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ABSTRACT. We show that C. J. Read’s example of an operator T on £; which
does not have any non-trivial invariant subspaces is not the adjoint of an
operator on a predual of ¢;. Furthermore, we present a bounded diagonal
operator D such that even though D~! is unbounded, the operator D~'T'D
is a bounded operator on ¢; with invariant subspaces, and is adjoint to an
operator on cg.

1. INTRODUCTION

In this note we deal with the Invariant Subspace Problem, the problem of the
existence of a closed non-trivial invariant subspace for a given bounded operator
on a Banach space. The problem was solved in the positive for certain classes of
operators (see [RR73|, [AABIS]| for details), however in the mid-seventies P. Enflo
[Enf76l [Enf87] constructed an example of a continuous operator on a Banach space
with no invariant subspaces, thus answering the Invariant Subspace Problem for
general Banach spaces in the negative. In [Read85| C. J. Read presented an example
of a bounded operator T on ¢; with no invariant subspace. Recently V. Lomonosov
suggested that every adjoint operator has an invariant subspace. In the first part
of this note we show that the Read operator T is not an adjoint of any bounded
operator defined on some predual of ¢;.

Suppose that A has a non-trivial invariant (or a hyperinvariant) subspace, and
suppose that B is similar to A, that is, B = CAC~! for some invertible operator C.
Clearly, B also has a non-trivial invariant (respectively hyperinvariant) subspace.
Moreover, it is known (see [RR73] Theorem 6.19]) that if A has a hyperinvariant
subspace and B is quasi-similar to A (that is, CA = BC and AD = DB, where C
and D are two bounded one-to-one operators with dense range), then B also has
a hyperinvariant subspace. To our knowledge it is still unknown whether or not
A has a non-trivial invariant subspace if and only if B has a non-trivial invariant
subspace, assuming A and B are quasi-similar.

Recall (cf. [Sz-NF68]) that an operator A is said to be a a quasi-affine transform
of B if CA = BC, for some injective operator C' with dense range. In the second
part of this paper we construct an injective diagonal operator D on £; such that even
though D! is unbounded, the operator S = D~!TD (T being Read’s operator)
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is bounded and has an invariant subspace. Thus, we show that a quasi-affine
transform of an operator with no non-trivial invariant subspace might have a non-
trivial invariant subspace. Furthermore, S is the adjoint of a bounded operator on
Co.

Although we prove our statement for a specific choice of D, it is true for a much
more general choice, and it seems to be true for any diagonal operator D that
S = D7'TD has a non-trivial invariant subspace, whenever S is an adjoint of an
operator on ¢g. More generally, the following question is of interest in view of the
above-mentioned conjecture by V. Lomonosov.

Question. Does every quasi-affine transform of Read’s operator, which is an ad-
joint of an operator on ¢y, have a non-trivial invariant subspace?

We introduce the following notations. Following [Read86] we denote by F' the
vector space of all eventually vanishing scalar sequences, and by (f;) the standard
unit vector basis of F. For an © =Y a;f; € F, we define the support of x to be the
set {i € N: a; # 0} and denote it by supp(z). The linear span of some subset A of
a vector space is denoted by lin A.

2. READ’S OPERATOR IS NOT ADJOINT

We begin by reminding the reader of the construction of the operator T in
[Read85| [Read86]. It depends on a strictly increasing sequence d= (a1, by, az, be, .. .)
of positive integers which has to be chosen to be sufficiently rapidly increasing. Also
let ap =1, vo = 0, and v,, = n(a, + by,) for n > 1.

Read’s operator T is defined by prescribing the orbit (e;)i>o of the first basis
element fj.

Definition 2.1. There is a unique sequence (¢;)°, C F with the following prop-
erties:

(0) fo = eo;
(A) if integers 7, n, and ¢ satisfy 0 < r < n, ¢ € [0,v,—r| + ra,, we have
fi = anfr(ei - eifran);

(B) if integers r, m, and ¢ satisfy 1 < r < m, i € (ray + vp—r, (r + D)ay),

(respectively, 1 < n, i € (v,—1,as)), then

f; = 2h=0/Vare,  where h = (r+ %)an (respectively, h = %an);
(C) if integers r, n, and i satisfy 1 < r < n, i € [r(a, + by), na, + rby,], then
Ji=ei—bneip,;

(D) if integers r, n, and ¢ satisfy 0 < r < n, i € (nay + rby, (r + 1)(an + by)),
then 4
f; = 2=0/Vhne, where h = (r+ %)bn

Indeed, since f; = Zj‘:o Aije; for each ¢ > 0 and Ay is always nonzero, this
linear relation is invertible. Further,
linf{e; |i=1,...,n} =lin{f; |i=1,...,n} for every n > 0.

In particular, all e; are linearly independent and also span F'. Then Read defines
T: F — F to be the unique linear map such that Te; = e;11. Read proves that T’
can be extended to a bounded operator on ¢; with no invariant subspaces provided
d increases sufficiently rapidly.
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Proposition 2.2. T is not the adjoint of an operator S : X — X where X is a
Banach space whose dual is isometric to (1.

Proof. Assume that our claim is not true. Then there is a local convex topology 7
on ¢1 so that

(a) 7 is weaker than the norm topology of /1;

(b) B(¥1) is sequentially compact with respect to 7;

(¢) if (z,,) C ¢1 converges with respect to 7 to z, then liminf, o ||zn| = ||z|;

(d) T is continuous with respect to 7.
Note that with respect to any predual X of ¢; the weak* topology has properties
(a)-(d). Let s € N be fixed, and n > 5. Then fi,_sa, = as(e(m—s)a, — €0) by
(A) above. It follows that TVt f,_o . = as(€(n—s)an+v.+1 — €v,+1). Further,
it follows from (B) that e(,_g)q, +v,+1 equals 2(1+v5’%a")/\/"_"f(n_s)an_ws_ﬂ and
converges to zero in norm (and, hence, in 7) as n — oco. Therefore

(1) Z__l}g)l TUS+1f(n—S)CLn = —QsCy,+1 = T”S“‘l(—aseo)

Notice that T?s*! is 7-continuous and one-to-one because its null space is T-
invariant. By sequential compactness of B({1), the sequence f(,,_s),, must have a
T-convergent subsequence. Then, by (), the limit point has to be —asep. Since
that argument applies to any subsequence, we deduce that

(2) Z—L;hg f(n—s)an = —asC€o-
Since || fin—s)ya, |l = 1 for each n and s while |laseq|| = as > 1, this contradicts

O

Remark. The statement of the theorem remains valid if we consider an equivalent
norm on ¢1. Indeed, suppose % |-[| < ||| < KJ|-||. Then || f(n—s)a, || < K for each n
and s, but since lim,_,o a, = 00, we can choose a, in (@) so that |Jaseo|| > K.

3. AN ADJOINT OPERATOR WITH INVARIANT SUBSPACES
OF THE FORM D~TD

Define a sequence of positive reals (d;) as follows:

3) g — % if ray, <i<ram + vm_r for some 0 < r < m,
’ 1 otherwise.

Let D be the diagonal operator with diagonal (d;), that is, D f; = d, f; for every
i. Define S = D™'TD. Clearly, S is defined on F. Once we write S in matrix
form it will be clear that it is bounded on F' and, therefore, can be extended to ¢;.
Let é; = D le;, in particular &g = eg. Then Sé; = D~'Te; = é;,1, so that the
sequence (é;) is the orbit of eg under S.

Next, we examine Definition 2Tl to represent the f;’s in terms of é;’s.

(0) fo=eo=éo;

(A) if 4 satisfies ¢ € [0, v,—p] + ray, for some 0 < r < n, then

fi=di D7 fi = diD™ M an—r(ei — €i—ra,)) = (65 — €iray, );

(E) if integers r, m, and ¢ satisfy 1 < r < m, i € (ray, + vp_r, (r + Day),
(respectively, 1 < n, i € (vp—1,as)), then

fi=d; D7V f; = 20h=D/Vang,  where h = (r+ %)an (respectively, h = %an);
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(C) if integers r, n, and i satisfy 1 < r < n, i € [r(an + bn), na, + rby], then
-1 ~ ~
fi=diD™ fi =& — bpéi_yp,;

(D) if integers 7, n, and i satisfy 0 < 7 < n, i € (nan + by, (r + 1)(an + bn)),
then

fi=d; D7 f; = Q(h_i)/‘/b_"éi, where h = (r + %)bn

We see that it differs from Definition B1] only in case (K) Now we can actually
write the matrix of S:

9(1-ba)/va f, ifi=0,
fix1 ifi € [0,v—r) +Tan,
withr =1,2,...,n,
fix1 if i € [r(an + by), nay, + rby),
with r =1,2,...,n,
U/ Van if i € (ran + vp_r, (r +Da, — 1),
withr=1,2,....,n—1
ori € (vp—1,an — 1),
2L/ Von f, if i € (nan+1bp,(r+1)(an+by)—1)
with r=0,1,...,n—1,
=t (g1 fiv1—€2fv,_,41) if i =rap, +vp_p,
where withr =1,2,...,n,

Sf . 62:2(1+vn71'7%an77'+1)/\/anf'r«{»l
;=

£1= 9(I+vp—r—gan)/v/an
£1= 9(1+nan—5bn)/von
2(17%%)/@”0 + (r+1) fits ]

if r <n and
ifr=mn,
ifi=(r+1a,—1

An—r—1

with r=0,1,...,n—1,

51fi+1 — bn52fi+1—bn if i = na,, + rb,

where

62:2(1+nanf%bn)/\/ﬂ
£ = 9(1+nan—5bn)/Vbn

e = 20Wn+1-}ani1)/ V@it

9—((r+Dan+3bn—1)/vbs

: [Z;=o Ol fimjbn-+1

UL (fo + e )

an—r—1

with r =1,2,...,n,

if r <n, and
if r=mn,
ifi=r+1)(an+bn)—1

withr=0,1,...,n—1.

Inspecting the matrix line by line we observe that, assuming (a,,) and (b,) are
increasing sufficiently rapidly, it follows that ||S|| < 2. Again by inspecting each
line of the matrix, we deduce that if fF is the j-th coordinate functional on /1,
J =0, it follows that lim; .o f;(S(fi)) = 0. In other words, the rows of the matrix
converge to zero. Therefore S is the adjoint of a linear bounded operator on cg.

Theorem 3.1. S has a non-trivial closed invariant subspace.



ON QUASI-AFFINE TRANSFORMS OF READ’S OPERATOR 1409

We shall show that S has an invariant subspace by producing a vector z., such
that the linear span of the orbit of x,, stays away from eg, hence its closure is a
non-trivial S-invariant subspace.

We will introduce the following notations.

First we choose two sequences of positive integers (m;) and (r;) as follows. Let
mg = 2 be arbitrary, put 1o = 1. Once m; and r; are defined, choose 7;+1 € N so
that

(4) ritt € lam -1, max &l 1+ am—1 - amax flé]]
and let
(5) Mit1 = M + Tij1.

Define an increasing sequence (j;) of positive integers inductively: pick any
(6) Jo € [r0Gmg» T0Gmg + Vmg—ros

and once j; is defined, put

(7) Ji41 = Ji + Tibm, + Tig1m, -

Finally, for each ¢ > 0 define

3
® po= [[bm
k=0

o Ti+1fj7:
(9) 2z = fjﬂrnbm,; + bmifj11+(7'i—1)b1ni +eeet bTr.;LL 1fji+bmi + T-Ha

mg
(10) Tr; = pi—léj,;-
We note the following easy-to-prove properties for our choices.

Proposition 3.2. For each i > 0 the following statements hold:

(a) j’i E [riammriami + 'Um,;—v",',]; i1

(b) @1 = @ + pizi, and thus x; = €0 + > p_o Pk2k;

(¢) if i and i + £ both belong to [ran,ra, + vp—.| or if they both belong to

[r(an + bn),na, + by, then S'f; = five;
(d) if £ < miam, — ji, then minsupp S*zy > j; + by, whenever k > i.

Proof. (a) The proof is by induction. For i = 0 the required inclusion follows from
the choice of jg, and if this condition holds for j;, then

Jiv1 = Ji + Tibm, + Tig1Gm,,,
S [Tiami + rlme + ri+1ami+1 ) Tiami + vmifTi + r’meL + ri+1ami+1]
- [Ti+1ami+l7ri+1a/mi+l + mi(ami + bm1)] = [ri+1ami+1 y Tit+10m, 4y + Umi]'

-~

(b) First note that by using (D) we obtain for a i € [r(ay, + by), nay, +1rby,], with
1 <r <nin N, that

(11) €; =bnéi_p, + fi
=b2¢;_ap, +bnfip, + fi

=00 6i—rb, + U0 fisrm1ypn + oo+ Onficp, + fio
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Note that j; + rbm, € [ri(@m; + bm,), Mi@m; + 7:bm,]. By using first (K) and
then ([IIl) we obtain

€jit1 = Cjitribm, +rit1am,

o Tit+1
= €jitribm, + w

fji +7ibm; triv1am;

myg
N L Tit+1
= b:r;, €j; + b:ﬁ, lfjierm,; +ot bmi fji+(7“7:—1)bmi + a’b—fjiJrTibmﬂrTHlam,;
mi
= b:ﬁ,éjz + z;.
Thus, zi41 = pi€j, ., = Pi—1€j, + Pizi = Ti + Piz;.
(c) If i and i + £ are both in [ray, ra, + v,—.], it follows from (A) that

Uy . n_r . .
SH(f) = %Sé(ei —&i—ra,) = nr “(8ite — Ei—ran+e) = fite-

~

The second part of (c¢) can be deduced in a similar way using (C).
(d) First note that for k > i it follows that (recall that my > mg > 2)

MG, — Jk > (Mg — 7% — D)am, = (Mk—1 — D)am, = Mp—1Gm,_, — Jjr—1-

We can therefore assume that k& = i. Furthermore, note that for any 1 < r < r; it
follows that

and
Tit10mir < Jit1 < Jip1 + 4 < Jog1 + My, —

= Ti410m, .y + Tibm; + Miam,

K Ti410myq T Umy

= Ti410m,; -+ Umig1—Tig1 -
Therefore the claim follows from the definition of z;, (@) and part (c). O

Notice that
[2i]| =14 b, + b2, + -+ b+ Tl < mbli !+ it
; ; . ; am,
Further, since p; < #, we have
Ipizall < 5=+ o

The series >~ 1:: converges because (b;) increases sufficiently rapidly. Secondly,

it follows from the definition of (r;) that

a;niriJrl < a;ﬁ[l +am;—1- <max lléell]-

SVUm;—1
Thus, again since (b;) is increasing fast enough, it follows that the series
oo
>
i=0 @ b

converges. Therefore the Z?io piz; converges, and the following definition is justi-
fied.

Definition 3.3. Define o = lim; z; = lim; p;—1€j, = ;5 + o PiZi-
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Now we can state and prove the key result for proving Theorem [311

Lemma 3.4. There exists a constant C > 0 such that dist(y,eq) > C for every i
MiAm A
and every vector of the form y =3, """ v;é;.

Proof. Let C = inf{dist(y,eo) |y = Z;io;no 'yjéj}. Since the infimum is taken
over a finite-dimensional set, it must be attained at some 9. However since all é;
are linear independent, it follows that C' = dist(yo, eg) > 0.

We shall prove the statement of the lemma by induction on i. The way we defined
C guarantees that the base of the induction holds. Suppose y = Zm’am’ €. Write

Yy =1 + y2 + y3, where

TiGm; +Vm;_ m;  TOm; TUm;—r mi—1 (r+1D)am,; -1
Y1 = E Vi€js Y2 = E E vjéj, and  y3 = E E V5€;-
J=Ji r=ri+l  j=ram, =T J=Tam; +Um;—r+1

Notice that by (B)

m;—1 (7"+1)ami_

Y3 = Z Z ’Yj2_(T+%_j)/‘/mfja

=T JETAm; +0m; —rt1

so that suppys C UT;;l(rami + Uy —r (7 + 1)am,). Furthermore, using (A), we
write yo = yb + y4 where

m;  TOm;+FVm;—r Vm;—r
g g Vi€j—ram, = § § Vitram, €
r=r;+1 J=Tam; r=r;+1 j=0

Tam; +Vm; —r

e § T e
Am;—r

r=ri+l  j=ram,

Therefore,
m;
Supp(yl + y2) c [Ovriami + UMi—l] U U [Ta’mwra’mi + vmi*ﬂ']'
r=r;+1

One observes that the vectors y1 + y2 and y3 have disjoint supports; it follows that
dist(y, eo) > dist(y1 + y2, o).

Furthermore,
TAm,; +Vm; —r Tam; +Vm; —r
=] Y Y vie]< Y % bl max e
r=ritl  j=ram, r=ritl  j=ram, SOmicas
By choice of (r;) [ ), we have o max léx] < aiﬁl < a’“ﬁ when r; <r < m,.

KVUm,;_1-1
This yields
TAm,; +Vm; —r

VT
i< Y 22 = g
mi;—nT

r=ri+l  j=ram,
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Since the support of y4 is disjoint from that of y; + y5 and doesn’t contain 0, we
have

dist(y1 + ya, o) + [lya|l

= dist(y1 +y5 + 5, €0) — w2 || + [[35l]

< dist(y1 + y2, e0) < dist(y, eo).

dist(y1,ep) <

It is left to show that dist(y1,e) = C. Since j; = riam,, it follows from (A) that
y1 = Y1 + vy where

TiGm; +Vm;_ TiQm;+Vm;_
o A "o_
Y1 = § Vi€i—riam,; and y; = § fJ
. . . . a/m, —7;
J=Ji J=Ji
Um;_q

. . . , .
Since j; = ji—1 + Ti—1bm,_, + riGm,;, we have yj = > Bj€é;, where

J=Ji—1+ri—1bm,; _,
Bj = Vitriam,- In particular this means that supp y; C [0, vy, ,], while minsupp yy’
=i 2 Tilm,. Thus, the supports are disjoint, which yields dist(y1, eo) > dist(y}, eo)-

Split the index set of ¥} into two disjoint subsets: let

m;_1

A:[jifl—’_ri*lbmi—l?vmi—l] N U (mifla’mifl +rbmi—1’(r+1)(ami—1+bmi—l))’
rT=ri—-1
mi—1

B:[ji—l_’_ri—lbmi—l?’umi—l] N U I:r(a/mi—l +bmi—1)ami—1ami—1 +rbmi—1}'
r=r;_1

Write y] = zq + 2 where z, = EjEA Bjé; and z, = EJ-EB Bjé;. For j € A we have

&; = 2T/ Dbmi 1 =3)/\/bmi 4 fj, so that supp z, C A. In view of ([Il) we can write
zp = 2p + 2y, where

r—1
I pk .
Ry = § § ﬂjbm,;_lf]*kbm,.,_1 and Zb = § Biby, i1 €i— Tbm; -

jEB k=0 jeB

We first note that suppz, C B and determine the support of z; as follows. If
j € B, then j > ji—1 +7ri—1bm, , and j € [r(ami_l + bm7 D)y Mic1am, —l—rbmi_l]
for some r € [ri_1,m;—1]. If r = r;_1, then j — rby,, , = ji—1. If r > r;_1, then
J =T, =T, > T 1Gm, | + Um,_, = ji—1 by ([@). We see that z; is a linear
combination of é;’s with j;—1 < j < my—1aym,_,. Hence its support is contained
in [0,mi—1am,_,| and, therefore, is disjoint from that of z, and z;. It follows that
dist(y, e0) > dist(y],eo) > dist(z),eo). Finally, dist(z},ep) = C by the induction
hypothesis. Il

Proof of Theorem [Tl We will prove that the linear span of the orbit of ., under
S is at least distance C from eg, hence its closure is a non-trivial invariant subspace
for S. Consider a linear combination Eévzo apS’zo. It follows from ([7) that the
sequence (M;ay,, — j;) is unbounded, so that N < m;a,,, — j; for some i > 0. Recall
that oo = 2 + Yo, Pe2k; then

ZCQS Too = ZagS T; +ZZa45 (przk)-

£=0 k=i
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Notice that the two sums have disjoint supports, and the support of the second
one does not contain 0. Indeed, since x; = p;—1€;,, then Sty = Di—1€j,4¢ for
£=1,...,N. Furthermore,

Ji <Ji + < i + N < ji + (miam, — ji) = Miam,.

It follows that Zé\]:o S*x; is a linear combination of é;’s with j; < j < mam,. In
particular, its support is contained in [0, m;a;,;]. On the other hand, Proposition
B2 (d) implies that

N
min supp (Z Z S (pk%)) 2 Ji + bm,-

oo
£=0 k=

7

Therefore, by Lemma 3.4

dist (g S, eo> > dist (g St eo> > C.
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