ON THE DIOPHANTINE EQUATION $x^2 = 4q^m - 4q^n + 1$

FLORIAN LUCA

(Communicated by David E. Rohrlich)

ABSTRACT. In this note, we find all positive integer solutions (x, q, m, n) of the diophantine equation from the title with q a prime power.

In this note, we study the diophantine equation

$$(1) x^2 = 4q^m - 4q^n + 1$$

in integer unknowns (x, q, m, n), with x > 0, $m \ge n \ge 0$, $(m, n) \ne (1, 0)$, and q a prime power. We exclude the pair (m, n) = (1, 0), because in this case equation (1) reduces to

(2)
$$q = \frac{x^2 + 3}{4}.$$

Since x is odd, we may write x = 2t + 1 for some positive integer t, and we get that equation (2) is equivalent to finding all solutions of the diophantine equation

(3)
$$q = t^2 + t + 1$$
,

where t is a positive integer and q is a prime. It is not known if equation (3) has infinitely many solutions, although there is a conjecture which asserts that equation (3) does admit infinitely many solutions.

When n = 1 and q = 2, equation (1) reduces to

$$(4) x^2 = 2^{m+2} - 7,$$

which is a famous diophantine equation due to Ramanujan and first solved by Nagell. When n=1, all solutions of equation (1) with q an odd prime have been found by Skinner in [4], and the general case in which q is an odd prime power has been settled by Mignotte and Pethő in [3]. We also recall that all the solutions of the analogous diophantine equation

$$(5) x^2 = 4q^m + 4q^n + 1$$

where found, for n = 1 and n = 2, by Tzanakis de Wolfskill in [5], and for general n, by Mao Hua Le in [2].

First of all, let us notice that we may assume that m and n are coprime if n > 0. Indeed, for if m and n are not coprime, then we may write $d := \gcd(m, n), q_1 := q^d, m_1 := m/d$, and $n_1 := n/d$, and rewrite equation (1) as

(6)
$$x^2 = 4q_1^{m_1} - 4q_1^{n_1} + 1,$$

Received by the editors September 28, 2001.

2000 Mathematics Subject Classification. Primary 11D61, 11D72.

which is an equation of the same type as equation (1), but now the new exponents m_1 and n_1 are coprime. We also notice that equation (1) has the solutions m = n, x = 1, and m = 2n, $x = 2q^n - 1$ for all $n \ge 0$. We shall refer to such solutions as *trivial*. Our main result in this note is the complete determination of all the non-trivial solutions of equation (1) with $(m, n) \ne (1, 0)$ and q a prime power.

Theorem. The only non-trivial solutions of equation (1) with q a prime power and $m > n \ge 0$ but $(m, n) \ne (1, 0)$ are

(7)
$$(x,q,m,n) = (37,7,3,0), (5,2,3,1), (11,2,5,1), (181,2,13,1), (31,3,5,1), (559,5,7,1).$$

Proof of the Theorem. We first treat the case n=0. In this case, equation (1) reduces to

(8)
$$x^2 = 4q^m - 3,$$

with $m \geq 2$. Notice that m is odd, for if m is even, then $4q^m = ((2q)^{m/2})^2$ is a perfect square, but the only perfect squares which differ by 3 are 1 and 4, which leads to x=1 and q=1, which is not a convenient solution. Now let $p\geq 3$ be any prime divisor of m. We may replace m by p and q by $q^{m/p}$ and therefore analyze the equation

(9)
$$x^2 = 4q^p - 3.$$

When p = 3, with X := q and Y := x, we get the elliptic curve

$$(10) Y^2 = 4X^3 - 3.$$

We used SIMATH to conclude that the only integer solutions of this equation are (X,Y)=(1,1) and (7,37). Thus, we get the solution (x,q,m,n)=(37,7,3,0) of equation (1). When $p \geq 5$, we rewrite equation (9) as

(11)
$$q^{p} = \frac{x^{2} + 3}{4} = \left(\frac{x + i\sqrt{3}}{2}\right) \left(\frac{x - i\sqrt{3}}{2}\right).$$

It is easy to see from (9) that q is coprime to 3, therefore the two algebraic integers appearing in the right-hand side of equation (11) are coprime in the ring of algebraic integers of $\mathbf{Q}[i\sqrt{3}]$. Since the ring of algebraic integers $\mathbf{Z}[\frac{1+i\sqrt{3}}{2}]$ of $\mathbf{Q}[i\sqrt{3}]$ is euclidian, it follows that there exist two integers a and b with $a \equiv b \pmod{2}$, and a unit ζ in $\mathbf{Z}[\frac{1+i\sqrt{3}}{2}]$, such that

$$\frac{x + i\sqrt{3}}{2} = \zeta z^p$$

where

$$z = \frac{a + i\sqrt{3}b}{2}.$$

Notice that x > 1, therefore z is not a root of unity. Since $p \ge 5$ and all the units of $\mathbf{Z}[\frac{1+i\sqrt{3}}{2}]$ are torsioned of order dividing 6, it follows that, up to a substitution, we may assume that $\zeta = 1$ in formula (12). Eliminating x from (12) we get

$$i\sqrt{3} = z^p - \overline{z}^p.$$

But $z - \overline{z} = bi\sqrt{3}$ and

$$\frac{z^p - \overline{z}^p}{z - \overline{z}} \in \mathbf{Z}.$$

Thus, it follows that $b = \pm 1$ and

$$\frac{z^p - \overline{z}^p}{z - \overline{z}} = \pm 1.$$

For any integer $k \geq 0$ let

$$(16) u_k := \frac{z^k - \overline{z}^k}{z - \overline{z}}.$$

Then $(u_k)_{k\geq 0}$ is a Lucas sequence of the first kind, and equation (15) is equivalent to $u_k=\pm 1$. However, it is well known that, in general, the kth term of a Lucas sequence has a primitive divisor. That is, for $k\neq 1, 2, 3, 6$, there exists, with a few exceptions, a prime number $P\equiv \pm 1\pmod k$ such that $P\mid u_k$. Equation (15) now tells us that u_p has no primitive divisor. The members of Lucas sequences with no primitive divisors have recently been completely classified by Bilu, Hanrot and Voutier in [1]. In particular, from the result in [1], we know that if $p\geq 5$ is a prime, then u_p has primitive divisors except for p=5, 7, 13, and a few exceptional values of z, which are listed in Table 1 in [1]. None of the exceptional Lucas terms from Table 1 in [1] leads to a value of $z\in \mathbf{Q}[i\sqrt{3}]$. Thus, there is no solution of equation (8) with x>1 and m>3. This concludes the analysis for the case n=0.

From now on, we assume that n > 0. All the solutions of equation (1) with n = 1 were found by Mignotte and Pethő in [3], and these solutions are listed in formula (7). Thus, from now on we assume that $n \ge 2$, m > n, and m and n are coprime.

We start by writing

$$(17) 4q^n - 1 = Dw^2,$$

where $D \ge 1$ is square-free. We first show that D > 3. Clearly, $D \ne 1$ because -1 is not a quadratic residue modulo 4. Assume now that D = 3. Since -1 is not a quadratic residue modulo 3, it follows that n is odd. Let p be a prime divisor of n. By writing $q_1 := q^{n/p}$, it follows that we need to investigate the equation

$$4q_1^p - 1 = 3w^2,$$

where q_1 is a prime power and $p \ge 3$ is prime. When p = 3, with the substitution $X := q_1$ and Y := w, we get the elliptic curve

$$3Y^2 = 4X^3 - 1.$$

We used SIMATH to conclude that the only integer solution of (19) is (X, Y) = (1, 1). Thus, there is no solution (q_1, w) of equation (18) for p = 3. Assume now that $p \geq 5$ and rewrite (18) as

(20)
$$q_1^p = \frac{1+3w^2}{4} = \left(\frac{1+i\sqrt{3}w}{2}\right)\left(\frac{1-i\sqrt{3}w}{2}\right).$$

We now use an argument similar to one employed above, to conclude that equation (20) implies the existence of an algebraic number $z \in \mathbf{Z}[\frac{1+i\sqrt{3}}{2}]$ such that

$$(21) q = z\overline{z}$$

and

$$\frac{1+i\sqrt{3}w}{2} = z^p.$$

Notice that w > 1 so z is not a root of unity. From equation (22) we get

(23)
$$1 = z^p + \overline{z}^p = \frac{z^{2p} - \overline{z}^{2p}}{z^p - \overline{z}^p} = \frac{u_{2p}}{u_p}.$$

The numbers u_{2p} and u_p appearing in formula (23) are the same as the ones shown in (16). Thus, from (23), we get that $u_{2p} = u_p$, which implies that u_{2p} has no primitive divisor. We again use Table 1 in [1] to conclude that the only possible case is p := 5 and $z := \frac{5+i\sqrt{3}}{2}$, but for this choice of p and z the relation $u_5 = u_{10}$ does not hold (in fact, $u_{10}/u_5 = -25$ in this case). Thus, the conclusion of this argument is that if $n \ge 2$, then D > 3.

Now let $q := p^f$, where p is a prime and $f \ge 1$. Notice that $D \equiv 3 \pmod{4}$ so that -D is the discriminant of the quadratic field $\mathbf{K} := \mathbf{Q}[i\sqrt{D}]$. Moreover, p splits in \mathbf{K} . Indeed, if p is odd, then

$$\left(\frac{-D}{p}\right) = \left(\frac{-Dw^2}{p}\right) = \left(\frac{1 - 4q^n}{p}\right) = \left(\frac{1}{p}\right) = 1.$$

In the above computation, for an integer a, we used $(\frac{a}{p})$ to denote the Legendre symbol of a with respect to p. If p=2, then equation (17) implies that $D\equiv 7\pmod 8$, therefore $-D\equiv 1\pmod 8$, so 2 splits in **K**. Write $(p)=\pi\overline{\pi}$, where π is a prime ideal. From equation (17), we get

(25)
$$p^{fn} = q^n = \frac{1 + Dw^2}{4} = \left(\frac{1 + i\sqrt{D}w}{2}\right) \left(\frac{1 - i\sqrt{D}w}{2}\right).$$

If we rewrite (25) in terms of ideals in \mathbf{K} , we get

(26)
$$\pi^{fn} \cdot \overline{\pi}^{fn} = \left[\frac{1 + i\sqrt{D}w}{2}\right] \cdot \left[\frac{1 - i\sqrt{D}w}{2}\right].$$

It is easy to check that the two ideals appearing in the right-hand side of equation (26) are coprime (indeed, the sum of their generators is 1). From the unique factorization property for ideals, it follows that, up to interchanging π by $\overline{\pi}$, the equality

(27)
$$\pi^{fn} = \left[\frac{1 + i\sqrt{D}w}{2}\right]$$

must hold. Let $o(\pi)$ be the order of the ideal class of π in the ideal class group $C_{\mathbf{K}}$ of \mathbf{K} . Since π^{fn} is principal, it follows that $o(\pi)$ divides nf.

We now return to equation (1) and write it as

$$4q^m = x^2 + 4q^n - 1 = x^2 + Dw^2$$

or

(29)
$$q^m = \frac{x^2 + Dw^2}{4} = \left(\frac{x + i\sqrt{D}w}{2}\right) \left(\frac{x - i\sqrt{D}w}{2}\right).$$

We interpret (29) in terms of ideals by writing

(30)
$$\pi^{fm} \cdot \overline{\pi}^{fm} = \left[\frac{x + i\sqrt{D}w}{2} \right] \cdot \left[\frac{x - i\sqrt{D}w}{2} \right].$$

It is easy to check that the two ideals appearing in the right-hand side of (30) are coprime. Indeed, let \mathbf{p} be a prime ideal dividing both $\frac{x+i\sqrt{D}w}{2}$ and $\frac{x-i\sqrt{D}w}{2}$. Then \mathbf{p} divides $i\sqrt{D}w$, therefore $N_{\mathbf{K}}(\mathbf{p}) \mid Dw^2$. Thus, $N_{\mathbf{K}}(\mathbf{p})$ divides $4q^n - 1$. However, since \mathbf{p} also divides q^m , we get $N_{\mathbf{K}}(\mathbf{p}) \mid q^{2m}$. But obviously, $4q^n - 1$ and q^m are

coprime. Thus, since the two ideals appearing in the right-hand side of equation (30) are coprime, it follows, by the unique factorization property for ideals, that, up to replacing w with -w, we have

(31)
$$\pi^{fm} = \left(\frac{x + i\sqrt{D}w}{2}\right).$$

In particular, π^{fm} is principal, which implies that $o(\pi) \mid fm$. Since $o(\pi) \mid fn$ as well, and since m and n are coprime, it follows that $o(\pi) \mid f$. Hence, π^f is principal. Now let a and b be two integers with $a \equiv b \pmod{2}$ such that

$$(32) z := \frac{a + i\sqrt{D}b}{2}$$

is a generator of π^f . We then get

$$[q] = [p^f] = \pi^f \overline{\pi}^f = [z] \cdot [\overline{z}],$$

therefore, from equation (26), we conclude that

(33)
$$[z^n] \cdot [\overline{z}^n] = [q^n] = \left[\frac{1 + i\sqrt{D}w}{2}\right] \left[\frac{1 - i\sqrt{D}w}{2}\right].$$

The two ideals appearing on the right-hand side of equation (33) are coprime and so are the two ideals appearing on the left-hand side. Since the ideals appearing on the left-hand side are prime powers, it follows, from the unique factorization property for ideals, that we may assume (up to replacing b by -b)

(34)
$$[z^n] = \left[\frac{1 + i\sqrt{D}w}{2}\right].$$

Equation (34) together with the fact that D > 3 (that is, the only units in **K** are ± 1) implies that

$$\frac{1+i\sqrt{D}w}{2} = \pm z^n.$$

Eliminating w from equation (35), we get

(36)
$$\pm 1 = z^n + \overline{z}^n = \frac{z^{2n} - \overline{z}^{2n}}{z^n - \overline{z}^n} = \frac{u_{2n}}{u_n},$$

where for a positive integer k the number u_k is given in formula (16). Thus, we again get that u_{2n} has no primitive divisors.

We first treat the case $n \geq 3$. If n = 3, then from formula (32) and equation (36) we get

$$\pm 1 = z^3 + \overline{z}^3 = \frac{a^3 - 3Dab^2}{4}$$

or

If a is even, then so is b (because $a \equiv b \pmod{2}$), and in this case the right-hand side of (37) is a multiple of 8, which is impossible. Thus, a is an odd divisor of 4, therefore $a = \pm 1$. From equation (37) we now conclude that $3Db^2 = \pm 3$, ± 5 , which is obviously impossible.

Assume now that $n \geq 4$. In this case, $2n \geq 8$ and u_{2n} has no primitive divisors. From Table 1 in [1], together with the fact that z is complex non-real and that D > 3 is odd, it follows that the only possibilities are

$$n = 4 \text{ and } z := \frac{1 + i\sqrt{7}}{2};$$

$$n = 5 \text{ and } z := \frac{5 + i\sqrt{47}}{2};$$

$$n = 6 \text{ and } z := \frac{1 + i\sqrt{7}}{2}, \ \frac{1 + i\sqrt{11}}{2}, \ \frac{1 + i\sqrt{15}}{2}, \ \frac{1 + i\sqrt{19}}{2}; \text{ or }$$

$$n = 9 \text{ and } z := \frac{1 + i\sqrt{7}}{2}.$$

Out of the above possibilities, only the first one, namely n=4 and $z:=\frac{1+i\sqrt{7}}{2}$, satisfies equation (36). Thus, $q=2,\ n=4,\ D=7,$ and w=3, and equation (29) can be rewritten as

(38)
$$2^m = \left(\frac{x+3i\sqrt{7}}{2}\right)\left(\frac{x-3i\sqrt{7}}{2}\right).$$

From arguments similar to the ones previously employed, we get that, up to replacing x by -x, any solution (x, m) of the above equation (38) will satisfy

$$\frac{x+3i\sqrt{7}}{2} = \pm z^m,$$

with $z = \frac{1+i\sqrt{7}}{2}$. Eliminating x from equation (39), we get

$$\pm 3i\sqrt{7} = z^m - \overline{z}^m$$

or

$$(40) u_m = \pm 3,$$

where for a positive integer k, the number u_k is given by formula (16). From [1], we know that if $m \geq 31$, then u_m has a primitive divisor which is at least as large as m-1>3. Thus, $m \leq 30$. We have computed all the terms u_m for m in the interval [5, 30] and only m=4 and m=8 satisfy (40), but they are not convenient, because we are searching for solutions of equation (1) with m and n coprime. Thus, the conclusion so far is that $n \geq 3$ cannot hold.

Thus, n = 2. In particular, $m \ge 3$ is odd. Equation (36) now tells us that

(41)
$$\pm 1 = z^2 + \overline{z}^2 = \frac{a^2 - Db^2}{2}.$$

Notice that equation (41) implies, in particular, that a^2 and Db^2 are coprime (recall that D is odd), and that $a \neq \pm 1$. Equation (35) now tells us that

(42)
$$\frac{1 + i\sqrt{D}w}{2} = \pm z^2 = \pm \left(\frac{(a^2 - Db^2)}{4} + \frac{i\sqrt{D}ab}{2}\right),$$

therefore

$$(43) w = \pm ab.$$

We now return to equation (29) and write it under the form

(44)
$$z^m \cdot \overline{z}^m = q^m = \left(\frac{x + i\sqrt{D}w}{2}\right) \left(\frac{x - i\sqrt{D}w}{2}\right).$$

From arguments similar to the previous ones, we conclude that, up to replacing x by -x, we can write

$$\frac{x + i\sqrt{D}w}{2} = \pm z^m,$$

and now by eliminating x from equation (45), we get

$$\pm i\sqrt{D}ab = \pm i\sqrt{D}w = z^m - \overline{z}^m.$$

By applying the binomial formula in equation (46), we get that

(47)
$$\pm ab = \frac{b}{2^{m-1}} \left(ma^{m-1} - \dots + (-1)^{(m-1)/2} D^{(m-1)/2} b^{m-1} \right).$$

From equation (47), we conclude right away that $a \mid D^{(m-1)/2}b^{m-1}$. Since a^2 and Db^2 are coprime, it follows that $a = \pm 1$, which, as we have already seen, is impossible.

So, it follows that equation (1) has no non-trivial solutions with n > 1 and gcd(m, n) = 1.

The Theorem is therefore proved.

Remark. The method used in this paper can be employed to find, for a given odd integer k, all solutions of the diophantine equation

$$(48) x^2 = 4q^m - 4q^n + k^2,$$

with $m \ge n \ge 0$, $(m, n) \ne (1, 0)$ and q a prime power. The case treated here is, of course, k = 1. We do not give further details.

ACKNOWLEDGEMENTS

This work was done when I visited the Tata Institute for Fundamental Sciences in Mumbai, India in Summer 2001. I would like to thank the Institute for its hospitality, Professor T.N. Shorey for his advice and the Third World Academy of Sciences for their support.

References

- Y. Bilu, G. Hanrot, P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers,
 J. Reine Angew. Math. 539 (2001), 75-122. MR 2002j:11027
- [2] M. H. Le, The diophantine equation $x^2 = 4q^m + 4q^n + 1$, Proc. Amer. Math. Soc. **106** no. 3 (1989), 599-604. MR **90b**:11024
- [3] M. Mignotte, A. Pethő, On the diophantine equation $x^p x = y^q y$, Publ. Math. 43 no. 1 (1999), 207-216. MR 2000d:11044
- [4] C. Skinner, The diophantine equation $x^2 = 4q^n 4q + 1$, Pacific J. of Math. **139** no. 2 (1989), 303-309. MR **90g**:11039
- [5] N. Tzanakis, J. Wolfskill, The diophantine equation $x^2 = 4q^{a/2} + 4q + 1$, with an application to coding theory, J. Number Theory **26** no. 1 (1987), 96-116. MR **88g**:11009

INSTITUTO DE MATEMÁTICAS UNAM, AP. POSTAL 61-3 (XANGARI), CP 58 089, MORELIA, MICHOACÁN, MEXICO

E-mail address: fluca@matmor.unam.mx