ON QUASI-AFFINE TRANSFORMS OF READ'S OPERATOR

THOMAS SCHLUMPRECHT AND VLADIMIR G. TROITSKY

(Communicated by David R. Larson)

Abstract

We show that C. J. Read's example of an operator T on ℓ_{1} which does not have any non-trivial invariant subspaces is not the adjoint of an operator on a predual of ℓ_{1}. Furthermore, we present a bounded diagonal operator D such that even though D^{-1} is unbounded, the operator $D^{-1} T D$ is a bounded operator on ℓ_{1} with invariant subspaces, and is adjoint to an operator on c_{0}.

1. Introduction

In this note we deal with the Invariant Subspace Problem, the problem of the existence of a closed non-trivial invariant subspace for a given bounded operator on a Banach space. The problem was solved in the positive for certain classes of operators (see [RR73, AAB98] for details), however in the mid-seventies P. Enflo Enf76, Enf87, constructed an example of a continuous operator on a Banach space with no invariant subspaces, thus answering the Invariant Subspace Problem for general Banach spaces in the negative. In Read85 C. J. Read presented an example of a bounded operator T on ℓ_{1} with no invariant subspace. Recently V. Lomonosov suggested that every adjoint operator has an invariant subspace. In the first part of this note we show that the Read operator T is not an adjoint of any bounded operator defined on some predual of ℓ_{1}.

Suppose that A has a non-trivial invariant (or a hyperinvariant) subspace, and suppose that B is similar to A, that is, $B=C A C^{-1}$ for some invertible operator C. Clearly, B also has a non-trivial invariant (respectively hyperinvariant) subspace. Moreover, it is known (see [RR73, Theorem 6.19]) that if A has a hyperinvariant subspace and B is quasi-similar to A (that is, $C A=B C$ and $A D=D B$, where C and D are two bounded one-to-one operators with dense range), then B also has a hyperinvariant subspace. To our knowledge it is still unknown whether or not A has a non-trivial invariant subspace if and only if B has a non-trivial invariant subspace, assuming A and B are quasi-similar.

Recall (cf. [Sz-NF68]) that an operator A is said to be a a quasi-affine transform of B if $C A=B C$, for some injective operator C with dense range. In the second part of this paper we construct an injective diagonal operator D on ℓ_{1} such that even though D^{-1} is unbounded, the operator $S=D^{-1} T D$ (T being Read's operator)

[^0]is bounded and has an invariant subspace. Thus, we show that a quasi-affine transform of an operator with no non-trivial invariant subspace might have a nontrivial invariant subspace. Furthermore, S is the adjoint of a bounded operator on c_{0}.

Although we prove our statement for a specific choice of D, it is true for a much more general choice, and it seems to be true for any diagonal operator D that $S=D^{-1} T D$ has a non-trivial invariant subspace, whenever S is an adjoint of an operator on c_{0}. More generally, the following question is of interest in view of the above-mentioned conjecture by V. Lomonosov.

Question. Does every quasi-affine transform of Read's operator, which is an adjoint of an operator on c_{0}, have a non-trivial invariant subspace?

We introduce the following notations. Following Read86] we denote by F the vector space of all eventually vanishing scalar sequences, and by $\left(f_{i}\right)$ the standard unit vector basis of F. For an $x=\sum a_{i} f_{i} \in F$, we define the support of x to be the set $\left\{i \in \mathbb{N}: a_{i} \neq 0\right\}$ and denote it by $\operatorname{supp}(x)$. The linear span of some subset A of a vector space is denoted by $\operatorname{lin} A$.

2. Read's operator is not adjoint

We begin by reminding the reader of the construction of the operator T in Read85 Read86. It depends on a strictly increasing sequence $\mathbf{d}=\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$ of positive integers which has to be chosen to be sufficiently rapidly increasing. Also let $a_{0}=1, v_{0}=0$, and $v_{n}=n\left(a_{n}+b_{n}\right)$ for $n \geqslant 1$.

Read's operator T is defined by prescribing the orbit $\left(e_{i}\right)_{i \geqslant 0}$ of the first basis element f_{0}.
Definition 2.1. There is a unique sequence $\left(e_{i}\right)_{i=0}^{\infty} \subset F$ with the following properties:
(0) $f_{0}=e_{0}$;
(A) if integers r, n, and i satisfy $0<r \leqslant n, i \in\left[0, v_{n-r}\right]+r a_{n}$, we have

$$
f_{i}=a_{n-r}\left(e_{i}-e_{i-r a_{n}}\right) ;
$$

(B) if integers r, n, and i satisfy $1 \leqslant r<n, i \in\left(r a_{n}+v_{n-r},(r+1) a_{n}\right)$, (respectively, $1 \leqslant n, i \in\left(v_{n-1}, a_{n}\right)$), then

$$
\left.f_{i}=2^{(h-i) / \sqrt{a_{n}}} e_{i}, \text { where } h=\left(r+\frac{1}{2}\right) a_{n} \text { (respectively, } h=\frac{1}{2} a_{n}\right)
$$

(C) if integers r, n, and i satisfy $1 \leqslant r \leqslant n, i \in\left[r\left(a_{n}+b_{n}\right)\right.$, $\left.n a_{n}+r b_{n}\right]$, then

$$
f_{i}=e_{i}-b_{n} e_{i-b_{n}}
$$

(D) if integers r, n, and i satisfy $0 \leqslant r<n, i \in\left(n a_{n}+r b_{n},(r+1)\left(a_{n}+b_{n}\right)\right)$, then

$$
f_{i}=2^{(h-i) / \sqrt{b_{n}}} e_{i}, \text { where } h=\left(r+\frac{1}{2}\right) b_{n}
$$

Indeed, since $f_{i}=\sum_{j=0}^{i} \lambda_{i j} e_{j}$ for each $i \geqslant 0$ and $\lambda_{i i}$ is always nonzero, this linear relation is invertible. Further,

$$
\operatorname{lin}\left\{e_{i} \mid i=1, \ldots, n\right\}=\operatorname{lin}\left\{f_{i} \mid i=1, \ldots, n\right\} \text { for every } n \geqslant 0
$$

In particular, all e_{i} are linearly independent and also span F. Then Read defines $T: F \rightarrow F$ to be the unique linear map such that $T e_{i}=e_{i+1}$. Read proves that T can be extended to a bounded operator on ℓ_{1} with no invariant subspaces provided d increases sufficiently rapidly.

Proposition 2.2. T is not the adjoint of an operator $S: X \rightarrow X$ where X is a Banach space whose dual is isometric to ℓ_{1}.
Proof. Assume that our claim is not true. Then there is a local convex topology τ on ℓ_{1} so that
(a) τ is weaker than the norm topology of ℓ_{1};
(b) $\mathrm{B}\left(\ell_{1}\right)$ is sequentially compact with respect to τ;
(c) if $\left(x_{n}\right) \subset \ell_{1}$ converges with respect to τ to x, then $\liminf _{n \rightarrow \infty}\left\|x_{n}\right\| \geqslant\|x\|$;
(d) T is continuous with respect to τ.

Note that with respect to any predual X of ℓ_{1} the weak* topology has properties (a)-(d). Let $s \in \mathbb{N}$ be fixed, and $n>s$. Then $f_{(n-s) a_{n}}=a_{s}\left(e_{(n-s) a_{n}}-e_{0}\right)$ by (A) above. It follows that $T^{v_{s}+1} f_{(n-s) a_{n}}=a_{s}\left(e_{(n-s) a_{n}+v_{s}+1}-e_{v_{s}+1}\right)$. Further, it follows from (B) that $e_{(n-s) a_{n}+v_{s}+1}$ equals $2^{\left(1+v_{s}-\frac{1}{2} a_{n}\right) / \sqrt{a_{n}}} f_{(n-s) a_{n}+v_{s}+1}$ and converges to zero in norm (and, hence, in τ) as $n \rightarrow \infty$. Therefore

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\tau-\lim _{\infty}} T^{v_{s}+1} f_{(n-s) a_{n}}=-a_{s} e_{v_{s}+1}=T^{v_{s}+1}\left(-a_{s} e_{0}\right) \tag{1}
\end{equation*}
$$

Notice that $T^{v_{s}+1}$ is τ-continuous and one-to-one because its null space is T invariant. By sequential compactness of $B\left(\ell_{1}\right)$, the sequence $f_{(n-s) a_{n}}$ must have a τ-convergent subsequence. Then, by (1), the limit point has to be $-a_{s} e_{0}$. Since that argument applies to any subsequence, we deduce that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\tau-\lim _{n}} f_{(n-s) a_{n}}=-a_{s} e_{0} \tag{2}
\end{equation*}
$$

Since $\left\|f_{(n-s) a_{n}}\right\|=1$ for each n and s while $\left\|a_{s} e_{0}\right\|=a_{s}>1$, this contradicts (2).

Remark. The statement of the theorem remains valid if we consider an equivalent norm on ℓ_{1}. Indeed, suppose $\frac{1}{K}\|\cdot\| \leqslant\|\cdot\| \leqslant K\|\cdot\|$. Then $\left\|f_{(n-s) a_{n}}\right\| \leqslant K$ for each n and s, but since $\lim _{n \rightarrow \infty} a_{n}=\infty$, we can choose a_{s} in (22) so that $\left\|a_{s} e_{0}\right\|>K$.

3. An adjoint operator with invariant subspaces
 of THE FORM $D^{-1} T D$

Define a sequence of positive reals $\left(d_{i}\right)$ as follows:

$$
d_{i}= \begin{cases}\frac{1}{r} & \text { if } r a_{m} \leqslant i \leqslant r a_{m}+v_{m-r} \text { for some } 0<r \leqslant m \tag{3}\\ 1 & \text { otherwise }\end{cases}
$$

Let D be the diagonal operator with diagonal $\left(d_{i}\right)$, that is, $D f_{i}=d_{i} f_{i}$ for every i. Define $S=D^{-1} T D$. Clearly, S is defined on F. Once we write S in matrix form it will be clear that it is bounded on F and, therefore, can be extended to ℓ_{1}. Let $\hat{e}_{i}=D^{-1} e_{i}$, in particular $\hat{e}_{0}=e_{0}$. Then $S \hat{e}_{i}=D^{-1} T e_{i}=\hat{e}_{i+1}$, so that the sequence $\left(\hat{e}_{i}\right)$ is the orbit of e_{0} under S.

Next, we examine Definition 2.1 to represent the f_{i} 's in terms of \hat{e}_{i} 's.
($\widehat{0}) f_{0}=e_{0}=\hat{e}_{0}$;
($\widehat{\mathrm{A}}$) if i satisfies $i \in\left[0, v_{n-r}\right]+r a_{n}$ for some $0<r \leqslant n$, then

$$
f_{i}=d_{i} D^{-1} f_{i}=d_{i} D^{-1}\left(a_{n-r}\left(e_{i}-e_{i-r a_{n}}\right)\right)=\frac{a_{n-r}}{r}\left(\hat{e}_{i}-\hat{e}_{i-r a_{n}}\right) ;
$$

$(\widehat{\mathrm{B}})$ if integers r, n, and i satisfy $1 \leqslant r<n, i \in\left(r a_{n}+v_{n-r},(r+1) a_{n}\right)$, (respectively, $1 \leqslant n, i \in\left(v_{n-1}, a_{n}\right)$), then
$f_{i}=d_{i} D^{-1} f_{i}=2^{(h-i) / \sqrt{a_{n}}} \hat{e}_{i}$, where $h=\left(r+\frac{1}{2}\right) a_{n}$ (respectively, $\left.h=\frac{1}{2} a_{n}\right)$;
$(\widehat{\mathrm{C}})$ if integers r, n, and i satisfy $1 \leqslant r \leqslant n, i \in\left[r\left(a_{n}+b_{n}\right), n a_{n}+r b_{n}\right]$, then

$$
f_{i}=d_{i} D^{-1} f_{i}=\hat{e}_{i}-b_{n} \hat{e}_{i-b_{n}}
$$

$(\widehat{\mathrm{D}})$ if integers r, n, and i satisfy $0 \leqslant r<n, i \in\left(n a_{n}+r b_{n},(r+1)\left(a_{n}+b_{n}\right)\right)$, then

$$
f_{i}=d_{i} D^{-1} f_{i}=2^{(h-i) / \sqrt{b_{n}}} \hat{e}_{i}, \text { where } h=\left(r+\frac{1}{2}\right) b_{n}
$$

We see that it differs from Definition 2.1 only in case $(\widehat{\mathrm{A}})$. Now we can actually write the matrix of S :

$$
S f_{i}= \begin{cases}2^{\left(1-\frac{1}{2} a_{1}\right) / \sqrt{a_{1}}} f_{1} & \text { if } i=0, \\ f_{i+1} & \text { if } i \in\left[0, v_{n-r}\right)+r a_{n}, \\ & \text { with } r=1,2, \ldots, n, \\ f_{i+1} & \text { if } i \in\left[r\left(a_{n}+b_{n}\right), n a_{n}+r b_{n}\right), \\ & \text { with } r=1,2, \ldots, n, \\ 2^{1 / \sqrt{a_{n}}} f_{i+1} & \text { if } i \in\left(r a_{n}+v_{n-r},(r+1) a_{n}-1\right), \\ & \text { with } r=1,2, \ldots, n-1 \\ & \text { or } i \in\left(v_{n-1}, a_{n}-1\right), \\ & \text { if } i \in\left(n a_{n}+r b_{n},(r+1)\left(a_{n}+b_{n}\right)-1\right) \\ 2^{1 / \sqrt{b_{n}}} f_{i+1} & \text { with } r=0,1, \ldots, n-1, \\ & \text { if } i=r a_{n}+v_{n-r}, \\ \frac{a_{n-r}}{r}\left(\varepsilon_{1} f_{i+1}-\varepsilon_{2} f_{v_{n-r}+1}\right) & \text { with } r=1,2, \ldots, n, \\ \text { where } & \\ \varepsilon_{2}=2^{\left(1+v_{n-r}-\frac{1}{2} a_{n-r+1}\right) / \sqrt{a_{n-r+1}}} & \\ \varepsilon_{1}=2^{\left(1+v_{n-r}-\frac{1}{2} a_{n}\right) / \sqrt{a_{n}}} & \text { if } r<n \text { and } \\ \varepsilon_{1}=2^{\left(1+n a_{n}-\frac{1}{2} b_{n}\right) / \sqrt{b_{n}}} & \text { if } r=n, \\ 2^{\left(1-\frac{1}{2} a_{n}\right) / \sqrt{a_{n}}}\left[f_{0}+\frac{(r+1) f_{i+1}}{a_{n-r-1}}\right] & \text { if } i=(r+1) a_{n}-1 \\ & \text { with } r=0,1, \ldots, n-1, \\ \varepsilon_{1} f_{i+1}-b_{n} \varepsilon_{2} f_{i+1-b_{n}} & \text { if } i=n a_{n}+r b_{n} \\ \text { where } & \text { with } r=1,2, \ldots, n, \\ \varepsilon_{2}=2^{\left(1+n a_{n}-\frac{1}{2} b_{n}\right) / \sqrt{b_{n}}} & \\ \varepsilon_{1}=2^{\left(1+n a_{n}-\frac{1}{2} b_{n}\right) / \sqrt{b_{n}}} & \text { if } r<n, \text { and } \\ \varepsilon_{1}=2^{\left(v_{n}+1-\frac{1}{2} a_{n+1}\right) / \sqrt{a_{n+1}}} & \text { if } r=n, \\ 2^{-\left((r+1) a_{n}+\frac{1}{2} b_{n}-1\right) / \sqrt{b_{n}}} & \text { if } i=(r+1)\left(a_{n}+b_{n}\right)-1 \\ \cdot\left[\sum_{j=0}^{r} b_{n}^{j} f_{i-j b_{n}+1}\right. & \\ +b_{n}^{r+1}\left(f_{0}+\frac{\left.\left.(r+1) f_{(r+1) a_{n}}^{a_{n-r-1}}\right)\right]}{}\right. & \text { with } r=0,1, \ldots, n-1 .\end{cases}
$$

Inspecting the matrix line by line we observe that, assuming $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are increasing sufficiently rapidly, it follows that $\|S\| \leqslant 2$. Again by inspecting each line of the matrix, we deduce that if f_{j}^{*} is the j-th coordinate functional on ℓ_{1}, $j \geqslant 0$, it follows that $\lim _{i \rightarrow \infty} f_{j}^{*}\left(S\left(f_{i}\right)\right)=0$. In other words, the rows of the matrix converge to zero. Therefore S is the adjoint of a linear bounded operator on c_{0}.

Theorem 3.1. S has a non-trivial closed invariant subspace.

We shall show that S has an invariant subspace by producing a vector x_{∞} such that the linear span of the orbit of x_{∞} stays away from e_{0}, hence its closure is a non-trivial S-invariant subspace.

We will introduce the following notations.
First we choose two sequences of positive integers $\left(m_{i}\right)$ and $\left(r_{i}\right)$ as follows. Let $m_{0} \geqslant 2$ be arbitrary, put $r_{0}=1$. Once m_{i} and r_{i} are defined, choose $r_{i+1} \in \mathbb{N}$ so that

$$
\begin{equation*}
r_{i+1} \in\left[a_{m_{i}-1} \cdot \max _{\ell \leqslant v_{m_{i}-1}}\left\|\hat{e}_{\ell}\right\|, 1+a_{m_{i}-1} \cdot \max _{\ell \leqslant v_{m_{i}-1}}\left\|\hat{e}_{\ell}\right\|\right] \tag{4}
\end{equation*}
$$

and let

$$
\begin{equation*}
m_{i+1}=m_{i}+r_{i+1} \tag{5}
\end{equation*}
$$

Define an increasing sequence $\left(j_{i}\right)$ of positive integers inductively: pick any

$$
\begin{equation*}
j_{0} \in\left[r_{0} a_{m_{0}}, r_{0} a_{m_{0}}+v_{m_{0}-r_{0}}\right] \tag{6}
\end{equation*}
$$

and once j_{i} is defined, put

$$
\begin{equation*}
j_{i+1}=j_{i}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i+1}} \tag{7}
\end{equation*}
$$

Finally, for each $i \geqslant 0$ define

$$
\begin{align*}
& \text { (8) } p_{i}=\prod_{k=0}^{i} b_{m_{k}}^{-r_{k}} \tag{8}\\
& \text { (9) } z_{i}=f_{j_{i}+r_{i} b_{m_{i}}}+b_{m_{i}} f_{j_{i}+\left(r_{i}-1\right) b_{m_{i}}}+\cdots+b_{m_{i}}^{r_{i}-1} f_{j_{i}+b_{m_{i}}}+\frac{r_{i+1} f_{j_{i+1}}}{a_{m_{i}}}, \\
& \text { (10) } x_{i}=p_{i-1} \hat{e}_{j_{i}} .
\end{align*}
$$

We note the following easy-to-prove properties for our choices.
Proposition 3.2. For each $i \geqslant 0$ the following statements hold:
(a) $j_{i} \in\left[r_{i} a_{m_{i}}, r_{i} a_{m_{i}}+v_{m_{i}-r_{i}}\right]$;
(b) $x_{i+1}=x_{i}+p_{i} z_{i}$, and thus $x_{i}=\hat{e}_{j_{0}}+\sum_{k=0}^{i-1} p_{k} z_{k}$;
(c) if i and $i+\ell$ both belong to $\left[r a_{n}, r a_{n}+v_{n-r}\right]$ or if they both belong to $\left[r\left(a_{n}+b_{n}\right), n a_{n}+r b_{n}\right]$, then $S^{\ell} f_{i}=f_{i+\ell}$;
(d) if $\ell<m_{i} a_{m_{i}}-j_{i}$, then min supp $S^{\ell} z_{k} \geqslant j_{i}+b_{m_{i}}$ whenever $k \geqslant i$.

Proof. (a) The proof is by induction. For $i=0$ the required inclusion follows from the choice of j_{0}, and if this condition holds for j_{i}, then

$$
\begin{aligned}
j_{i+1} & =j_{i}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i+1}} \\
& \in\left[r_{i} a_{m_{i}}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i+1}}, r_{i} a_{m_{i}}+v_{m_{i}-r_{i}}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i+1}}\right] \\
& \subseteq\left[r_{i+1} a_{m_{i+1}}, r_{i+1} a_{m_{i+1}}+m_{i}\left(a_{m_{i}}+b_{m_{i}}\right)\right]=\left[r_{i+1} a_{m_{i+1}}, r_{i+1} a_{m_{i+1}}+v_{m_{i}}\right]
\end{aligned}
$$

(b) First note that by using ($\widehat{\mathrm{D}})$ we obtain for a $i \in\left[r\left(a_{n}+b_{n}\right), n a_{n}+r b_{n}\right]$, with $1 \leqslant r \leqslant n$ in \mathbb{N}, that

$$
\begin{align*}
\hat{e}_{i} & =b_{n} \hat{e}_{i-b_{n}}+f_{i} \tag{11}\\
& =b_{n}^{2} \hat{e}_{i-2 b_{n}}+b_{n} f_{i-b_{n}}+f_{i} \\
& \vdots \\
& =b_{n}^{r} \hat{e}_{i-r b_{n}}+b_{n}^{r-1} f_{i-(r-1) b_{n}}+\ldots+b_{n} f_{i-b_{n}}+f_{i}
\end{align*}
$$

Note that $j_{i}+r_{i} b_{m_{i}} \in\left[r_{i}\left(a_{m_{i}}+b_{m_{i}}\right), m_{i} a_{m_{i}}+r_{i} b_{m_{i}}\right]$. By using first $(\widehat{\mathrm{A}})$ and then (11) we obtain

$$
\begin{aligned}
\hat{e}_{j_{i+1}} & =\hat{e}_{j_{i}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i}}} \\
& =\hat{e}_{j_{i}+r_{i} b_{m_{i}}}+\frac{r_{i+1}}{a_{m_{i}}} f_{j_{i}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i}}} \\
& =b_{m_{i}}^{r_{i}} \hat{e}_{j_{i}}+b_{m_{i}}^{r_{i}-1} f_{j_{i}+b_{m_{i}}}+\ldots+b_{m_{i}} f_{j_{i}+\left(r_{i}-1\right) b_{m_{i}}}+\frac{r_{i+1}}{a_{m_{i}}} f_{j_{i}+r_{i} b_{m_{i}}+r_{i+1} a_{m_{i}}} \\
& =b_{m_{i}}^{r_{i}} \hat{e}_{j_{i}}+z_{i} .
\end{aligned}
$$

Thus, $x_{i+1}=p_{i} \hat{e}_{j_{i+1}}=p_{i-1} \hat{e}_{j_{i}}+p_{i} z_{i}=x_{i}+p_{i} z_{i}$.
(c) If i and $i+\ell$ are both in $\left[r a_{n}, r a_{n}+v_{n-r}\right]$, it follows from $(\widehat{\mathrm{A}})$ that

$$
S^{\ell}\left(f_{i}\right)=\frac{a_{n-r}}{r} S^{\ell}\left(\hat{e}_{i}-\hat{e}_{i-r a_{n}}\right)=\frac{a_{n-r}}{r}\left(\hat{e}_{i+\ell}-\hat{e}_{i-r a_{n}+\ell}\right)=f_{i+\ell} .
$$

The second part of (c) can be deduced in a similar way using ($\widehat{\mathrm{C}})$.
(d) First note that for $k \geqslant i$ it follows that (recall that $m_{k} \geqslant m_{0} \geqslant 2$)

$$
m_{k} a_{m_{k}}-j_{k}>\left(m_{k}-r_{k}-1\right) a_{m_{k}}=\left(m_{k-1}-1\right) a_{m_{k}} \geqslant m_{k-1} a_{m_{k-1}}-j_{k-1}
$$

We can therefore assume that $k=i$. Furthermore, note that for any $1 \leqslant r \leqslant r_{i}$ it follows that

$$
r\left(a_{m_{i}}+b_{m_{i}}\right) \leqslant j_{i}+r b_{m_{i}} \leqslant j_{i}+r b_{m_{i}}+\ell \leqslant m_{i} a_{m_{i}}+r b_{m_{i}}
$$

and

$$
\begin{aligned}
r_{i+1} a_{m_{i+1}} & \leqslant j_{i+1} \leqslant j_{i+1}+\ell \leqslant j_{i+1}+m_{i} a_{m_{i}}-j_{i} \\
& =r_{i+1} a_{m_{i+1}}+r_{i} b_{m_{i}}+m_{i} a_{m_{i}} \\
& \leqslant r_{i+1} a_{m_{i+1}}+v_{m_{i}} \\
& =r_{i+1} a_{m_{i+1}}+v_{m_{i+1}-r_{i+1}} .
\end{aligned}
$$

Therefore the claim follows from the definition of z_{i}, (9) and part (c).
Notice that

$$
\left\|z_{i}\right\|=1+b_{m_{i}}+b_{m_{i}}^{2}+\cdots+b_{m_{i}}^{r_{i}-1}+\frac{r_{i+1}}{a_{m_{i}}} \leqslant m_{i} b_{m_{i}}^{r_{i}-1}+\frac{r_{i+1}}{a_{m_{i}}} .
$$

Further, since $p_{i} \leqslant \frac{1}{b_{m_{i}}^{\tau_{i}}}$, we have

$$
\left\|p_{i} z_{i}\right\| \leqslant \frac{m_{i}}{b_{m_{i}}}+\frac{r_{i+1}}{a_{m_{i}} b_{m_{i}}^{r_{i}}}
$$

The series $\sum_{i=0}^{\infty} \frac{m_{i}}{b_{m_{i}}}$ converges because $\left(b_{i}\right)$ increases sufficiently rapidly. Secondly, it follows from the definition of $\left(r_{i}\right)$ that

$$
a_{m_{i}}^{-1} r_{i+1} \leqslant a_{m_{i}}^{-1}\left[1+a_{m_{i}-1} \cdot \max _{\ell \leqslant v_{m_{i}-1}}\left\|\hat{e}_{\ell}\right\|\right] .
$$

Thus, again since $\left(b_{i}\right)$ is increasing fast enough, it follows that the series

$$
\sum_{i=0}^{\infty} \frac{r_{i+1}}{a_{m_{i}} b_{m_{i}}^{r_{i}}}
$$

converges. Therefore the $\sum_{i=0}^{\infty} p_{i} z_{i}$ converges, and the following definition is justified.
Definition 3.3. Define $x_{\infty}=\lim _{i} x_{i}=\lim _{i} p_{i-1} \hat{e}_{j_{i}}=\hat{e}_{j_{0}}+\sum_{i=0}^{\infty} p_{i} z_{i}$.

Now we can state and prove the key result for proving Theorem 3.1
Lemma 3.4. There exists a constant $C>0$ such that $\operatorname{dist}\left(y, e_{0}\right) \geqslant C$ for every i and every vector of the form $y=\sum_{j=j_{i}}^{m_{i} a_{m_{i}}} \gamma_{j} \hat{e}_{j}$.

Proof. Let $C=\inf \left\{\operatorname{dist}\left(y, e_{0}\right) \mid y=\sum_{j=j_{0}}^{m_{0} a_{m_{0}}} \gamma_{j} \hat{e}_{j}\right\}$. Since the infimum is taken over a finite-dimensional set, it must be attained at some y_{0}. However since all \hat{e}_{j} are linear independent, it follows that $C=\operatorname{dist}\left(y_{0}, e_{0}\right)>0$.

We shall prove the statement of the lemma by induction on i. The way we defined C guarantees that the base of the induction holds. Suppose $y=\sum_{j=j_{i}}^{m_{i} a_{m_{i}}} \gamma_{j} \hat{e}_{j}$. Write $y=y_{1}+y_{2}+y_{3}$, where

$$
y_{1}=\sum_{j=j_{i}}^{r_{i} a_{m_{i}}+v_{m_{i-1}}} \gamma_{j} \hat{e}_{j}, \quad y_{2}=\sum_{r=r_{i}+1}^{m_{i}} \sum_{j=r a_{m_{i}}}^{r a_{m_{i}}+v_{m_{i}}-r} \gamma_{j} \hat{e}_{j}, \quad \text { and } \quad y_{3}=\sum_{r=r_{i}}^{m_{i}-1} \sum_{j=r a_{m_{i}}+v_{m_{i}-r}+1}^{(r+1) a_{m_{i}}-1} \gamma_{j} \hat{e}_{j} .
$$

Notice that by ($\widehat{\mathrm{B}}$)

$$
y_{3}=\sum_{r=r_{i}}^{m_{i}-1} \sum_{j=r a_{m_{i}}+v_{m_{i}-r}+1}^{(r+1) a_{m_{i}}-1} \gamma_{j} 2^{-\left(r+\frac{1}{2}-j\right) / \sqrt{a_{m_{i}}}} f_{j}
$$

so that $\operatorname{supp} y_{3} \subseteq \bigcup_{r=r_{i}}^{m_{i}-1}\left(r a_{m_{i}}+v_{m_{i}-r},(r+1) a_{m_{i}}\right)$. Furthermore, using $(\widehat{\mathrm{A}})$, we write $y_{2}=y_{2}^{\prime}+y_{2}^{\prime \prime}$ where

$$
\begin{gathered}
y_{2}^{\prime}=\sum_{r=r_{i}+1}^{m_{i}} \sum_{j=r a_{m_{i}}}^{r a_{m_{i}}+v_{m_{i}-r}} \gamma_{j} \hat{e}_{j-r a_{m_{i}}}=\sum_{r=r_{i}+1}^{m_{i}} \sum_{j=0}^{v_{m_{i}-r}} \gamma_{j+r a_{m_{i}}} \hat{e}_{j} \\
\text { and } y_{2}^{\prime \prime}=\sum_{r=r_{i}+1}^{m_{i}} \sum_{j=r a_{m_{i}}}^{r a_{m_{i}}+v_{m_{i}-r}} \frac{\gamma_{j} r}{a_{m_{i}-r}} f_{j} .
\end{gathered}
$$

Therefore,

$$
\operatorname{supp}\left(y_{1}+y_{2}\right) \subseteq\left[0, r_{i} a_{m_{i}}+v_{m_{i-1}}\right] \cup \bigcup_{r=r_{i}+1}^{m_{i}}\left[r a_{m_{i}}, r a_{m_{i}}+v_{m_{i}-r_{i}}\right]
$$

One observes that the vectors $y_{1}+y_{2}$ and y_{3} have disjoint supports; it follows that $\operatorname{dist}\left(y, e_{0}\right) \geqslant \operatorname{dist}\left(y_{1}+y_{2}, e_{0}\right)$.

Furthermore,

$$
\left\|y_{2}^{\prime}\right\|=\left\|\sum_{r=r_{i}+1}^{m_{i}} \sum_{j=r a_{m_{i}}}^{r a_{m_{i}}+v_{m_{i}-r}} \gamma_{j} \hat{e}_{j-r a_{m_{i}}}\right\| \leqslant \sum_{r=r_{i}+1}^{m_{i}} \sum_{j=r a_{m_{i}}}^{r a_{m_{i}}+v_{m_{i}-r}}\left|\gamma_{j}\right| \cdot \max _{k \leqslant v_{m_{i-1}-1}}\left\|\hat{e}_{k}\right\|
$$

By choice of $\left(r_{i}\right)$ (4), we have $\max _{k \leqslant v_{m_{i-1}-1}}\left\|\hat{e}_{k}\right\| \leqslant \frac{r_{i}}{a_{m_{i}-r_{i}-1}} \leqslant \frac{r}{a_{m_{i}-r}}$ when $r_{i}<r \leqslant m_{i}$. This yields

$$
\left\|y_{2}^{\prime}\right\| \leqslant\left\|\sum_{r=r_{i}+1}^{m_{i}} \sum_{j=r a_{m_{i}}}^{r a_{m_{i}}+v_{m_{i}-r}} \frac{\gamma_{j} r}{a_{m_{i}-r}} f_{j}\right\|=\left\|y_{2}^{\prime \prime}\right\|
$$

Since the support of $y_{2}^{\prime \prime}$ is disjoint from that of $y_{1}+y_{2}^{\prime}$ and doesn't contain 0 , we have

$$
\begin{aligned}
\operatorname{dist}\left(y_{1}, e_{0}\right) & \leqslant \operatorname{dist}\left(y_{1}+y_{2}^{\prime}, e_{0}\right)+\left\|y_{2}^{\prime}\right\| \\
& =\operatorname{dist}\left(y_{1}+y_{2}^{\prime}+y_{2}^{\prime \prime}, e_{0}\right)-\left\|y_{2}^{\prime \prime}\right\|+\left\|y_{2}^{\prime}\right\| \\
& \leqslant \operatorname{dist}\left(y_{1}+y_{2}, e_{0}\right) \leqslant \operatorname{dist}\left(y, e_{0}\right)
\end{aligned}
$$

It is left to show that $\operatorname{dist}\left(y_{1}, e_{0}\right) \geqslant C$. Since $j_{i} \geqslant r_{i} a_{m_{i}}$, it follows from ($\left.\widehat{\mathrm{A}}\right)$ that $y_{1}=y_{1}^{\prime}+y_{1}^{\prime \prime}$ where

$$
y_{1}^{\prime}=\sum_{j=j_{i}}^{r_{i} a_{m_{i}}+v_{m_{i-1}}} \gamma_{j} \hat{e}_{j-r_{i} a_{m_{i}}} \quad \text { and } \quad y_{1}^{\prime \prime}=\sum_{j=j_{i}}^{r_{i} a_{m_{i}}+v_{m_{i-1}}} \frac{\gamma_{j} r}{a_{m_{i}-r_{i}}} f_{j}
$$

Since $j_{i}=j_{i-1}+r_{i-1} b_{m_{i-1}}+r_{i} a_{m_{i}}$, we have $y_{1}^{\prime}=\sum_{j=j_{i-1}+r_{i-1} b_{m_{i-1}}}^{v_{m_{i-1}}} \beta_{j} \hat{e}_{j}$, where $\beta_{j}=\gamma_{j+r_{i} a_{m_{i}}}$. In particular this means that $\operatorname{supp} y_{1}^{\prime} \subseteq\left[0, v_{m_{i-1}}\right]$, while min supp $y_{1}^{\prime \prime}$ $\geqslant j_{i} \geqslant r_{i} a_{m_{i}}$. Thus, the supports are disjoint, which yields $\operatorname{dist}\left(y_{1}, e_{0}\right) \geqslant \operatorname{dist}\left(y_{1}^{\prime}, e_{0}\right)$.

Split the index set of y_{1}^{\prime} into two disjoint subsets: let

$$
\begin{aligned}
& A=\left[j_{i-1}+r_{i-1} b_{m_{i-1}}, v_{m_{i-1}}\right] \cap \bigcup_{r=r_{i-1}}^{m_{i-1}}\left(m_{i-1} a_{m_{i-1}}+r b_{m_{i-1}},(r+1)\left(a_{m_{i-1}}+b_{m_{i-1}}\right)\right), \\
& B=\left[j_{i-1}+r_{i-1} b_{m_{i-1}}, v_{m_{i-1}}\right] \cap \bigcup_{r=r_{i-1}}^{m_{i-1}}\left[r\left(a_{m_{i-1}}+b_{m_{i-1}}\right), m_{i-1} a_{m_{i-1}}+r b_{m_{i-1}}\right] .
\end{aligned}
$$

Write $y_{1}^{\prime}=z_{a}+z_{b}$ where $z_{a}=\sum_{j \in A} \beta_{j} \hat{e}_{j}$ and $z_{b}=\sum_{j \in B} \beta_{j} \hat{e}_{j}$. For $j \in A$ we have $\hat{e}_{j}=2^{\left((r+1 / 2) b_{m_{i-1}}-j\right) / \sqrt{b_{m_{i-1}}}} f_{j}$, so that $\operatorname{supp} z_{a} \subseteq A$. In view of (11) we can write $z_{b}=z_{b}^{\prime}+z_{b}^{\prime \prime}$, where

$$
z_{b}^{\prime}=\sum_{j \in B} \sum_{k=0}^{r-1} \beta_{j} b_{m_{i-1}}^{k} f_{j-k b_{m_{i-1}}} \quad \text { and } \quad z_{b}^{\prime \prime}=\sum_{j \in B} \beta_{j} b_{m_{i-1}}^{r} \hat{e}_{j-r b_{m_{i-1}}}
$$

We first note that $\operatorname{supp} z_{b}^{\prime} \subseteq B$ and determine the support of $z_{b}^{\prime \prime}$ as follows. If $j \in B$, then $j \geqslant j_{i-1}+r_{i-1} b_{m_{i-1}}$ and $j \in\left[r\left(a_{m_{i-1}}+b_{m_{i-1}}\right), m_{i-1} a_{m_{i-1}}+r b_{m_{i-1}}\right]$ for some $r \in\left[r_{i-1}, m_{i-1}\right]$. If $r=r_{i-1}$, then $j-r b_{m_{i-1}} \geqslant j_{i-1}$. If $r>r_{i-1}$, then $j-r b_{m_{i-1}} \geqslant r a_{m_{i-1}}>r_{i-1} a_{m_{i-1}}+v_{m_{i-2}} \geqslant j_{i-1}$ by (77). We see that $z_{b}^{\prime \prime}$ is a linear combination of \hat{e}_{j} 's with $j_{i-1} \leqslant j \leqslant m_{i-1} a_{m_{i-1}}$. Hence its support is contained in $\left[0, m_{i-1} a_{m_{i-1}}\right]$ and, therefore, is disjoint from that of z_{a} and z_{b}^{\prime}. It follows that $\operatorname{dist}\left(y, e_{0}\right) \geqslant \operatorname{dist}\left(y_{1}^{\prime}, e_{0}\right) \geqslant \operatorname{dist}\left(z_{b}^{\prime \prime}, e_{0}\right)$. Finally, $\operatorname{dist}\left(z_{b}^{\prime \prime}, e_{0}\right) \geqslant C$ by the induction hypothesis.

Proof of Theorem 3.1. We will prove that the linear span of the orbit of x_{∞} under S is at least distance C from e_{0}, hence its closure is a non-trivial invariant subspace for S. Consider a linear combination $\sum_{\ell=0}^{N} \alpha_{\ell} S^{\ell} x_{\infty}$. It follows from (7) that the sequence ($m_{i} a_{m_{i}}-j_{i}$) is unbounded, so that $N<m_{i} a_{m_{i}}-j_{i}$ for some $i \geqslant 0$. Recall that $x_{\infty}=x_{i}+\sum_{k=i}^{\infty} p_{k} z_{k}$; then

$$
\sum_{\ell=0}^{N} \alpha_{\ell} S^{\ell} x_{\infty}=\sum_{s=0}^{N} \alpha_{\ell} S^{\ell} x_{i}+\sum_{\ell=0}^{N} \sum_{k=i}^{\infty} \alpha_{\ell} S^{\ell}\left(p_{k} z_{k}\right)
$$

Notice that the two sums have disjoint supports, and the support of the second one does not contain 0 . Indeed, since $x_{i}=p_{i-1} \hat{e}_{j_{i}}$, then $S^{\ell} x_{i}=p_{i-1} \hat{e}_{j_{i}+\ell}$ for $\ell=1, \ldots, N$. Furthermore,

$$
j_{i} \leqslant j_{i}+\ell \leqslant j_{i}+N<j_{i}+\left(m_{i} a_{m_{i}}-j_{i}\right)=m_{i} a_{m_{i}}
$$

It follows that $\sum_{\ell=0}^{N} S^{\ell} x_{i}$ is a linear combination of \hat{e}_{j} 's with $j_{i} \leqslant j \leqslant m_{i} a_{m_{i}}$. In particular, its support is contained in $\left[0, m_{i} a_{m_{i}}\right]$. On the other hand, Proposition 3.2 (d) implies that

$$
\min \operatorname{supp}\left(\sum_{\ell=0}^{N} \sum_{k=i}^{\infty} S^{\ell}\left(p_{k} z_{k}\right)\right) \geqslant j_{i}+b_{m_{i}}
$$

Therefore, by Lemma 3.4

$$
\operatorname{dist}\left(\sum_{\ell=0}^{N} S^{\ell} x_{\infty}, e_{0}\right) \geqslant \operatorname{dist}\left(\sum_{\ell=0}^{N} S^{\ell} x_{i}, e_{0}\right) \geqslant C .
$$

References

[AAB98] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw. The invariant subspace problem: Some recent advances. Rend. Inst. Mat. Univ. Trieste, XXIX Supplemento:3-79, 1998. MR 2000f:47062
[Enf76] P. Enflo. On the invariant subspace problem in Banach spaces. In Séminaire MaureySchwartz (1975-1976) Espaces L^{p}, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14-15, pages 1-7. Centre Math., École Polytech., Palaiseau, 1976. MR 57:13530
[Enf87] P. Enflo. On the invariant subspace problem in Banach spaces. Acta Math., 158: 213313, 1987. MR 88j:47006
[Read85] C. J. Read. A solution to the invariant subspace problem on the space l_{1}. Bull. London Math. Soc., 17(4):305-317, 1985. MR 87e:47013
[Read86] C. J. Read. A short proof concerning the invariant subspace problem. J. London Math. Soc. (2), 34(2):335-348, 1986. MR 87m:47020
[RR73] H. Radjavi and P. Rosenthal. Invariant subspaces. Springer-Verlag, New York, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77. MR 51:3924
[Sz-NF68] B. Sz.-Nagy and C. Foiaş. Vecteurs cycliques et quasi-affinité. Studia Math. 31: 35-42, 1968. MR 38:5050

Department of Mathematics, Texas A\&M University, College Station, Texas 77843
E-mail address: schlump@math.tamu.edu
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

E-mail address: vtroitsky@math.ualberta.ca

[^0]: Received by the editors November 30, 2001.
 2000 Mathematics Subject Classification. Primary 47A15; Secondary 47B37.
 The first author was supported by the NSF. Most of the work on the paper was done during the Workshop on linear analysis and probability at Texas A\&M University, College Station.

