \sum_{k=0}^{i-1} p_k z_k$;
- (c) if i and $i + \ell$ both belong to $[ra_n, ra_n + v_{n-r}]$ or if they both belong to $[r(a_n + b_n), na_n + rb_n]$, then $S^{\ell} f_i = f_{i+\ell}$;
- (d) if $\ell < m_i a_{m_i} j_i$, then min supp $S^{\ell} z_k \geqslant j_i + b_{m_i}$ whenever $k \geqslant i$.

Proof. (a) The proof is by induction. For i = 0 the required inclusion follows from the choice of j_0 , and if this condition holds for j_i , then

$$\begin{split} j_{i+1} &= j_i + r_i b_{m_i} + r_{i+1} a_{m_{i+1}} \\ &\in \left[r_i a_{m_i} + r_i b_{m_i} + r_{i+1} a_{m_{i+1}}, r_i a_{m_i} + v_{m_i - r_i} + r_i b_{m_i} + r_{i+1} a_{m_{i+1}} \right] \\ &\subseteq \left[r_{i+1} a_{m_{i+1}}, r_{i+1} a_{m_{i+1}} + m_i (a_{m_i} + b_{m_i}) \right] = \left[r_{i+1} a_{m_{i+1}}, r_{i+1} a_{m_{i+1}} + v_{m_i} \right]. \end{split}$$

(b) First note that by using (\widehat{D}) we obtain for a $i \in [r(a_n + b_n), na_n + rb_n]$, with $1 \le r \le n$ in \mathbb{N} , that

(11)
$$\hat{e}_{i} = b_{n}\hat{e}_{i-b_{n}} + f_{i}$$

$$= b_{n}^{2}\hat{e}_{i-2b_{n}} + b_{n}f_{i-b_{n}} + f_{i}$$

$$\vdots$$

$$= b_{n}^{r}\hat{e}_{i-rb_{n}} + b_{n}^{r-1}f_{i-(r-1)b_{n}} + \dots + b_{n}f_{i-b_{n}} + f_{i}.$$

Note that $j_i + r_i b_{m_i} \in [r_i(a_{m_i} + b_{m_i}), m_i a_{m_i} + r_i b_{m_i}]$. By using first (\widehat{A}) and then (11) we obtain

$$\hat{e}_{j_{i+1}} = \hat{e}_{j_i+r_i b_{m_i}+r_{i+1} a_{m_i}}$$

$$= \hat{e}_{j_i+r_i b_{m_i}} + \frac{r_{i+1}}{a_{m_i}} f_{j_i+r_i b_{m_i}+r_{i+1} a_{m_i}}$$

$$= b_{m_i}^{r_i} \hat{e}_{j_i} + b_{m_i}^{r_i-1} f_{j_i+b_{m_i}} + \dots + b_{m_i} f_{j_i+(r_i-1)b_{m_i}} + \frac{r_{i+1}}{a_{m_i}} f_{j_i+r_i b_{m_i}+r_{i+1} a_{m_i}}$$

$$= b_{m_i}^{r_i} \hat{e}_{j_i} + z_i.$$

Thus, $x_{i+1} = p_i \hat{e}_{j_{i+1}} = p_{i-1} \hat{e}_{j_i} + p_i z_i = x_i + p_i z_i$.

(c) If i and $i + \ell$ are both in $[ra_n, ra_n + v_{n-r}]$, it follows from (\widehat{A}) that

$$S^{\ell}(f_i) = \frac{a_{n-r}}{r} S^{\ell}(\hat{e}_i - \hat{e}_{i-ra_n}) = \frac{a_{n-r}}{r} (\hat{e}_{i+\ell} - \hat{e}_{i-ra_n+\ell}) = f_{i+\ell}.$$

The second part of (c) can be deduced in a similar way using (\widehat{C}) .

(d) First note that for $k \ge i$ it follows that (recall that $m_k \ge m_0 \ge 2$)

$$m_k a_{m_k} - j_k > (m_k - r_k - 1)a_{m_k} = (m_{k-1} - 1)a_{m_k} \ge m_{k-1}a_{m_{k-1}} - j_{k-1}.$$

We can therefore assume that k = i. Furthermore, note that for any $1 \leq r \leq r_i$ it follows that

$$r(a_{m_i} + b_{m_i}) \leqslant j_i + rb_{m_i} \leqslant j_i + rb_{m_i} + \ell \leqslant m_i a_{m_i} + rb_{m_i}$$

and

$$\begin{split} r_{i+1}a_{m_{i+1}} &\leqslant j_{i+1} \leqslant j_{i+1} + \ell \leqslant j_{i+1} + m_i a_{m_i} - j_i \\ &= r_{i+1}a_{m_{i+1}} + r_i b_{m_i} + m_i a_{m_i} \\ &\leqslant r_{i+1}a_{m_{i+1}} + v_{m_i} \\ &= r_{i+1}a_{m_{i+1}} + v_{m_{i+1} - r_{i+1}}. \end{split}$$

Therefore the claim follows from the definition of z_i , (9) and part (c).

Notice that

$$||z_i|| = 1 + b_{m_i} + b_{m_i}^2 + \dots + b_{m_i}^{r_i - 1} + \frac{r_{i+1}}{a_{m_i}} \le m_i b_{m_i}^{r_i - 1} + \frac{r_{i+1}}{a_{m_i}}.$$

Further, since $p_i \leqslant \frac{1}{b_{ij}^{r_i}}$, we have

$$||p_i z_i|| \leqslant \frac{m_i}{b_{m_i}} + \frac{r_{i+1}}{a_{m_i} b_{m_i}^{r_i}}.$$

The series $\sum_{i=0}^{\infty} \frac{m_i}{b_{m_i}}$ converges because (b_i) increases sufficiently rapidly. Secondly, it follows from the definition of (r_i) that

$$a_{m_i}^{-1} r_{i+1} \leqslant a_{m_i}^{-1} [1 + a_{m_i-1} \cdot \max_{\ell \leqslant v_{m_i-1}} ||\hat{e}_{\ell}||].$$

Thus, again since (b_i) is increasing fast enough, it follows that the series

$$\sum_{i=0}^{\infty} \frac{r_{i+1}}{a_{m_i} b_{m_i}^{r_i}}$$

converges. Therefore the $\sum_{i=0}^{\infty} p_i z_i$ converges, and the following definition is justified.

Definition 3.3. Define $x_{\infty} = \lim_{i} x_{i} = \lim_{i} p_{i-1} \hat{e}_{j_{i}} = \hat{e}_{j_{0}} + \sum_{i=0}^{\infty} p_{i} z_{i}$.

Now we can state and prove the key result for proving Theorem 3.1.

Lemma 3.4. There exists a constant C > 0 such that $\operatorname{dist}(y, e_0) \geqslant C$ for every i and every vector of the form $y = \sum_{j=j_i}^{m_i a_{m_i}} \gamma_j \hat{e}_j$.

Proof. Let $C = \inf \left\{ \operatorname{dist}(y, e_0) \mid y = \sum_{j=j_0}^{m_0 a_{m_0}} \gamma_j \hat{e}_j \right\}$. Since the infimum is taken over a finite-dimensional set, it must be attained at some y_0 . However since all \hat{e}_j are linear independent, it follows that $C = \operatorname{dist}(y_0, e_0) > 0$.

We shall prove the statement of the lemma by induction on i. The way we defined C guarantees that the base of the induction holds. Suppose $y = \sum_{j=j_i}^{m_i a_{m_i}} \gamma_j \hat{e}_j$. Write $y = y_1 + y_2 + y_3$, where

$$y_1 = \sum_{j=j_i}^{r_i a_{m_i} + v_{m_{i-1}}} \gamma_j \hat{e}_j, \quad y_2 = \sum_{r=r_i+1}^{m_i} \sum_{j=r a_{m_i}}^{r a_{m_i} + v_{m_i-r}} \gamma_j \hat{e}_j, \quad \text{and} \quad y_3 = \sum_{r=r_i}^{m_i-1} \sum_{j=r a_{m_i} + v_{m_i-r}+1}^{(r+1)a_{m_i}-1} \gamma_j \hat{e}_j.$$

Notice that by (\widehat{B})

$$y_3 = \sum_{r=r_i}^{m_i-1} \sum_{j=ra_{m_i}+v_{m_i-r}+1}^{(r+1)a_{m_i}-1} \gamma_j 2^{-(r+\frac{1}{2}-j)/\sqrt{a_{m_i}}} f_j,$$

so that supp $y_3 \subseteq \bigcup_{r=r_i}^{m_i-1} (ra_{m_i} + v_{m_i-r}, (r+1)a_{m_i})$. Furthermore, using (\widehat{A}) , we write $y_2 = y_2' + y_2''$ where

$$y_2' = \sum_{r=r_i+1}^{m_i} \sum_{j=ra_{m_i}}^{ra_{m_i}+v_{m_i-r}} \gamma_j \hat{e}_{j-ra_{m_i}} = \sum_{r=r_i+1}^{m_i} \sum_{j=0}^{v_{m_i-r}} \gamma_{j+ra_{m_i}} \hat{e}_j$$

and
$$y_2'' = \sum_{r=r_i+1}^{m_i} \sum_{j=ra_{m_i}}^{ra_{m_i}+v_{m_i-r}} \frac{\gamma_j r}{a_{m_i-r}} f_j$$
.

Therefore,

$$\operatorname{supp}(y_1 + y_2) \subseteq [0, r_i a_{m_i} + v_{m_{i-1}}] \cup \bigcup_{r=r_i+1}^{m_i} [r a_{m_i}, r a_{m_i} + v_{m_i-r_i}].$$

One observes that the vectors $y_1 + y_2$ and y_3 have disjoint supports; it follows that $dist(y, e_0) \ge dist(y_1 + y_2, e_0)$.

Furthermore,

$$\|y_2'\| = \Big\| \sum_{r=r_i+1}^{m_i} \sum_{j=ra_{m_i}}^{ra_{m_i}+v_{m_i-r}} \gamma_j \hat{e}_{j-ra_{m_i}} \Big\| \leqslant \sum_{r=r_i+1}^{m_i} \sum_{j=ra_{m_i}}^{ra_{m_i}+v_{m_i-r}} |\gamma_j| \cdot \max_{k \leqslant v_{m_{i-1}-1}} \|\hat{e}_k\|.$$

By choice of (r_i) (4), we have $\max_{k \leqslant v_{m_{i-1}-1}} \|\hat{e}_k\| \leqslant \frac{r_i}{a_{m_i-r_i-1}} \leqslant \frac{r}{a_{m_i-r}}$ when $r_i < r \leqslant m_i$. This yields

$$||y_2'|| \le \left\| \sum_{r=r_i+1}^{m_i} \sum_{j=ra_{m_i}}^{ra_{m_i}+v_{m_i-r}} \frac{\gamma_j r}{a_{m_i-r}} f_j \right\| = ||y_2''||.$$

Since the support of y_2'' is disjoint from that of $y_1 + y_2'$ and doesn't contain 0, we have

$$dist(y_1, e_0) \leq dist(y_1 + y_2', e_0) + ||y_2'||$$

$$= dist(y_1 + y_2' + y_2'', e_0) - ||y_2''|| + ||y_2'||$$

$$\leq dist(y_1 + y_2, e_0) \leq dist(y, e_0).$$

It is left to show that $\operatorname{dist}(y_1, e_0) \geqslant C$. Since $j_i \geqslant r_i a_{m_i}$, it follows from (\widehat{A}) that $y_1 = y_1' + y_1''$ where

$$y_1' = \sum_{j=j_i}^{r_i a_{m_i} + v_{m_{i-1}}} \gamma_j \hat{e}_{j-r_i a_{m_i}} \quad \text{ and } \quad y_1'' = \sum_{j=j_i}^{r_i a_{m_i} + v_{m_{i-1}}} \frac{\gamma_j r}{a_{m_i-r_i}} f_j.$$

Since $j_i = j_{i-1} + r_{i-1}b_{m_{i-1}} + r_i a_{m_i}$, we have $y_1' = \sum_{j=j_{i-1}+r_{i-1}b_{m_{i-1}}}^{v_{m_{i-1}}} \beta_j \hat{e}_j$, where $\beta_j = \gamma_{j+r_i a_{m_i}}$. In particular this means that supp $y_1' \subseteq [0, v_{m_{i-1}}]$, while min supp $y_1'' \ge j_i \ge r_i a_{m_i}$. Thus, the supports are disjoint, which yields $\operatorname{dist}(y_1, e_0) \ge \operatorname{dist}(y_1', e_0)$. Split the index set of y_1' into two disjoint subsets: let

$$A = [j_{i-1} + r_{i-1}b_{m_{i-1}}, v_{m_{i-1}}] \cap \bigcup_{r=r_{i-1}}^{m_{i-1}} (m_{i-1}a_{m_{i-1}} + rb_{m_{i-1}}, (r+1)(a_{m_{i-1}} + b_{m_{i-1}})),$$

$$B = [j_{i-1} + r_{i-1}b_{m_{i-1}}, v_{m_{i-1}}] \cap \bigcup_{r=r_{i-1}}^{m_{i-1}} [r(a_{m_{i-1}} + b_{m_{i-1}}), m_{i-1}a_{m_{i-1}} + rb_{m_{i-1}}].$$

Write $y_1' = z_a + z_b$ where $z_a = \sum_{j \in A} \beta_j \hat{e}_j$ and $z_b = \sum_{j \in B} \beta_j \hat{e}_j$. For $j \in A$ we have $\hat{e}_j = 2^{((r+1/2)b_{m_{i-1}}-j)/\sqrt{b_{m_{i-1}}}} f_j$, so that supp $z_a \subseteq A$. In view of (11) we can write $z_b = z_b' + z_b''$, where

$$z_b' = \sum_{j \in B} \sum_{k=0}^{r-1} \beta_j b_{m_{i-1}}^k f_{j-kb_{m_{i-1}}} \quad \text{and} \quad z_b'' = \sum_{j \in B} \beta_j b_{m_{i-1}}^r \hat{e}_{j-rb_{m_{i-1}}}.$$

We first note that $\operatorname{supp} z_b' \subseteq B$ and determine the support of z_b'' as follows. If $j \in B$, then $j \geqslant j_{i-1} + r_{i-1}b_{m_{i-1}}$ and $j \in [r(a_{m_{i-1}} + b_{m_{i-1}}), m_{i-1}a_{m_{i-1}} + rb_{m_{i-1}}]$ for some $r \in [r_{i-1}, m_{i-1}]$. If $r = r_{i-1}$, then $j - rb_{m_{i-1}} \geqslant j_{i-1}$. If $r > r_{i-1}$, then $j - rb_{m_{i-1}} \geqslant ra_{m_{i-1}} > r_{i-1}a_{m_{i-1}} + vm_{i-2} \geqslant j_{i-1}$ by (7). We see that z_b'' is a linear combination of \hat{e}_j 's with $j_{i-1} \leqslant j \leqslant m_{i-1}a_{m_{i-1}}$. Hence its support is contained in $[0, m_{i-1}a_{m_{i-1}}]$ and, therefore, is disjoint from that of z_a and z_b' . It follows that $\operatorname{dist}(y, e_0) \geqslant \operatorname{dist}(y_1', e_0) \geqslant \operatorname{dist}(z_b'', e_0)$. Finally, $\operatorname{dist}(z_b'', e_0) \geqslant C$ by the induction hypothesis.

Proof of Theorem 3.1. We will prove that the linear span of the orbit of x_{∞} under S is at least distance C from e_0 , hence its closure is a non-trivial invariant subspace for S. Consider a linear combination $\sum_{\ell=0}^{N} \alpha_{\ell} S^{\ell} x_{\infty}$. It follows from (7) that the sequence $(m_i a_{m_i} - j_i)$ is unbounded, so that $N < m_i a_{m_i} - j_i$ for some $i \ge 0$. Recall that $x_{\infty} = x_i + \sum_{k=i}^{\infty} p_k z_k$; then

$$\sum_{\ell=0}^{N} \alpha_{\ell} S^{\ell} x_{\infty} = \sum_{s=0}^{N} \alpha_{\ell} S^{\ell} x_{i} + \sum_{\ell=0}^{N} \sum_{k=i}^{\infty} \alpha_{\ell} S^{\ell} (p_{k} z_{k}).$$

Notice that the two sums have disjoint supports, and the support of the second one does not contain 0. Indeed, since $x_i = p_{i-1}\hat{e}_{j_i}$, then $S^{\ell}x_i = p_{i-1}\hat{e}_{j_i+\ell}$ for $\ell = 1, \ldots, N$. Furthermore,

$$j_i \leq j_i + \ell \leq j_i + N < j_i + (m_i a_{m_i} - j_i) = m_i a_{m_i}.$$

It follows that $\sum_{\ell=0}^{N} S^{\ell} x_i$ is a linear combination of \hat{e}_j 's with $j_i \leqslant j \leqslant m_i a_{m_i}$. In particular, its support is contained in $[0, m_i a_{m_i}]$. On the other hand, Proposition 3.2 (d) implies that

$$\min \operatorname{supp}\left(\sum_{\ell=0}^{N} \sum_{k=i}^{\infty} S^{\ell}(p_k z_k)\right) \geqslant j_i + b_{m_i}.$$

Therefore, by Lemma 3.4

$$\operatorname{dist}\left(\sum_{\ell=0}^{N} S^{\ell} x_{\infty}, e_{0}\right) \geqslant \operatorname{dist}\left(\sum_{\ell=0}^{N} S^{\ell} x_{i}, e_{0}\right) \geqslant C.$$

References

[AAB98] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw. The invariant subspace problem: Some recent advances. Rend. Inst. Mat. Univ. Trieste, XXIX Supplemento:3–79, 1998. MR 2000f:47062

[Enf76] P. Enflo. On the invariant subspace problem in Banach spaces. In Séminaire Maurey–Schwartz (1975–1976) Espaces L^p, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14-15, pages 1–7. Centre Math., École Polytech., Palaiseau, 1976. MR 57:13530

[Enf87] P. Enflo. On the invariant subspace problem in Banach spaces. Acta Math., 158: 213–313, 1987. MR 88j:47006

[Read85] C. J. Read. A solution to the invariant subspace problem on the space l₁. Bull. London Math. Soc., 17(4):305–317, 1985. MR 87e:47013

[Read86] C. J. Read. A short proof concerning the invariant subspace problem. J. London Math. Soc. (2), 34(2):335–348, 1986. MR 87m:47020

[RR73] H. Radjavi and P. Rosenthal. Invariant subspaces. Springer-Verlag, New York, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77. MR 51:3924

[Sz-NF68] B. Sz.-Nagy and C. Foiaş. Vecteurs cycliques et quasi-affinité. Studia Math. 31: 35–42, 1968. MR 38:5050

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843 E-mail address: schlump@math.tamu.edu

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

E-mail address: vtroitsky@math.ualberta.ca