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ON THE DIOPHANTINE EQUATION x2 = 4qm − 4qn + 1

FLORIAN LUCA

(Communicated by David E. Rohrlich)

Abstract. In this note, we find all positive integer solutions (x, q,m, n) of
the diophantine equation from the title with q a prime power.

In this note, we study the diophantine equation

(1) x2 = 4qm − 4qn + 1

in integer unknowns (x, q, m, n), with x > 0, m ≥ n ≥ 0, (m, n) 6= (1, 0), and q
a prime power. We exclude the pair (m, n) = (1, 0), because in this case equation
(1) reduces to

(2) q =
x2 + 3

4
.

Since x is odd, we may write x = 2t+ 1 for some positive integer t, and we get that
equation (2) is equivalent to finding all solutions of the diophantine equation

(3) q = t2 + t+ 1,

where t is a positive integer and q is a prime. It is not known if equation (3) has
infinitely many solutions, although there is a conjecture which asserts that equation
(3) does admit infinitely many solutions.

When n = 1 and q = 2, equation (1) reduces to

(4) x2 = 2m+2 − 7,

which is a famous diophantine equation due to Ramanujan and first solved by
Nagell. When n = 1, all solutions of equation (1) with q an odd prime have been
found by Skinner in [4], and the general case in which q is an odd prime power has
been settled by Mignotte and Pethő in [3]. We also recall that all the solutions of
the analogous diophantine equation

(5) x2 = 4qm + 4qn + 1

where found, for n = 1 and n = 2, by Tzanakis de Wolfskill in [5], and for general
n, by Mao Hua Le in [2].

First of all, let us notice that we may assume that m and n are coprime if n > 0.
Indeed, for if m and n are not coprime, then we may write d := gcd(m, n), q1 := qd,
m1 := m/d, and n1 := n/d, and rewrite equation (1) as

(6) x2 = 4qm1
1 − 4qn1

1 + 1,
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which is an equation of the same type as equation (1), but now the new exponents
m1 and n1 are coprime. We also notice that equation (1) has the solutions m = n,
x = 1, and m = 2n, x = 2qn − 1 for all n ≥ 0. We shall refer to such solutions
as trivial. Our main result in this note is the complete determination of all the
non-trivial solutions of equation (1) with (m, n) 6= (1, 0) and q a prime power.

Theorem. The only non-trivial solutions of equation (1) with q a prime power and
m > n ≥ 0 but (m, n) 6= (1, 0) are

(7) (x, q,m, n) = (37, 7, 3, 0), (5, 2, 3, 1), (11, 2, 5, 1),

(181, 2, 13, 1), (31, 3, 5, 1), (559, 5, 7, 1).

Proof of the Theorem. We first treat the case n = 0. In this case, equation (1)
reduces to

(8) x2 = 4qm − 3,

with m ≥ 2. Notice that m is odd, for if m is even, then 4qm = ((2q)m/2)2 is a
perfect square, but the only perfect squares which differ by 3 are 1 and 4, which
leads to x = 1 and q = 1, which is not a convenient solution. Now let p ≥ 3 be any
prime divisor of m. We may replace m by p and q by qm/p and therefore analyze
the equation

(9) x2 = 4qp − 3.

When p = 3, with X := q and Y := x, we get the elliptic curve

(10) Y 2 = 4X3 − 3.

We used SIMATH to conclude that the only integer solutions of this equation are
(X,Y ) = (1, 1) and (7, 37). Thus, we get the solution (x, q,m, n) = (37, 7, 3, 0) of
equation (1). When p ≥ 5, we rewrite equation (9) as

(11) qp =
x2 + 3

4
=
(x+ i

√
3

2

)(x− i√3
2

)
.

It is easy to see from (9) that q is coprime to 3, therefore the two algebraic integers
appearing in the right-hand side of equation (11) are coprime in the ring of alge-
braic integers of Q[i

√
3]. Since the ring of algebraic integers Z[1+i

√
3

2 ] of Q[i
√

3] is
euclidian, it follows that there exist two integers a and b with a ≡ b (mod 2), and
a unit ζ in Z[ 1+i

√
3

2 ], such that

(12)
x+ i

√
3

2
= ζzp

where

(13) z =
a+ i

√
3b

2
.

Notice that x > 1, therefore z is not a root of unity. Since p ≥ 5 and all the units
of Z[ 1+i

√
3

2 ] are torsioned of order dividing 6, it follows that, up to a substitution,
we may assume that ζ = 1 in formula (12). Eliminating x from (12) we get

(14) i
√

3 = zp − zp.
But z − z = bi

√
3 and

zp − zp
z − z ∈ Z.
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Thus, it follows that b = ±1 and

(15)
zp − zp
z − z = ±1.

For any integer k ≥ 0 let

(16) uk :=
zk − zk
z − z .

Then (uk)k≥0 is a Lucas sequence of the first kind, and equation (15) is equivalent
to uk = ±1. However, it is well known that, in general, the kth term of a Lucas
sequence has a primitive divisor. That is, for k 6= 1, 2, 3, 6, there exists, with a
few exceptions, a prime number P ≡ ±1 (mod k) such that P | uk. Equation (15)
now tells us that up has no primitive divisor. The members of Lucas sequences
with no primitive divisors have recently been completely classified by Bilu, Hanrot
and Voutier in [1]. In particular, from the result in [1], we know that if p ≥ 5 is a
prime, then up has primitive divisors except for p = 5, 7, 13, and a few exceptional
values of z, which are listed in Table 1 in [1]. None of the exceptional Lucas terms
from Table 1 in [1] leads to a value of z ∈ Q[i

√
3]. Thus, there is no solution of

equation (8) with x > 1 and m > 3. This concludes the analysis for the case n = 0.
From now on, we assume that n > 0. All the solutions of equation (1) with

n = 1 were found by Mignotte and Pethő in [3], and these solutions are listed in
formula (7). Thus, from now on we assume that n ≥ 2, m > n, and m and n are
coprime.

We start by writing

(17) 4qn − 1 = Dw2,

where D ≥ 1 is square-free. We first show that D > 3. Clearly, D 6= 1 because −1
is not a quadratic residue modulo 4. Assume now that D = 3. Since −1 is not a
quadratic residue modulo 3, it follows that n is odd. Let p be a prime divisor of n.
By writing q1 := qn/p, it follows that we need to investigate the equation

(18) 4qp1 − 1 = 3w2,

where q1 is a prime power and p ≥ 3 is prime. When p = 3, with the substitution
X := q1 and Y := w, we get the elliptic curve

(19) 3Y 2 = 4X3 − 1.

We used SIMATH to conclude that the only integer solution of (19) is (X,Y ) =
(1, 1). Thus, there is no solution (q1, w) of equation (18) for p = 3. Assume now
that p ≥ 5 and rewrite (18) as

(20) qp1 =
1 + 3w2

4
=
(1 + i

√
3w

2

)(1− i
√

3w
2

)
.

We now use an argument similar to one employed above, to conclude that equation
(20) implies the existence of an algebraic number z ∈ Z[1+i

√
3

2 ] such that

(21) q = zz

and

(22)
1 + i

√
3w

2
= zp.
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Notice that w > 1 so z is not a root of unity. From equation (22) we get

(23) 1 = zp + zp =
z2p − z2p

zp − zp =
u2p

up
.

The numbers u2p and up appearing in formula (23) are the same as the ones shown
in (16). Thus, from (23), we get that u2p = up, which implies that u2p has no
primitive divisor. We again use Table 1 in [1] to conclude that the only possible
case is p := 5 and z := 5+i

√
3

2 , but for this choice of p and z the relation u5 = u10

does not hold (in fact, u10/u5 = −25 in this case). Thus, the conclusion of this
argument is that if n ≥ 2, then D > 3.

Now let q := pf , where p is a prime and f ≥ 1. Notice that D ≡ 3 (mod 4)
so that −D is the discriminant of the quadratic field K := Q[i

√
D]. Moreover, p

splits in K. Indeed, if p is odd, then

(24)
(−D
p

)
=
(−Dw2

p

)
=
(1− 4qn

p

)
=
(1
p

)
= 1.

In the above computation, for an integer a, we used (ap ) to denote the Legendre
symbol of a with respect to p. If p = 2, then equation (17) implies that D ≡
7 (mod 8), therefore −D ≡ 1 (mod 8), so 2 splits in K. Write (p) = ππ, where π
is a prime ideal. From equation (17), we get

(25) pfn = qn =
1 +Dw2

4
=
(1 + i

√
Dw

2

)(1− i
√
Dw

2

)
.

If we rewrite (25) in terms of ideals in K, we get

(26) πfn · πfn =
[1 + i

√
Dw

2

]
·
[1− i

√
Dw

2

]
.

It is easy to check that the two ideals appearing in the right-hand side of equation
(26) are coprime (indeed, the sum of their generators is 1). From the unique
factorization property for ideals, it follows that, up to interchanging π by π, the
equality

(27) πfn =
[1 + i

√
Dw

2

]
must hold. Let o(π) be the order of the ideal class of π in the ideal class group CK

of K. Since πfn is principal, it follows that o(π) divides nf .
We now return to equation (1) and write it as

(28) 4qm = x2 + 4qn − 1 = x2 +Dw2

or

(29) qm =
x2 +Dw2

4
=
(x+ i

√
Dw

2

)(x− i√Dw
2

)
.

We interpret (29) in terms of ideals by writing

(30) πfm · πfm =
[x+ i

√
Dw

2

]
·
[x− i√Dw

2

]
.

It is easy to check that the two ideals appearing in the right-hand side of (30) are
coprime. Indeed, let p be a prime ideal dividing both x+i

√
Dw

2 and x−i
√
Dw

2 . Then
p divides i

√
Dw, therefore NK(p) | Dw2. Thus, NK(p) divides 4qn − 1. However,

since p also divides qm, we get NK(p) | q2m. But obviously, 4qn − 1 and qm are
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coprime. Thus, since the two ideals appearing in the right-hand side of equation
(30) are coprime, it follows, by the unique factorization property for ideals, that,
up to replacing w with −w, we have

(31) πfm =
(x+ i

√
Dw

2

)
.

In particular, πfm is principal, which implies that o(π) | fm. Since o(π) | fn as
well, and since m and n are coprime, it follows that o(π) | f . Hence, πf is principal.

Now let a and b be two integers with a ≡ b (mod 2) such that

(32) z :=
a+ i

√
Db

2

is a generator of πf . We then get

[q] = [pf ] = πfπf = [z] · [z],

therefore, from equation (26), we conclude that

(33) [zn] · [zn] = [qn] =
[1 + i

√
Dw

2

][1− i
√
Dw

2

]
.

The two ideals appearing on the right-hand side of equation (33) are coprime and
so are the two ideals appearing on the left-hand side. Since the ideals appearing
on the left-hand side are prime powers, it follows, from the unique factorization
property for ideals, that we may assume (up to replacing b by −b)

(34) [zn] =
[1 + i

√
Dw

2

]
.

Equation (34) together with the fact that D > 3 (that is, the only units in K are
±1) implies that

(35)
1 + i

√
Dw

2
= ±zn.

Eliminating w from equation (35), we get

(36) ±1 = zn + zn =
z2n − z2n

zn − zn =
u2n

un
,

where for a positive integer k the number uk is given in formula (16). Thus, we
again get that u2n has no primitive divisors.

We first treat the case n ≥ 3. If n = 3, then from formula (32) and equation
(36) we get

±1 = z3 + z3 =
a3 − 3Dab2

4
or

(37) ±4 = a(a2 − 3Db2).

If a is even, then so is b (because a ≡ b (mod 2)), and in this case the right-hand
side of (37) is a multiple of 8, which is impossible. Thus, a is an odd divisor of
4, therefore a = ±1. From equation (37) we now conclude that 3Db2 = ±3, ±5,
which is obviously impossible.
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Assume now that n ≥ 4. In this case, 2n ≥ 8 and u2n has no primitive divisors.
From Table 1 in [1], together with the fact that z is complex non-real and that
D > 3 is odd, it follows that the only possibilities are

n = 4 and z :=
1 + i

√
7

2
;

n = 5 and z :=
5 + i

√
47

2
;

n = 6 and z :=
1 + i

√
7

2
,

1 + i
√

11
2

,
1 + i

√
15

2
,

1 + i
√

19
2

; or

n = 9 and z :=
1 + i

√
7

2
.

Out of the above possibilities, only the first one, namely n = 4 and z := 1+i
√

7
2 ,

satisfies equation (36). Thus, q = 2, n = 4, D = 7, and w = 3, and equation (29)
can be rewritten as

(38) 2m =
(x+ 3i

√
7

2

)(x− 3i
√

7
2

)
.

From arguments similar to the ones previously employed, we get that, up to replac-
ing x by −x, any solution (x, m) of the above equation (38) will satisfy

(39)
x+ 3i

√
7

2
= ±zm,

with z = 1+i
√

7
2 . Eliminating x from equation (39), we get

±3i
√

7 = zm − zm

or

(40) um = ±3,

where for a positive integer k, the number uk is given by formula (16). From [1],
we know that if m ≥ 31, then um has a primitive divisor which is at least as large
as m − 1 > 3. Thus, m ≤ 30. We have computed all the terms um for m in the
interval [5, 30] and only m = 4 and m = 8 satisfy (40), but they are not convenient,
because we are searching for solutions of equation (1) with m and n coprime. Thus,
the conclusion so far is that n ≥ 3 cannot hold.

Thus, n = 2. In particular, m ≥ 3 is odd. Equation (36) now tells us that

(41) ±1 = z2 + z2 =
a2 −Db2

2
.

Notice that equation (41) implies, in particular, that a2 and Db2 are coprime (recall
that D is odd), and that a 6= ±1. Equation (35) now tells us that

(42)
1 + i

√
Dw

2
= ±z2 = ±

((a2 −Db2)
4

+
i
√
Dab

2

)
,

therefore

(43) w = ±ab.
We now return to equation (29) and write it under the form

(44) zm · zm = qm =
(x+ i

√
Dw

2

)(x− i√Dw
2

)
.
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From arguments similar to the previous ones, we conclude that, up to replacing x
by −x, we can write

(45)
x+ i

√
Dw

2
= ±zm,

and now by eliminating x from equation (45), we get

(46) ±i
√
Dab = ±i

√
Dw = zm − zm.

By applying the binomial formula in equation (46), we get that

(47) ±ab =
b

2m−1

(
mam−1 − · · ·+ (−1)(m−1)/2D(m−1)/2bm−1

)
.

From equation (47), we conclude right away that a | D(m−1)/2bm−1. Since a2

and Db2 are coprime, it follows that a = ±1, which, as we have already seen, is
impossible.

So, it follows that equation (1) has no non-trivial solutions with n > 1 and
gcd(m, n) = 1.

The Theorem is therefore proved. �
Remark. The method used in this paper can be employed to find, for a given odd
integer k, all solutions of the diophantine equation

(48) x2 = 4qm − 4qn + k2,

with m ≥ n ≥ 0, (m, n) 6= (1, 0) and q a prime power. The case treated here is,
of course, k = 1. We do not give further details.

Acknowledgements

This work was done when I visited the Tata Institute for Fundamental Sciences
in Mumbai, India in Summer 2001. I would like to thank the Institute for its
hospitality, Professor T.N. Shorey for his advice and the Third World Academy of
Sciences for their support.

References

[1] Y. Bilu, G. Hanrot, P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers,
J. Reine Angew. Math. 539 (2001), 75-122. MR 2002j:11027

[2] M. H. Le, The diophantine equation x2 = 4qm + 4qn + 1, Proc. Amer. Math. Soc. 106 no. 3
(1989), 599-604. MR 90b:11024
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Instituto de Matemáticas UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia,

Michoacán, Mexico

E-mail address: fluca@matmor.unam.mx

http://www.ams.org/mathscinet-getitem?mr=2002j:11027
http://www.ams.org/mathscinet-getitem?mr=90b:11024
http://www.ams.org/mathscinet-getitem?mr=2000d:11044
http://www.ams.org/mathscinet-getitem?mr=90g:11039
http://www.ams.org/mathscinet-getitem?mr=88g:11009

	Acknowledgements
	References

