ON THE DIOPHANTINE EQUATION $x^{2}=4 q^{m}-4 q^{n}+1$

FLORIAN LUCA
(Communicated by David E. Rohrlich)

Abstract

In this note, we find all positive integer solutions (x, q, m, n) of the diophantine equation from the title with q a prime power.

In this note, we study the diophantine equation

$$
\begin{equation*}
x^{2}=4 q^{m}-4 q^{n}+1 \tag{1}
\end{equation*}
$$

in integer unknowns (x, q, m, n), with $x>0, m \geq n \geq 0,(m, n) \neq(1,0)$, and q a prime power. We exclude the pair $(m, n)=(1,0)$, because in this case equation (1) reduces to

$$
\begin{equation*}
q=\frac{x^{2}+3}{4} \tag{2}
\end{equation*}
$$

Since x is odd, we may write $x=2 t+1$ for some positive integer t, and we get that equation (2) is equivalent to finding all solutions of the diophantine equation

$$
\begin{equation*}
q=t^{2}+t+1 \tag{3}
\end{equation*}
$$

where t is a positive integer and q is a prime. It is not known if equation (3) has infinitely many solutions, although there is a conjecture which asserts that equation (3) does admit infinitely many solutions.

When $n=1$ and $q=2$, equation (1) reduces to

$$
\begin{equation*}
x^{2}=2^{m+2}-7 \tag{4}
\end{equation*}
$$

which is a famous diophantine equation due to Ramanujan and first solved by Nagell. When $n=1$, all solutions of equation (1) with q an odd prime have been found by Skinner in [4], and the general case in which q is an odd prime power has been settled by Mignotte and Pethő in [3]. We also recall that all the solutions of the analogous diophantine equation

$$
\begin{equation*}
x^{2}=4 q^{m}+4 q^{n}+1 \tag{5}
\end{equation*}
$$

where found, for $n=1$ and $n=2$, by Tzanakis de Wolfskill in [5] and for general n, by Mao Hua Le in 2 .

First of all, let us notice that we may assume that m and n are coprime if $n>0$. Indeed, for if m and n are not coprime, then we may write $d:=\operatorname{gcd}(m, n), q_{1}:=q^{d}$, $m_{1}:=m / d$, and $n_{1}:=n / d$, and rewrite equation (1) as

$$
\begin{equation*}
x^{2}=4 q_{1}^{m_{1}}-4 q_{1}^{n_{1}}+1 \tag{6}
\end{equation*}
$$

Received by the editors September 28, 2001.
2000 Mathematics Subject Classification. Primary 11D61, 11D72.
which is an equation of the same type as equation (1), but now the new exponents m_{1} and n_{1} are coprime. We also notice that equation (1) has the solutions $m=n$, $x=1$, and $m=2 n, x=2 q^{n}-1$ for all $n \geq 0$. We shall refer to such solutions as trivial. Our main result in this note is the complete determination of all the non-trivial solutions of equation (1) with $(m, n) \neq(1,0)$ and q a prime power.
Theorem. The only non-trivial solutions of equation (1) with q a prime power and $m>n \geq 0$ but $(m, n) \neq(1,0)$ are
(7) $\quad(x, q, m, n)=(37,7,3,0),(5,2,3,1),(11,2,5,1)$,

$$
(181,2,13,1),(31,3,5,1),(559,5,7,1)
$$

Proof of the Theorem. We first treat the case $n=0$. In this case, equation (1) reduces to

$$
\begin{equation*}
x^{2}=4 q^{m}-3, \tag{8}
\end{equation*}
$$

with $m \geq 2$. Notice that m is odd, for if m is even, then $4 q^{m}=\left((2 q)^{m / 2}\right)^{2}$ is a perfect square, but the only perfect squares which differ by 3 are 1 and 4 , which leads to $x=1$ and $q=1$, which is not a convenient solution. Now let $p \geq 3$ be any prime divisor of m. We may replace m by p and q by $q^{m / p}$ and therefore analyze the equation

$$
\begin{equation*}
x^{2}=4 q^{p}-3 \tag{9}
\end{equation*}
$$

When $p=3$, with $X:=q$ and $Y:=x$, we get the elliptic curve

$$
\begin{equation*}
Y^{2}=4 X^{3}-3 \tag{10}
\end{equation*}
$$

We used SIMATH to conclude that the only integer solutions of this equation are $(X, Y)=(1,1)$ and $(7,37)$. Thus, we get the solution $(x, q, m, n)=(37,7,3,0)$ of equation (1). When $p \geq 5$, we rewrite equation (9) as

$$
\begin{equation*}
q^{p}=\frac{x^{2}+3}{4}=\left(\frac{x+i \sqrt{3}}{2}\right)\left(\frac{x-i \sqrt{3}}{2}\right) \tag{11}
\end{equation*}
$$

It is easy to see from (9) that q is coprime to 3 , therefore the two algebraic integers appearing in the right-hand side of equation (11) are coprime in the ring of algebraic integers of $\mathbf{Q}[i \sqrt{3}]$. Since the ring of algebraic integers $\mathbf{Z}\left[\frac{1+i \sqrt{3}}{2}\right]$ of $\mathbf{Q}[i \sqrt{3}]$ is euclidian, it follows that there exist two integers a and b with $a \equiv b(\bmod 2)$, and a unit ζ in $\mathbf{Z}\left[\frac{1+i \sqrt{3}}{2}\right]$, such that

$$
\begin{equation*}
\frac{x+i \sqrt{3}}{2}=\zeta z^{p} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\frac{a+i \sqrt{3} b}{2} \tag{13}
\end{equation*}
$$

Notice that $x>1$, therefore z is not a root of unity. Since $p \geq 5$ and all the units of $\mathbf{Z}\left[\frac{1+i \sqrt{3}}{2}\right]$ are torsioned of order dividing 6 , it follows that, up to a substitution, we may assume that $\zeta=1$ in formula (12). Eliminating x from (12) we get

$$
\begin{equation*}
i \sqrt{3}=z^{p}-\bar{z}^{p} \tag{14}
\end{equation*}
$$

But $z-\bar{z}=b i \sqrt{3}$ and

$$
\frac{z^{p}-\bar{z}^{p}}{z-\bar{z}} \in \mathbf{Z}
$$

Thus, it follows that $b= \pm 1$ and

$$
\begin{equation*}
\frac{z^{p}-\bar{z}^{p}}{z-\bar{z}}= \pm 1 \tag{15}
\end{equation*}
$$

For any integer $k \geq 0$ let

$$
\begin{equation*}
u_{k}:=\frac{z^{k}-\bar{z}^{k}}{z-\bar{z}} \tag{16}
\end{equation*}
$$

Then $\left(u_{k}\right)_{k>0}$ is a Lucas sequence of the first kind, and equation (15) is equivalent to $u_{k}= \pm 1$. However, it is well known that, in general, the k th term of a Lucas sequence has a primitive divisor. That is, for $k \neq 1,2,3,6$, there exists, with a few exceptions, a prime number $P \equiv \pm 1(\bmod k)$ such that $P \mid u_{k}$. Equation (15) now tells us that u_{p} has no primitive divisor. The members of Lucas sequences with no primitive divisors have recently been completely classified by Bilu, Hanrot and Voutier in [1]. In particular, from the result in [1], we know that if $p \geq 5$ is a prime, then u_{p} has primitive divisors except for $p=5,7,13$, and a few exceptional values of z, which are listed in Table 1 in [1]. None of the exceptional Lucas terms from Table 1 in [1] leads to a value of $z \in \mathbf{Q}[i \sqrt{3}]$. Thus, there is no solution of equation (8) with $x>1$ and $m>3$. This concludes the analysis for the case $n=0$.

From now on, we assume that $n>0$. All the solutions of equation (1) with $n=1$ were found by Mignotte and Pethő in [3, and these solutions are listed in formula (7). Thus, from now on we assume that $n \geq 2, m>n$, and m and n are coprime.

We start by writing

$$
\begin{equation*}
4 q^{n}-1=D w^{2} \tag{17}
\end{equation*}
$$

where $D \geq 1$ is square-free. We first show that $D>3$. Clearly, $D \neq 1$ because -1 is not a quadratic residue modulo 4. Assume now that $D=3$. Since -1 is not a quadratic residue modulo 3 , it follows that n is odd. Let p be a prime divisor of n. By writing $q_{1}:=q^{n / p}$, it follows that we need to investigate the equation

$$
\begin{equation*}
4 q_{1}^{p}-1=3 w^{2} \tag{18}
\end{equation*}
$$

where q_{1} is a prime power and $p \geq 3$ is prime. When $p=3$, with the substitution $X:=q_{1}$ and $Y:=w$, we get the elliptic curve

$$
\begin{equation*}
3 Y^{2}=4 X^{3}-1 \tag{19}
\end{equation*}
$$

We used SIMATH to conclude that the only integer solution of (19) is $(X, Y)=$ $(1,1)$. Thus, there is no solution $\left(q_{1}, w\right)$ of equation (18) for $p=3$. Assume now that $p \geq 5$ and rewrite (18) as

$$
\begin{equation*}
q_{1}^{p}=\frac{1+3 w^{2}}{4}=\left(\frac{1+i \sqrt{3} w}{2}\right)\left(\frac{1-i \sqrt{3} w}{2}\right) \tag{20}
\end{equation*}
$$

We now use an argument similar to one employed above, to conclude that equation (20) implies the existence of an algebraic number $z \in \mathbf{Z}\left[\frac{1+i \sqrt{3}}{2}\right]$ such that

$$
\begin{equation*}
q=z \bar{z} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+i \sqrt{3} w}{2}=z^{p} \tag{22}
\end{equation*}
$$

Notice that $w>1$ so z is not a root of unity. From equation (22) we get

$$
\begin{equation*}
1=z^{p}+\bar{z}^{p}=\frac{z^{2 p}-\bar{z}^{2 p}}{z^{p}-\bar{z}^{p}}=\frac{u_{2 p}}{u_{p}} \tag{23}
\end{equation*}
$$

The numbers $u_{2 p}$ and u_{p} appearing in formula (23) are the same as the ones shown in (16). Thus, from (23), we get that $u_{2 p}=u_{p}$, which implies that $u_{2 p}$ has no primitive divisor. We again use Table 1 in 1 to conclude that the only possible case is $p:=5$ and $z:=\frac{5+i \sqrt{3}}{2}$, but for this choice of p and z the relation $u_{5}=u_{10}$ does not hold (in fact, $u_{10} / u_{5}=-25$ in this case). Thus, the conclusion of this argument is that if $n \geq 2$, then $D>3$.

Now let $q:=p^{f}$, where p is a prime and $f \geq 1$. Notice that $D \equiv 3(\bmod 4)$ so that $-D$ is the discriminant of the quadratic field $\mathbf{K}:=\mathbf{Q}[i \sqrt{D}]$. Moreover, p splits in \mathbf{K}. Indeed, if p is odd, then

$$
\begin{equation*}
\left(\frac{-D}{p}\right)=\left(\frac{-D w^{2}}{p}\right)=\left(\frac{1-4 q^{n}}{p}\right)=\left(\frac{1}{p}\right)=1 \tag{24}
\end{equation*}
$$

In the above computation, for an integer a, we used $\left(\frac{a}{p}\right)$ to denote the Legendre symbol of a with respect to p. If $p=2$, then equation (17) implies that $D \equiv$ $7(\bmod 8)$, therefore $-D \equiv 1(\bmod 8)$, so 2 splits in \mathbf{K}. Write $(p)=\pi \bar{\pi}$, where π is a prime ideal. From equation (17), we get

$$
\begin{equation*}
p^{f n}=q^{n}=\frac{1+D w^{2}}{4}=\left(\frac{1+i \sqrt{D} w}{2}\right)\left(\frac{1-i \sqrt{D} w}{2}\right) \tag{25}
\end{equation*}
$$

If we rewrite (25) in terms of ideals in \mathbf{K}, we get

$$
\begin{equation*}
\pi^{f n} \cdot \bar{\pi}^{f n}=\left[\frac{1+i \sqrt{D} w}{2}\right] \cdot\left[\frac{1-i \sqrt{D} w}{2}\right] \tag{26}
\end{equation*}
$$

It is easy to check that the two ideals appearing in the right-hand side of equation (26) are coprime (indeed, the sum of their generators is 1). From the unique factorization property for ideals, it follows that, up to interchanging π by $\bar{\pi}$, the equality

$$
\begin{equation*}
\pi^{f n}=\left[\frac{1+i \sqrt{D} w}{2}\right] \tag{27}
\end{equation*}
$$

must hold. Let $o(\pi)$ be the order of the ideal class of π in the ideal class group $C_{\mathbf{K}}$ of \mathbf{K}. Since $\pi^{f n}$ is principal, it follows that $o(\pi)$ divides $n f$.

We now return to equation (1) and write it as

$$
\begin{equation*}
4 q^{m}=x^{2}+4 q^{n}-1=x^{2}+D w^{2} \tag{28}
\end{equation*}
$$

or

$$
\begin{equation*}
q^{m}=\frac{x^{2}+D w^{2}}{4}=\left(\frac{x+i \sqrt{D} w}{2}\right)\left(\frac{x-i \sqrt{D} w}{2}\right) \tag{29}
\end{equation*}
$$

We interpret (29) in terms of ideals by writing

$$
\begin{equation*}
\pi^{f m} \cdot \bar{\pi}^{f m}=\left[\frac{x+i \sqrt{D} w}{2}\right] \cdot\left[\frac{x-i \sqrt{D} w}{2}\right] \tag{30}
\end{equation*}
$$

It is easy to check that the two ideals appearing in the right-hand side of (30) are coprime. Indeed, let \mathbf{p} be a prime ideal dividing both $\frac{x+i \sqrt{D} w}{2}$ and $\frac{x-i \sqrt{D} w}{2}$. Then \mathbf{p} divides $i \sqrt{D} w$, therefore $N_{\mathbf{K}}(\mathbf{p}) \mid D w^{2}$. Thus, $N_{\mathbf{K}}(\mathbf{p})$ divides $4 q^{n}-1$. However, since \mathbf{p} also divides q^{m}, we get $N_{\mathbf{K}}(\mathbf{p}) \mid q^{2 m}$. But obviously, $4 q^{n}-1$ and q^{m} are
coprime. Thus, since the two ideals appearing in the right-hand side of equation (30) are coprime, it follows, by the unique factorization property for ideals, that, up to replacing w with $-w$, we have

$$
\begin{equation*}
\pi^{f m}=\left(\frac{x+i \sqrt{D} w}{2}\right) \tag{31}
\end{equation*}
$$

In particular, $\pi^{f m}$ is principal, which implies that $o(\pi) \mid f m$. Since $o(\pi) \mid f n$ as well, and since m and n are coprime, it follows that $o(\pi) \mid f$. Hence, π^{f} is principal.

Now let a and b be two integers with $a \equiv b(\bmod 2)$ such that

$$
\begin{equation*}
z:=\frac{a+i \sqrt{D} b}{2} \tag{32}
\end{equation*}
$$

is a generator of π^{f}. We then get

$$
[q]=\left[p^{f}\right]=\pi^{f} \bar{\pi}^{f}=[z] \cdot[\bar{z}]
$$

therefore, from equation (26), we conclude that

$$
\begin{equation*}
\left[z^{n}\right] \cdot\left[\bar{z}^{n}\right]=\left[q^{n}\right]=\left[\frac{1+i \sqrt{D} w}{2}\right]\left[\frac{1-i \sqrt{D} w}{2}\right] . \tag{33}
\end{equation*}
$$

The two ideals appearing on the right-hand side of equation (33) are coprime and so are the two ideals appearing on the left-hand side. Since the ideals appearing on the left-hand side are prime powers, it follows, from the unique factorization property for ideals, that we may assume (up to replacing b by $-b$)

$$
\begin{equation*}
\left[z^{n}\right]=\left[\frac{1+i \sqrt{D} w}{2}\right] \tag{34}
\end{equation*}
$$

Equation (34) together with the fact that $D>3$ (that is, the only units in \mathbf{K} are ± 1) implies that

$$
\begin{equation*}
\frac{1+i \sqrt{D} w}{2}= \pm z^{n} \tag{35}
\end{equation*}
$$

Eliminating w from equation (35), we get

$$
\begin{equation*}
\pm 1=z^{n}+\bar{z}^{n}=\frac{z^{2 n}-\bar{z}^{2 n}}{z^{n}-\bar{z}^{n}}=\frac{u_{2 n}}{u_{n}} \tag{36}
\end{equation*}
$$

where for a positive integer k the number u_{k} is given in formula (16). Thus, we again get that $u_{2 n}$ has no primitive divisors.

We first treat the case $n \geq 3$. If $n=3$, then from formula (32) and equation (36) we get

$$
\pm 1=z^{3}+\bar{z}^{3}=\frac{a^{3}-3 D a b^{2}}{4}
$$

or

$$
\begin{equation*}
\pm 4=a\left(a^{2}-3 D b^{2}\right) \tag{37}
\end{equation*}
$$

If a is even, then so is $b($ because $a \equiv b(\bmod 2))$, and in this case the right-hand side of (37) is a multiple of 8 , which is impossible. Thus, a is an odd divisor of 4 , therefore $a= \pm 1$. From equation (37) we now conclude that $3 D b^{2}= \pm 3, \pm 5$, which is obviously impossible.

Assume now that $n \geq 4$. In this case, $2 n \geq 8$ and $u_{2 n}$ has no primitive divisors. From Table 1 in [1], together with the fact that z is complex non-real and that $D>3$ is odd, it follows that the only possibilities are

$$
\begin{aligned}
& n=4 \text { and } z:=\frac{1+i \sqrt{7}}{2} ; \\
& n=5 \text { and } z:=\frac{5+i \sqrt{47}}{2} ; \\
& n=6 \text { and } z:=\frac{1+i \sqrt{7}}{2}, \frac{1+i \sqrt{11}}{2}, \frac{1+i \sqrt{15}}{2}, \frac{1+i \sqrt{19}}{2} ; \text { or } \\
& n=9 \text { and } z:=\frac{1+i \sqrt{7}}{2}
\end{aligned}
$$

Out of the above possibilities, only the first one, namely $n=4$ and $z:=\frac{1+i \sqrt{7}}{2}$, satisfies equation (36). Thus, $q=2, n=4, D=7$, and $w=3$, and equation (29) can be rewritten as

$$
\begin{equation*}
2^{m}=\left(\frac{x+3 i \sqrt{7}}{2}\right)\left(\frac{x-3 i \sqrt{7}}{2}\right) . \tag{38}
\end{equation*}
$$

From arguments similar to the ones previously employed, we get that, up to replacing x by $-x$, any solution (x, m) of the above equation (38) will satisfy

$$
\begin{equation*}
\frac{x+3 i \sqrt{7}}{2}= \pm z^{m} \tag{39}
\end{equation*}
$$

with $z=\frac{1+i \sqrt{7}}{2}$. Eliminating x from equation (39), we get

$$
\pm 3 i \sqrt{7}=z^{m}-\bar{z}^{m}
$$

or

$$
\begin{equation*}
u_{m}= \pm 3 \tag{40}
\end{equation*}
$$

where for a positive integer k, the number u_{k} is given by formula (16). From [1], we know that if $m \geq 31$, then u_{m} has a primitive divisor which is at least as large as $m-1>3$. Thus, $m \leq 30$. We have computed all the terms u_{m} for m in the interval [5, 30] and only $m=4$ and $m=8$ satisfy (40), but they are not convenient, because we are searching for solutions of equation (1) with m and n coprime. Thus, the conclusion so far is that $n \geq 3$ cannot hold.

Thus, $n=2$. In particular, $m \geq 3$ is odd. Equation (36) now tells us that

$$
\begin{equation*}
\pm 1=z^{2}+\bar{z}^{2}=\frac{a^{2}-D b^{2}}{2} \tag{41}
\end{equation*}
$$

Notice that equation (41) implies, in particular, that a^{2} and $D b^{2}$ are coprime (recall that D is odd), and that $a \neq \pm 1$. Equation (35) now tells us that

$$
\begin{equation*}
\frac{1+i \sqrt{D} w}{2}= \pm z^{2}= \pm\left(\frac{\left(a^{2}-D b^{2}\right)}{4}+\frac{i \sqrt{D} a b}{2}\right) \tag{42}
\end{equation*}
$$

therefore

$$
\begin{equation*}
w= \pm a b \tag{43}
\end{equation*}
$$

We now return to equation (29) and write it under the form

$$
\begin{equation*}
z^{m} \cdot \bar{z}^{m}=q^{m}=\left(\frac{x+i \sqrt{D} w}{2}\right)\left(\frac{x-i \sqrt{D} w}{2}\right) \tag{44}
\end{equation*}
$$

From arguments similar to the previous ones, we conclude that, up to replacing x by $-x$, we can write

$$
\begin{equation*}
\frac{x+i \sqrt{D} w}{2}= \pm z^{m} \tag{45}
\end{equation*}
$$

and now by eliminating x from equation (45), we get

$$
\begin{equation*}
\pm i \sqrt{D} a b= \pm i \sqrt{D} w=z^{m}-\bar{z}^{m} . \tag{46}
\end{equation*}
$$

By applying the binomial formula in equation (46), we get that

$$
\begin{equation*}
\pm a b=\frac{b}{2^{m-1}}\left(m a^{m-1}-\cdots+(-1)^{(m-1) / 2} D^{(m-1) / 2} b^{m-1}\right) \tag{47}
\end{equation*}
$$

From equation (47), we conclude right away that $a \mid D^{(m-1) / 2} b^{m-1}$. Since a^{2} and $D b^{2}$ are coprime, it follows that $a= \pm 1$, which, as we have already seen, is impossible.

So, it follows that equation (1) has no non-trivial solutions with $n>1$ and $\operatorname{gcd}(m, n)=1$.

The Theorem is therefore proved.
Remark. The method used in this paper can be employed to find, for a given odd integer k, all solutions of the diophantine equation

$$
\begin{equation*}
x^{2}=4 q^{m}-4 q^{n}+k^{2}, \tag{48}
\end{equation*}
$$

with $m \geq n \geq 0,(m, n) \neq(1,0)$ and q a prime power. The case treated here is, of course, $k=1$. We do not give further details.

Acknowledgements

This work was done when I visited the Tata Institute for Fundamental Sciences in Mumbai, India in Summer 2001. I would like to thank the Institute for its hospitality, Professor T.N. Shorey for his advice and the Third World Academy of Sciences for their support.

References

[1] Y. Bilu, G. Hanrot, P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122. MR 2002j:11027
[2] M. H. Le, The diophantine equation $x^{2}=4 q^{m}+4 q^{n}+1$, Proc. Amer. Math. Soc. 106 no. 3 (1989), 599-604. MR 90b:11024
[3] M. Mignotte, A. Pethő, On the diophantine equation $x^{p}-x=y^{q}-y$, Publ. Math. 43 no. 1 (1999), 207-216. MR 2000d:11044
[4] C. Skinner, The diophantine equation $x^{2}=4 q^{n}-4 q+1$, Pacific J. of Math. 139 no. 2 (1989), 303-309. MR 90g:11039
[5] N. Tzanakis, J. Wolfskill, The diophantine equation $x^{2}=4 q^{a / 2}+4 q+1$, with an application to coding theory, J. Number Theory 26 no. 1 (1987), 96-116. MR 88g:11009

Instituto de Matemáticas UnAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacán, Mexico

E-mail address: fluca@matmor.unam.mx

