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(Communicated by Dan M. Barbasch)

ABSTRACT. Let K be an algebraically closed field of arbitrary characteristic,
and let f : G — H be a surjective morphism of connected pro-affine algebraic
groups over K. We show that if f is bijective and separable, then f is an
isomorphism of pro-affine algebraic groups. Moreover, f is separable if and
only if (its differential) f° is surjective. Furthermore, if f is separable, then
L(Ker f) = Ker f°.

A pro-affine algebraic group G, over an algebraically closed field K, is an inverse
limit of affine algebraic groups over K. This notion was introduced by Hochschild
and Mostow in connection with the representation theory of groups [6]. For exam-
ple, every complex analytic group A determines a pro-affine algebraic group whose
finite-dimensional rational representations are in bijective correspondence with the
finite-dimensional complex analytic representations of A [7] (see also [IT} 13]). A
similar correspondence exists for Lie algebras over K in characteristic 0 [I14] Remark
2, p. 139]. However, Lie algebras of pro-affine algebraic groups appear very briefly
in the literature. For example, Lie algebras of finitely generated pro-unipotent
groups appear in [9, p. 329] and [12, p. 171] (see also the references in [12 p.
172)).

The purpose of this paper is to extend some basic theorems (in [2| Bl Bl [15])
concerning groups and their Lie algebras from the category of affine algebraic groups
to the larger category of pro-affine algebraic groups. In particular, let f : G —
H be a surjective morphism of connected pro-affine algebraic groups over K. In
Theorem[I], we show that f is separable if and only if its differential f° is surjective.
In Theorem Ml we show that if f is bijective and separable, then f is an isomorphism
of pro-affine algebraic groups. In Corollary 9, we show that if f is separable, then
Ker f¢ = L(Ker f), f° is surjective, and f induces an isomorphism of pro-affine
algebraic groups from G/ Ker f onto H. If char(K) = 0 and A and B are connected
algebraic subgroups of G, then A C B if and only if £L(A) C £(B), and A is normal
in G if and only if £(A) is an ideal of £L(G) (Propositions 10, 12). However, some
of the results in the affine case do not extend to the pro-affine case in characteristic
p (see Example 15).
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To handle the pro-affine case as done in [6], one reduces the proof somehow
to the affine case which we do in proving Theorem 8(a,b) and Propositions 10-
12. Roughly speaking, the reduction to the affine case depends on (i) preserving
all hypotheses when we go down to the affine “components” in order to apply
the theory of affine algebraic groups, and then (ii) integrating the results on the
affine “components” to reach the pro-affine case. To illustrate the obstacles, let
f : G — H be a surjective morphism of pro-affine algebraic groups over K. By
using some properties of commutative Hopf algebras, one can show that f = lim fi
where {f; : G; — H,;} is an inverse system of surjective morphisms of affine
algebraic groups. However, if f© is surjective (as in Theorem 1), then each f? may
fail to be surjective. If f is separable (as in Theorems 1 and 4 and Corollary 6),
then each f; may fail to be separable (see Example 15). So the method of reduction
to the affine case fails in proving Theorems [l and 4 and (Corollary 6).

To prove Theorem [Il, we shall use a certain description of the module of (Kéhler)
differentials in commutative Hopf algebras found in [16], while Theorem Hlis proved
by a careful modification of the proof in the affine case as given by Hochschild in [5]
by using certain properties of arbitrary commutative Hopf algebras over K some
of which were proved in [6]. We note that these properties can also be obtained
as consequences of the fact that every commutative Hopf algebra over a field is
faithfully flat over any of its Hopf subalgebras (see [16] as in the proof of Proposition
3).

We shall assume that the reader is familiar with the general properties of pro-
affine algebraic groups found in [6], Section 2]. We adopt the following notation and
conventions: K is a fixed algebraically closed field. If G is a pro-affine algebraic
group over K, then K|[G] is its Hopf algebra of polynomial functions [6, p. 1127],
L(G) is the Lie algebra of G [, p. 404], and GV is the identity component of G
[4, Thm. 2.1]. If D is an integral domain, [D] is the field of fractions of D. If
A is an algebraic subgroup of G, then K[G]# is the A-fixed part of K[G] under

the translation given by (x - f)(y) = f(yz). Similarly, [K[GHA is defined if G
is connected. As in the affine case, the elements of G will be identified with the
K-algebra homomorphisms from K[G] into K, and the elements of £(G), which
are the differentiations of K[G], will be identified with the elements of the dual
K-space of I/I? where I is the augmentation ideal of K[G]. Moreover, if A is an
algebraic subgroup of G, L(A) will be identified with its canonical image in L(G).

Let f : G — H be a surjective morphism of connected pro-affine algebraic
groups, so we may identify K[H] with its image in K[G]. Then f is called separable
if [K[G]] is separable over [K[H]|.

The proof of Theorem [Mis based on the following result in [T6, 11.3, p. 85].

Theorem 0. Let A be a commutative Hopf algebra over a commutative ring R,
with comultiplication A and augmentation ideal I. Let m : A — I/I? be the
projection relative to the decomposition A = R @® I. Let Q4 be the module of
(Kdhler) differentials of A. Then Qa = A®1/I?, and the universal derivation d is
given by d(a) =Y a; @ w(a;) where Ala) = > a; ® al.

Theorem 1. Let f : G — H be a surjective morphism of connected pro-affine
algebraic groups over K. Let f°: L(G) — L(H) be the differential of f. Then f°
is surjective if and only if [ is separable.
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Proof. We shall identify K[H] with its canonical image in K[G]. Put A = K[H]
and B = K[G]. Let I and J be the augmentation ideals of A and B respectively,
and let 7 : A — I/I? and 72 : B — J/J? be the projections as in Theorem 0.
Let di : A — Qa, dy: B — Qp, d} : [A] — Qq), and dj : [B[— Qp] be the
universal K-derivations of such K-algebras. For clarity, we shall prove our theorem
by justifying the equivalence of the following highlighted statements:

(1a) [B] is separable over [A].

(1b) 51 : Q4] ®pa) [B] — Q) is injective where s; is the canonical [B]-linear
mapping given by s1(djz ® y) = ydy.

(1c) s2:Q4®4[B] — Qp®p[B]is injective where ss is the canonical [B]-linear
mapping given by so(diz ® y) = daz ® y.

(2a) s3: (I/I? @k A) @4 [B] — (J/J? @Kk B) ®p [B] is injective where

s3(mi(a) ®d ®y) =m(a)@d ©y.

(2b) s4 : I/I?P®@K[B] — J/J*®x[B] is injective where s4 (71 (a)®y) = m2(a)®y.

(2¢) s5:I/I? — J/J? is injective where s5(mi(a)) = m2(a).

Now (1a) < (1b) since K is a perfect field [3, V, 16.4, p. 132]. (1b) < (1c) since
Q) = Qp @p [B] and Q) ®pa) [B] = (4 ®4 [A]) @141 [B] = Q4 ®4 [B] under
canonical isomorphisms. (1c) < (2a) by Theorem 0 since A is a Hopf subalgebra
of B. (2a) < (2b) < (2c) are obvious. Hence (1la) < (2c). But (2¢) is equivalent
to the condition that the canonical map of dual K-spaces (J/Jz)* — (I/IQ)* is
surjective. Moreover, this last map can be identified with f° : L(G) — L(H).
Hence (1a) is equivalent to the surjectivity of f°. That is, f is separable if and only
if f¢ is surjective which proves Theorem 1. O

Note. If char(K) = 0 and H is affine, the surjectivity of f° in Theorem 1 was
proved in [4, p. 406]. Moreover, it was noted that the proof can be modified to the
(full) pro-affine case in characteristic 0.

Proposition 2. Let B C A be integral domain K -algebras such that

(x) A is finitely generated over B, and the K-algebra homomorphisms from A
to K separate the elements of A.

Suppose x is an element of A with the property that the K -algebra homomorphisms
from A to K which agree on B also agree on x. Then x is purely inseparably
algebraic over [B].

The proof of Proposition 2lis contained in the proof of Proposition 2.4 of [5] p.
34]. In fact, the statements of these two propositions only differ by condition (x)
which generalizes the original condition “A is a finitely generated K-algebra” (by
virtue of a version of Hilbert Nullstellensatz [5] p. 22]).

We shall need the following properties of commutative Hopf algebras. Let V(A)
denote the set of K-algebra homomorphisms from the K-algebra A into K. If
B C A are commutative Hopf algebras over K with no non-zero nilpotent elements,
then V(A) separates the elements of A and the restriction map V(A) — V(B) is
surjective [6, Thm. 2.1, p. 1131] (see also |16} Excercise 3, p. 119]).

Proposition 3. Let B C A be integral domain Hopf algebras over K such that
the restriction map V(A) — V(B) is bijective. If [A] is separable over [B], then
A=B.
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Proof. Let x be an element of A and let A’ be the Hopf subalgebra of A generated
by B and x. Then A’ is finitely generated over B since x generates an affine Hopf
subalgebra of A ([4) p. 400], [I6l p. 24]). The above properties of commutative
Hopf algebras show that V(A’) separate the elements of A’. Moreover, the restric-
tion maps V(A) — V(A’) — V(B) are both surjective. But their composition is
given to be bijective. Hence V(A’) — V(B) is bijective. So Proposition 2 applies
to see that x is purely inseparably algebraic over [B]. Since [A] is separable over
[B], we must have x € [B]. But [BJN A = B [16 Cor. 1, p. 111]. Hence z € B
which proves A = B. O

Now we state Proposition 3 in pro-affine algebraic group terms.

Theorem 4. Let f: G — H be a bijective separable morphism of connected pro-
affine algebraic groups over K. Then f is an isomorphism of pro-affine algebraic
groups.

Corollary 5. Let f : G — H be a morphism of connected pro-affine algebraic
groups. Then f is an isomorphism if and only if f is bijective and f° is surjective.

Proof. Combine Theorems 1 and 4. O

Corollary 6. Let f : G — H be a surjective separable morphism of connected
pro-affine algebraic groups. Then f induces an isomorphism from G/Ker f onto
H.

Proof. By the universal property of G/XKer f [6, p. 1133], f factors through

G/Kerf as G = G/Ker f T, H. Since f is separable, it follows that f’ is
separable (because all intermediate fields in a separable field extension of a field F’
are also separable over F'). So f’ is a bijective separable morphism. Hence f’ is an
isomorphism by Theorem @l (I

Lemma 7. Let A be an algebraic subgroup of a pro-affine algebraic group G. Write
K[G] = U K|[Gi] as a directed union where each G; is an affine algebraic group. Let
pi + G — G; be the canonical surjective morphism whose transpose is the inclusion
map K[G;] — K[G] [0, Thm. 2.1], and let A; be the canonical image of A in G;
(under p;). Then

(a) A=IlmA; and L(A) = lim L(A;) with the evident transition morphisms in

each inverse system,
(b) L(G) = L(G?), and
() K[GiA = K[Gi).

Proof. (a) The canonical morphism p; : G — G; restricts to a surjective morphism
A — A;, so we may view K[A;] inside K[A]. Let a : K[G] — KJ[A] be the
restriction morphism which is surjective since A is an algebraic subgroup of G.
Then a(K[G;]) = K[4;]. But K[G] = |J K[G;] as a directed union. Hence K[A] =
UK|[A;] as a directed union. Consequently, A = lim A; and L£(A) = lim £(4;)
pla paaa

which proves (a).

(b) Since (G%); = (G;)° [l Prop. 2.1], part (a) shows that £(G) = lim £(G;) =
lim £((G)°) = lm £((G°);) = £(G).

Finally, (c) follows immediately from the fact that f(pi(g)) = f(g) for every
fin K[G;] and ¢ in G since both sides are equal to ¢g(f) when g is viewed as a
K-algebra homomorphism from K[G] into K. This proves Lemma 7. U
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Theorem 8. Let N be a normal algebraic subgroup of a connected pro-affine alge-
braic group G over K. Let m : G — G/N be the canonical projection. Then

(a) m is separable and [K[GHN = [K[G]V],
(b) Kern® = L(Ker), and
(c) mw° is surjective and L(G/N) = L(G)/L(N).

Proof. We shall reduce the proofs of (a) and (b) to the affine case. Let K[G] =
UKI[G], pi : G — G;, and N; be the canonical image of N in G; as in Lemma 7.
We shall make the identifications K[G;/N;] = K[G;]™ and K[G/N] = K[G]" as
in [6, p. 1133).

(a) Since N; is a normal algebraic subgroup of the connected affine algebraic
group G;, G;/N; is affine, so [K[GzﬂN = [K[G:}"i] by [I, Thm. 4, p. 136]. We
also have K[G] = |J K[G;] as a directed union. Hence by Lemma 7(c), [K[G]] N =

N; , N
UIKIG™ = U[K[G™] = [KIG)Y). This [K[6))Y = [K[G1Y]. But [K[C]
is separable over [K[GHN by [3, p. 121] and [5, p. 33]. Hence [K[G]] is separable
over [K[G/N]| so the canonical projection m : G — G/N is separable.

(b) Let m; : G; — G;/N; be the canonical projection. Then (m; 0 p;)(N;) = {1},
so the universal property of G/N in [6] p. 1133] shows that m; o p; factors through
G/N as shown in the following commutative diagram:

1 N—g—T3G/N——1
in lpi J/ei
1 Ni id Gi T Gi/Ni —1

From Lemma 7(a) we know that N = lim N; and £(N) = lim £(NN;) with the evident
transition morphisms in each inverse system. Similarly, G = limG; and £(G) =
lim £(G;). We also have K[G)N = UK[G:]"¢ by Lemma 7(c). Thus K[G/N] =
UKI[Gi/N;] as a directed union. Hence G/N = limG;/N; and L(G/N) =
lim £(G;/N;) with the evident transition morphisms in each inverse system. Con-
sequently the sequence

(id)

0— L(N) 2 £(G) =5 £(G/N) — 0

is the inverse limit sequence of the sequence of inverse systems

(m7)
—

0 — (£(N) Y (2(Gh) I (£Gi/Ni)) — 0.

But this is an exact sequence by the theory of affine algebraic groups ([2] 5.6], 8]
11.5, p. 82]). Moreover, it is well known that lim is a left exact functor. Hence
Kerm® = L(N) = L(Kerm) which proves (b). Finally, since 7 : G — G/N
is separable by part (a), Theorem 1 shows that 7° is surjective. Consequently,
L(G/N) = L(G)/L(N). This completes the proof of Theorem 8. O

Corollary 9. Let f : G — H be a separable surjective morphism of connected pro-
affine algebraic groups. Then Ker f°© = L(Ker f), f° is surjective, and f induces
an isomorphism of pro-affine algebraic groups from G/Ker f onto H.

Proof. Combine Theorems 1 and 8 with Corollary 6. (]
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Proposition 10. Let A be a connected algebraic subgroup of a connected pro-affine
algebraic group G over K. If A is normal in G, then L(A) is an ideal of L(G).
Moreover, the converse is true if char (K) = 0.

Proof. The proof is obtained by reduction to the affine case. Let p;, : G — G;
and A; = p;(A) as in Lemma 7. Then A = }iLnAi, L(A) = liinl:(Ai), G =1lmG;
and £(G) = lim £(G;) by Lemma 7(a). Now suppose A is normal in G. Then each
A; is normal in G; since each p; is surjective. So each L£(A;) is an ideal of L(G;).
Consequently, lim £(A;) is an ideal of lim £(G;). Hence £(A) is an ideal of L(G).
Conversely, suppose char(K) = 0 and £(A) is an ideal of £(G). Then p¢(L(A))
is an ideal of p¢(L(G)) for each i. By Theorem 1, p¢ maps L(A) onto £(A;) and
L(G) onto L(G;). Hence each L(A4;) is an ideal of £(G;), so each A; is normal in
G;. Hence lim A; is normal in lim G;. Consequently, A is normal in G which proves
Proposition 10. U

Similarly, by reduction to the affine case as in the proof of Proposition 10, we
obtain the following.

Proposition 11. Let G be a connected pro-affine algebraic group over K. If G is
abelian, then L(G) is abelian. Moreover, the converse is true if char(K)=0. O

Proposition 12. Let A and B be connected algebraic subgroups of a connected
pro-affine algebraic group G over K. If char(K) = 0, then A C B if and only if
L(A) C L(B). O

Corollary 13. Let f : G — H be a morphism of connected pro-affine algebraic
groups over K such that f° is surjective. If char(K) =0, then f is surjective. O

Now we recall the following definition. A morphism f : G — H of connected
pro-affine algebraic groups over K is called a covering if f is surjective, Ker f is pro-
finite, and the bijective morphism G/ Ker f — H induced by f is an isomorphism
of pro-affine algebraic groups [4, p. 402].

Corollary 14. Let f : G — H be a morphism of connected pro-affine algebraic
groups over K. If f is a covering, then f° is bijective. Moreover, the converse is
true if char(K) = 0.

Proof. If f is a covering, then f° is bijective by Theorem 8 and Lemma 7(b).
Conversely, if f© is bijective and char(K) = 0, then f is surjective by Corollary
13. Moreover, Ker f is pro-finite by Corollary 9, Proposition 12 and Lemma 7(b).
Finally, the bijective separable morphism G/ Ker f — H is an isomorphism by
Theorem H O

Example 15. Assume K to be of prime characteristic. As in Example 3.9 of [10]
p. 49], consider the integral domain Hopf algebra A = lim A4; and (i € N) where A4,
is the Hopf algebra K[x] of the additive group K, and 4, — A;41 by x — zP.
Then I(A) = I(A)? where I(A) is the augmentation ideal of A. Hence the pro-affine
algebraic group G whose K[G] = A has a zero Lie algebra although G is nontrivial
connected.

For another description of G, let G = @Gi where G is the additive group K
and Giy1 — G; is given by © — aP. Again, £(G) = {0} since £(G) = lim £(G;)
where each transition map is the zero map. If f : {1} — G is the trivial morphism,
then f° is surjective although f is not surjective.
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Note that such types of failure never occur in the affine case for reasons of

dimension.
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