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ALGEBRAS WITHOUT NOETHERIAN FILTRATIONS

J. T. STAFFORD AND J. J. ZHANG

(Communicated by Lance W. Small)

Abstract. We provide examples of finitely generated noetherian PI algebras
for which there is no finite dimensional filtration with a noetherian associated
graded ring; thus we answer negatively a question of Lorenz (1988).

1. Introduction

In this paper all algebras will be defined over a fixed base field k. Let Γ be
an N-filtration of a k-algebra A; thus, Γ = {Γi : i ∈ N} is an ascending chain of
k-subspaces of A satisfying 1 ∈ Γ0,

⋃
j∈N Γj = A and ΓiΓj ⊆ Γi+j for all i, j. The

filtration is finite if dimk Γi <∞ for all i ∈ N and standard if Γ0 = k and Γi = Γi1
for all i ≥ 2. We say that Γ is a (left) noetherian filtration if the associated graded
ring grA = grΓA =

⊕
i Γi/Γi−1 is (left) noetherian. The algebra A is affine if it is

finitely generated as a k-algebra.
If an algebra A has a left noetherian N-filtration, then a standard technique is

to pull results back from grA to A since theorems are typically easier to prove in
the graded ring grA than in A. For related reasons Lorenz asked in [6, p. 436]
and [7, Question III.4.2] whether every left noetherian affine algebra R, satisfying
a polynomial identity (PI), admits a left noetherian, standard finite N-filtration.
This question has been raised again (without the “standard” hypothesis) in [15,
Question 6.16] because of its importance for dualizing complexes and homological
questions: if Lorenz’s question were to have a positive answer, then R would have
a dualizing complex [15, Corollary 6.9] and every noetherian affine PI Hopf algebra
would have finite injective dimension [13].

The aim of this note is to answer these questions by providing a class of noether-
ian affine PI algebras which do not admit any noetherian finite N-filtration. The
basic technique is provided by the following theorem (see Section 2).

Theorem 1.1. Suppose that I and J1 ⊂ J2 are ideals of an algebra R such that
J2/J1 is free of rank s as a left R/I-module and free of rank t as a right R/I-
module. If s < t, then there is no finite N-filtration Γ of R such that grΓR is left
noetherian.
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A variant of this theorem also holds if one replaces “free of rank x” by “of Goldie
rank x.” See Theorem 3.2 for the details.

A simple example satisfying the hypotheses (and conclusion) of the theorem is
given by the ring

(1.2) R =
{(

f(x) g(x)
0 f(x2)

)
: f, g ∈ k[x]

}
⊂ M2(k[x]).

Here, one takes J2 = I to be the ideal of strictly upper triangular matrices and
J1 = 0. See Section 4 for more details.

The most important case of Theorem 1.1 is when Γ is a standard. However, we
emphasize that the theorem holds for any filtration satisfying the earlier definitions.

The analogue of Theorem 1.1 also holds for m-adic filtrations (where m is the
Jacobson radical of a local algebra) and for that reason we prove the result for
rings with a Zariskian filtration (see Theorem 2.4). In particular, we provide an
example of a local prime noetherian PI ring for which the Jacobson radical does
not satisfy the strong AR property. This is given in Section 4 where the reader may
find further applications of the main theorem.

2. Proof of Theorem 1.1

Since we are also interested in m-adic filtrations of local rings as well as ascending
filtrations, we will prove our main result for Z-filtrations. First we review some basic
facts about filtrations from [3, Chapter 6] and [4].

Suppose that A is a k-algebra. For the purposes of this paper a filtration (or,
more strictly, an exhaustive separated finite Z-filtration) of A is an ascending chain
of subspaces Γ = {Γi ⊆ Γi+1 | i ∈ Z} of A, satisfying:

(1) 1 ∈ Γ0 and ΓiΓj ⊆ Γi+j for all i, j ∈ Z;
(2) Γ is finite in the sense that dim Γi/Γi−1 <∞ for all i ∈ Z;
(3) Γ is exhaustive in the sense that A =

⋃
i∈Z Γi and separated in the sense

that
⋂
i∈Z Γi = 0.

The Rees ring associated to Γ is defined to be ReesA = ReesΓA =
⊕

i∈Z Γi and
the associated graded ring is grA = grΓA =

⊕
i∈Z Γi/Γi−1. Write J(A) for the

Jacobson radical of A. Following [4], a filtered algebra A is called (left) Zariskian
if

(Zar1) Γ−1 ⊆ J(Γ0);
(Zar2) ReesF A is (left) noetherian.
Fix a filtration Γ of the algebra A and a left A-module M . The concept of a

Z-filtration (again, finite, exhaustive and separated) Λ = {Λi : i ∈ Z} of M is
defined analogously; one simply replaces (1) in the above definition by

(1′) ΓiΛj ⊆ Λi+j for all i, j ∈ Z.
Corresponding to this filtration one has the Rees module ReesΛ M =

⊕
Λi and

associated graded module grΛM =
⊕

Λi/Λi−1. We say that Λ is a good filtration
if there exist {mi ∈ Λdi : 1 ≤ i ≤ r < ∞} such that Λn =

∑r
i=1 Γn−dimi for all

n ∈ Z. Two filtrations Λ and Λ′ of M are equivalent, written Λ ∼ Λ′, if there is an
integer q such that Λi ⊂ Λ′i+q and Λ′i ⊂ Λi+q for all i ∈ Z.

The Hilbert function of M with respect to Λ is defined to be

HM,Λ(n) = dim Λn/Λ−n, for all n ∈ Z.
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Let H and H ′ be two (Hilbert) functions N → N. We say that the growth of H
is at most the growth of H ′, and write H ≤ H ′, if there is an integer q such that
H(n) ≤ H ′(n+ q) for all n� 0. We say H and H ′ are equivalent, written H ∼ H ′,
if both H ≤ H ′ and H ′ ≤ H hold.

Since we require filtrations to be separated, they need not induce filtrations on
factor modules. However, for Zariskian filtrations this is not a problem:

Lemma 2.1. Suppose that Γ = {Γi} is a filtration of an algebra A and let M be a
left A-module with a good filtration Λ.

(1) If Λ′ is another filtration of M , there exists an integer q such that Λi ⊂ Λ′i+q
for all i. Thus, if Λ′ is good, then Λ and Λ′ are equivalent.

(2) If Λ′ and Λ′′ are equivalent filtrations of M , then HM,Λ′ and HM,Λ′′ are
equivalent.

(3) Assume that Γ is left Zariskian. If N is a submodule of M , then Λ induces
good filtrations on N and M/N . In particular, Γ induces a left Zariskian
filtration on every factor ring of A.

Proof. (1) and (2) follow from the definitions while (3) follows from [4, Theorem 3.3]
or [5, Theorem II.2.1.2]. �

The key observation in this paper is given by the next proposition. Since our
main theorem will come in three slightly different forms, this result will also have
three slightly different cases.

Proposition 2.2. Let A be an algebra with a filtration Γ such that the growth of
HA,Γ is subexponential. Let M be an A-bimodule such that the left module AM is
free of rank s and the right module MA is free of rank t. Suppose that there exists
a filtration Λ on M such that Λ is a good filtration of AM and a filtration of MA.

(1) If Λ is also a good filtration of MA, then t = s.
(2) If Γn = 0 for n� 0, then s ≥ t.
(3) If Γn = A for n� 0, then s ≤ t.

Proof. The beginning of the proof is the same in all three cases. Note that AA has
a good filtration, simply because Γi = Γi1 for all i. Thus AA

(s) also has a good
filtration and so this induces a good filtration Λ′ on M such that Λ′i ∼= Γ(s)

i for all
i. By Lemma 2.1(1), there exists q1 such that Λi ⊆ Λ′i+q1 for all i.

Similarly, the right A-module structure provides an induced good filtration Λ′′

of MA such that Λ′′i ∼= Γ(t)
i for all i. By Lemma 2.1(1), there exists q2 such that

Λ′′i ⊆ Λi+q2 for all i. Hence, for p = q1 + q2,

(2.3) Λ′′i ⊆ Λ′i+p for all i ∈ Z.
We now consider the three cases separately. Under assumption (2), we see that

Λ′′i /Λ
′′
−i = Λ′′i ↪→ Λ′i+p = Λ′i+p/Λ

′
−(i+p) for i� 0. Thus, HM,Λ′′ (n) ≤ HM,Λ′(n+p).

But, by construction, HM,Λ′ = sHA,Γ and HM,Λ′′ = tHA,Γ and so

HA,Γ(n) ≤ s

t
HA,Γ(n+ p) for all n ∈ N.

Since HA,Γ(n) grows subexponentially this forces t ≤ s.
Under assumption (3) we have Λ′′i+p/Λ

′′
−(i+p) = M/Λ′′−i−p � M/Λ′−i = Λ′i/Λ

′
−i

for i � 0. Thus, HM,Λ′(i) ≤ HM,Λ′′(i + p) and repeating the analysis of the last
paragraph shows that s ≤ t.
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Finally, assume that Λ is a good filtration of MA. In this case, Λ′′ ∼ Λ and
so Λ′′ ∼ Λ′. Thus there exists p such that Λ′i ⊆ Λ′′i+p ⊆ Λ′i+2p. Now a minor
variant of the penultimate paragraph shows that t ≤ s and hence, by symmetry,
that s = t. �

Theorem 2.4. Suppose that R is an algebra with ideals I and J1 ⊂ J2 such that
J2/J1 is free of rank s as a left R/I-module and free of rank t as a right R/I-
module. If s < t, then there is no filtration of R such that R is both left and right
Zariskian.

Proof. Let Γ̃ be a left and right Zariskian filtration of R. Then Lemma 2.1(3)
implies that the induced filtration Γ on A = R/I is left and right Zariskian and so
grΓA is left (and right) noetherian. By [12, Remark after 1.2] the growth of HA,Γ

is subexponential. By Lemma 2.1(3), Γ induces a good filtration on J2/J1 as a left
and a right A-module, which contradicts Proposition 2.2(1). �

A curious feature of this result is that R could be left or right Zariskian; it just
cannot be both (see Corollary 4.7). However, with a little more information one
can determine which side goes wrong.

Theorem 2.5. Suppose that R is an algebra with ideals I and J1 ⊂ J2 such that
J2/J1 is free of rank s as a left R/I-module and free of rank t as a right R/I-module.
Assume that s < t and that Γ is a filtration of R.

(1) If Γi = 0 for i� 0, then Γ is not left Zariskian.
(2) If Γi = A for i� 0, then Γ is not right Zariskian.

Proof. For (1), repeat the proof of Theorem 2.4, but with Proposition 2.2(1) re-
placed by Proposition 2.2(2). For (2), use the proof of Theorem 2.4, applied to the
opposite ring Rop, with Proposition 2.2(1) replaced by Proposition 2.2(3). �

We are now ready to prove Theorem 1.1 from the Introduction.

Proof of Theorem 1.1. It is easy to see that an N-filtration Γ of a ring R is left
Zariskian if and only if grΓ is left noetherian (see, for example, [5, Proposition
II.1.2.3]). Thus, Theorem 1.1 is a special case of Theorem 2.5(1). �

The analogue of Theorem 1.1 for complete local rings also holds with much the
same proof. To state the result, we need some definitions. Let R be a semilocal
algebra with Jacobson radical J(R) = m and assume that dimk R/m < ∞. A
filtration Γ of R is called a weak adic filtration if it satisfies Γn = A for all n ≥ 0
and Γ−1 ⊆ m. (We still require the filtration to be finite, separated and exhaustive.)

Corollary 2.6. Let R be a complete semilocal right noetherian algebra with Jacob-
son radical m. Suppose that R has ideals I and J1 ⊂ J2 such that J2/J1 is free of
rank s as a left R/I-module and free of rank t as a right R/I-module. If s < t, then
there is no weak adic filtration Γ such that grΓR is right noetherian.

Proof. Suppose that such a filtration Γ exists. By [2, Corollary 1.2] the filtration
Γ is also complete (in the natural sense that Cauchy sequences modulo the Γ−i
should converge—see [5, Definition I.3.3.2]). Thus [5, Proposition II.2.2.1] implies
that the filtration is right Zariskian and the result follows Theorem 2.5(2). �
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An analogue of this corollary also holds for noncomplete rings, although the
result is less pleasant since one cannot now assume that separated filtrations induce
separated filtrations on factor modules. The result becomes the following: Suppose
that R satisfies the hypotheses of Corollary 2.6, but that R is not complete. Let
Γ be a weak adic filtration of R that induces both a filtration of R/I and a good
right filtration of J2/J1. If s < t, then grΓR is not right noetherian.

3. A partial generalization

Although the results of the last section are sufficient for our examples, one can
give a version of Theorem 1.1 that works without the assumption that J2/J1 be
free, but at the expense of of assuming that R/I be a prime Goldie ring. We prove
this in this section. Let A be a prime left Goldie ring with simple artinian ring of
fractions Q(A). If M is a left A-module, then the Goldie rank of M is defined to
be the length of Q(A)⊗AM and written Grank(M).

Lemma 3.1. Suppose that A is a prime Goldie ring with a left noetherian N-
filtration Γ. Let M be an A-bimodule with a filtration Λ that is a good filtration of
AM and a filtration of MA. If AM is torsion, then so is MA.

Proof. Assume that MA is not torsion. Replacing M by M (n), for some n, we may
assume that AA ⊆ MA. Thus, Lemma 2.1(1) implies that there exists q ≥ 0 such
that

dim Γn ≤ dim Λn+q ∩A ≤ dim Λn+q

for all n. Since Γn = Λn = 0 for n� 0, this implies that HM,Λ ≥ HA,Γ.
Now consider AM . Since Λ is a good filtration, AM is finitely generated. We

claim, for all p > 0, that HM,Λ ≤ 1
pHA,Γ. Once this has been proved, then the

last paragraph implies, for some x > 0, that HA,Γ(n) ≤ 1
pHA,Γ(n + x). This

contradicts the fact that HA,Γ grows subexponentially [12, Remark after 1.2] and
proves the lemma. In order to prove the claim we ignore the right-hand structure
of M and so, by induction, it suffices to prove it for a cyclic module M = A/I.
Since AM is torsion and A is Goldie, I contains a regular element, a say, of A. We
will still write Γ for the good filtration on any subfactor of AA induced from Γ.
Now, for any n, M is a homomorphic image of L(i) = Aai−1/Aai ∼= A/Aa and so
HM,Λ ≤ HL(i),Γ. Since Hilbert series are additive on short exact sequences, this
implies that pHM,Λ ≤ HA/Aap,Γ ≤ HA,Γ, for any p ∈ N. �

Theorem 3.2. Suppose that I and J1 ⊂ J2 are ideals of an algebra R such that
A = R/I is a prime Goldie ring. Assume that J2/J1 has Goldie rank s as a left
A-module and Goldie rank t as a right A-module, for some s < t. Then there is no
N-filtration Γ′ of R such that grΓ′ R is left noetherian.

Proof. Suppose that such a filtration Γ′ exists. Let Γ be the induced filtration on A
and Λ the induced filtration on M = J2/J1. Then Λ is a good left filtration and so
AM is finitely generated. The torsion submodule T of MA is an A-bimodule and so
we may pass to M/T without affecting the hypotheses (although s may decrease).
By Lemma 3.1 AM is also torsion-free. If Grank(A) = u, replace M by M (u); thus
A

(t)
A
∼= X ⊆ MA and AM ⊆ Y ∼= AA

(s). Let Θ, respectively Φ, be the filtrations
of X and Y induced from Γ. Since Θ equals the direct sum Γ(t) of t copies of Γ,
certainly HX,Θ = tHA,Γ. Similarly, HY,Φ = sHA,Γ.
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Since Λ is a good left filtration and Θ is a good right filtration, by Lemma 2.1(1)
there exists q ≥ 0 such that

dim Θn ≤ dim(X ∩ Λn+q) ≤ dim Λn+q

and
dim Λn ≤ dim(M ∩Φn+q) ≤ dim Φn+q,

for all n� 0. Hence,

tHA,Γ(n) = HX,Θ(n) ≤ HY,Φ(n+ 2q) = sHA,Γ(n+ 2q),

for all n� 0. Since HA,Γ grows subexponentially, this forces t ≤ s. �
With a rather more complicated argument one can prove an analogous version

of Theorem 2.4 using Goldie ranks. However, we do not know how to prove the
analogous version of Theorem 2.5(2) or Corollary 2.6 without extra hypotheses.

4. Examples

In this section we use the results of Section 2 to provide examples of rings without
noetherian associated graded rings.

Example 4.1. Let

S =
{(

f(x) g(x)
0 f(x2)

)
: f, g ∈ k[x]

}
+ yM2(k[x, y]) ⊂ M2(k[x, y]).

Then S is an affine noetherian prime PI algebra without any left noetherian finite
N-filtrations.

Proof. The diagonal matrices of the form(
f(x, y) 0

0 f(x2, y)

)
: f(x, y) ∈ k[x, y]

clearly form a subring C of S isomorphic to k[x, y]. Since S is finitely generated
as a left or right C-module, it follows that S is a finitely generated noetherian PI
algebra. It is prime since it contains a nonzero ideal of the prime ring M2(k[x, y]).

Suppose that A → B is a surjective homomorphism of algebras and that B
does not admit a left noetherian N-filtration. Then an immediate consequence of
Lemma 2.1(3) is that A also has no such filtration. Thus, it suffices to prove the
final assertion for a factor ring, and we use

(4.2) R = S/yM2(k[x, y]) ∼=
{(

f(x) g(x)
0 f(x2)

)
: f, g ∈ k[x]

}
⊂ M2(k[x]).

Notice that this is the ring from (1.2). The nilradical N = N(R) is just the set
of strictly upper triangular matrices. It is routine to check that N is a free left
R/N -module of rank one but a free right R/N -module of rank two. Hence, by
Theorem 1.1, neither R nor S can have a left noetherian finite N-filtration. �
Remark 4.3. The ring R from (4.2) clearly has Gelfand-Kirillov dimension one. By
inspecting the proof of Theorem 2.4, this shows that there is no finite filtration of
R that induces a good filtration of N(R) as a left R-module.

Other examples of noetherian rings with no noetherian N-filtration are given
in [12]. However, those examples require that the ring in question have infinite
Gelfand-Kirillov dimension and this is impossible for affine PI algebras (see [8,
Proposition 13.10.6]).
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It is readily checked that this ring R does have a right noetherian, finite filtration
(see Corollary 4.7). By slightly modifying the example one can get an example that
“works” on both sides.

Example 4.4. Let

T =


f(x) g(x) h(x)

0 f(x2) l(x)
0 0 f(x)

 : f(x), . . . , l(x) ∈ k[x]

+ yM3(k[x, y]).

Then T is an affine noetherian prime PI algebra such that, for every N-filtration,
the associated graded ring is neither left nor right noetherian.

Proof. Notice that T/(e13T + e23T ) ∼= R, the ring from (4.2), and so T has no left
noetherian finite filtration. Since T ∼= T op, the same is true on the right. �

These examples can be easily modified into complete local rings and we give
one example that is analogous to the ring R from Example 4.1. Before giving the
example, we need a definition. An ideal I of a ring R is said to satisfy the strong
AR property if the associated Rees ring ReesI R =

⊕
j≥0 I

j is noetherian. The
significance of this condition is that, if I satisfies the strong AR property, then it
also satisfies the usual Artin-Rees (AR) property; indeed this is the standard way
of proving the latter condition in commutative algebra. The same idea has been
useful in noncommutative algebra (see, for example, [10, §2] and [5]). Given that
the Jacobson radical of a semi-local noetherian PI algebra is automatically AR ([1,
Theorems 3.1.13 and 7.2.5]), it is natural to ask if it is also strongly AR.

The next example shows that it does not. Notice that, although the ring in
question is just a completion of the ring R from Example 4.1, the Zariskian property
fails on the opposite side.

Example 4.5. Let

R =
{(

f(x) g(x)
0 f(x2)

)
: f, g ∈ k[[x]]

}
+ yM2(k[[x, y]]) ⊂ M2(k[[x, y]]).

Then R is a prime noetherian complete local PI algebra over k. Moreover, R has
no weak adic filtration Γ such that grΓR is right noetherian. In particular, J(R)
does not satisfy the strong AR property.

Proof. The proof that R is a prime noetherian PI algebra over k is analogous to
that of Example 4.1 and is left to the reader. Clearly R is a complete local ring.

In order to complete the proof it suffices, by Corollary 2.6, to work in a factor
ring and we choose

(4.6) R′ = R/yM2(k[[x, y]]) =
{(

f(x) g(x)
0 f(x2)

)
: f(x), g(x) ∈ k[[x]]

}
.

The nilradical N of R′ is the set of strictly upper triangular matrices and is free
of rank 1 as a left R′/N -module and free of rank 2 as a right R′/N -module. Now
apply Corollary 2.6. �

Finally we justify a remark made after Theorem 2.4: In that theorem it is possible
to have a filtration that is Zariskian on either the left or the right.
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Corollary 4.7. Consider noetherian, PI algebras R with ideals I and J1 ⊆ J2

such that J2/J1 is a free left R/I-module of rank one and a free right R/I-module
of rank 2.

Then, there exists an example R1 of such a ring with a left Zariskian filtration
Γ1 and an example R2 of such a ring with a right Zariskian filtration Γ2.

Proof. The ringR2 is just the ringR from (1.2), and so it does satisfy the hypotheses
of the first paragraph. Set

(4.8) α =
(
x 0
0 x2

)
and β =

(
0 1
0 0

)
.

It is easy to see that R is generated by α and β and hence one has the standard N-
filtration Γ0 = k, Γ1 = k+kα+kβ and Γn = Γn1 for n ≥ 2. Let a and b be the images
of α and β in grΓR. Then, grΓR is generated by a and b and satisfies the relations
a2b = 0 = b2. Thus grΓR is spanned by the elements {an, ban, aban : n ≥ 0}. As
such, grΓR is a finitely generated right k[a]-module, and so is right noetherian. As
in the proof of Theorem 1.1, this suffices to prove that Γ is right Zariskian.

For R1 we take the ring R′ from (4.6). We define α and β by (4.8) and observe
that m = J(R′) = R′α+ R′β. Now use the m-adic filtration Γ defined by Γi = R′

if i ≥ 0 but Γi = m−i if i ≤ 0. Then βα = α2β ∈ m3. Hence in the associated
graded ring one finds that the images of these elements satisfy ba = 0 = b2. The
argument of the last paragraph shows that grΓR

′ is left noetherian and hence, by
[5, Proposition II.1.2.3], that Γ is left Zariskian. �

5. A dualizing module

As was remarked in the Introduction, if an affine noetherian PI algebra R has a
finite noetherian N-filtration, then R has a dualizing complex. Thus, one can ask
whether the ideas of the last section can be used to provide examples of PI rings
which do not have such a complex. This appears not to be the case; in this section
we check that the ring R from (1.2) does indeed have such a complex.

One advantage of this example is that we can work with modules rather than
complexes, and so we define an (R,R)-bimodule D to be a dualizing module if
(i) D is finitely generated and of finite injective dimension on both sides, (ii) the
natural maps R → End(DR) and Rop → End(RD) are isomorphisms, and (iii)
ExtiR(DR, DR) = ExtiR(RD,RD) = 0 for all i > 0. A dualizing module viewed as a
complex is a dualizing complex in the sense of Yekutieli [14].

The way we find a dualizing module for the ring R from (1.2) is through the
following observation: Identify C = k[x] with the diagonal matrices in R and set

(5.1) D1 = HomC(CR,C) and D2 = HomC(RC , C).

Thus, D1 is an (R,C)-bimodule and D2 is a (C,R)-bimodule. The key to our
construction is the following easy lemma.

Lemma 5.2. Let R ⊇ C be rings such that R is a finitely generated projective C-
module on both sides and C is a commutative noetherian algebra of finite injective
dimension. Define modules Di by (5.1). Suppose that CD1 and (D2)D are projective
modules and that one has ring isomorphisms EndR(D1) ∼= Rop and EndR(D2) ∼= R
through which D1

∼= D2 as R-bimodules. Then, D = D1 is a dualizing module for
R.
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Proof. It is clear that C is a dualizing module for itself. By [9, Theorem 11.66] one
has natural isomorphisms

(5.3) ExtiR(RN,RD1) = ExtiR(RN,HomC(CR,C)) ∼= ExtiC(CN,C),

for any finitely generated left R-module N . This implies that the injective dimen-
sion of RD1 is bounded by the injective dimension of CC. Since CD1 is projective,
(5.3) implies that Exti(RD1,RD1) = 0 for all i > 0. Similar assertions hold for
(D2)R. It follows from [11, Theorem 3.5] that RD1 and (D2)R are finitely gener-
ated. Therefore D = D1 is a dualizing module. �

Proposition 5.4. Let R be the ring defined by (1.2) and define modules Di by
(5.1). Then, D = D1 is a dualizing module for R.

Proof. We check that the hypotheses of the lemma are satisfied for C = k[x]. Since
R is a free left k[x]-module of rank two and a free right k[x]-module of rank three,
the proof is a routine computation which we will only outline. One first checks
that, under the natural module structures,

D1
∼=

R⊕R
R(xe12, e12)

and D2
∼= R/e12R,

where e12 = ( 0 1
0 0 ) is the matrix unit. Since e12 is one of the basis elements of R as

a left or right C-module, certainly CD1 and (D2)C are free. It follows that

EndR(D2) ∼= II(e12R)/e12R where II(aR) = {θ ∈ R : θaR ⊆ aR}.

Computing this out one finds that

EndR(D2) ∼=
{(

f(x2) g(x)
0 f(x4)

)
: f, g ∈ k[x]

}/
e12k[x2]

∼=
{(

f(x2) g(x2)
0 f(x4)

)
: f, g ∈ k[x]

}
∼= R.

Finally, under this isomorphism E = EndR(D2) ∼= R one finds that the modules
ED2 and RD1 become isomorphic, as is required to prove the proposition. �

It would be interesting to know whether this proof can be extended to work for
any ring S that is finitely generated as a module over a commutative subring. The
fact that the present proof depends upon the “lucky” isomorphism EndR(D2) ∼= R
makes this seem unlikely. By using ideas from [13], it can at least be extended to
Hopf algebras finitely generated as modules over commutative subalgebras.
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Added in proof

One of the questions raised in the introduction (whether noetherian affine PI
Hopf algebras must have finite injective dimension) has since been answered in the
positive. See Q. Wu and J. J. Zhang, Noetherian PI Hopf algebras are Gorenstein,
Trans. Amer. Math. Soc. 355 (2003), 1043–1066.
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