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MASS POINTS OF MEASURES ON THE UNIT CIRCLE
AND REFLECTION COEFFICIENTS

LEONID GOLINSKII

(Communicated by Andreas Seeger)

Abstract. Measures on the unit circle and orthogonal polynomials are com-
pletely determined by their reflection coefficients through the Szegő recur-
rences. We find the conditions on the reflection coefficients which provide the
lack of a mass point at ζ = 1. We show that the result is sharp in a sense.

1. Introduction

Let P be the set of all probability measures µ on the unit circle T = {|ζ| = 1} with
infinite support. The latter is defined as the smallest closed set with the complement
having µ-measure zero. The polynomials φn(z) = κnz

n + . . ., orthonormal on the
unit circle with respect to µ are uniquely determined by the requirement that κn > 0
and ∫

T
φn(ζ)φm(ζ) dµ = δn,m, n,m = 0, 1, . . . , ζ ∈ T.

The monic orthogonal polynomials Φn are Φn(z) = κ−1
n φn(z) = zn + . . ., and the

values an = an(µ) def= Φn(0) are known as the reflection coefficients.
Let us recall that the orthogonal polynomials (both monic and orthonormal) as

well as the measure itself are completely determined by their reflection coefficients
through the Szegő recurrences

(1) Φn(z) = zΦn−1(z) + anΦ∗n−1(z), n ∈ N def= {1, 2, . . .}, Φ0 = 1

(cf. [5, formula (11.4.7), p. 293]), and the connection between the reflection coeffi-
cients and the leading coefficients κn is given by

(2) κ2
n =

n∏
k=1

(
1− |an|2

)−1
, n ∈ N, κ0 = 1

(cf. [1, formula (8.6), p. 156]). Here the reversed ∗-polynomial of a polynomial pn
of degree n is defined by p∗n(z) def= zn pn(1/z̄). Moreover, each sequence an of points
from the open unit disk D comes up as a sequence of reflection coefficients for a
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certain uniquely determined probability measure µ. Hence, we have some sort of
parametrization of the set P with free parameters from D× D× . . ..

The problem we study in the present paper is the relation between the existence
of a mass point at ζ = 1 and behavior of the reflection coefficients. The argument
here relies upon the equivalence

(3) µ{ζ} > 0, ζ ∈ T ⇐⇒
∞∑
n=0

|φn(ζ)|2 <∞

(cf. [4, pp. 45–46], [2, § 20]). Note that within the Szegő class of measures, which
can be defined by the condition

∑∞
n=0 |an|2 < ∞, the sequence {κn} is increasing

and bounded, and hence
∞∑
n=0

|φn(ζ)|2 <∞ ⇐⇒
∞∑
n=0

|Φn(ζ)|2 <∞.

The starting point for us is the following result due to P. Nevai [3, Theorem 2.5].

Theorem. If the reflection coefficients an are real for all n and they are nonnega-
tive for all but finitely many values of n, then the corresponding measure µ has no
mass point at 1.

An example below shows that the first assumption of this theorem (which is
actually the subject of our investigation) cannot be discarded.

Example 1. Put

a1 =
−1 + i

2
, a2 =

−1− i
2

, ak =
1
k
, k ≥ 3,

which gives rise to some measure ν in the Szegő class. We have by (1) Φ1(z) = z+a1,
Φ2(z) = z2 + (a1 + a2a1)z + a2, so that

Φ1(1) = 1 + a1 =
1 + i

2
, Φ2(1) = 1 + a1 + a2 + a2a1 =

i

2
,

which is a pure imaginary number. Now keeping in mind that Φ∗m(1) = Φm(1),
write (1) at z = 1:

(4) Φn(1) = Φn−1(1) + anΦn−1(1), n ∈ N.
After separating the real and imaginary parts in (4) and iterating up, we come to

<Φn(1) = <Φ2(1)
n∏
k=3

(1 + ak) = 0,

=Φn(1) = =Φ2(1)
n∏
k=3

(1− ak) =
1
2

n∏
k=3

(
1− 1

k

)
=

1
n
, n ≥ 3.

It follows that Φn(1) is square summable and hence ν{1} > 0.

On the other hand, the following modification of Nevai’s theorem holds.

Theorem 1. Let <an ≥ 0 for all n ∈ N and

(5)
∞∑
n=1

n∏
k=1

(1− |=an|)2 =∞.

Then the corresponding measure µ has no mass point at 1.
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We start out with the following simple lemma.

Lemma 1. If <an ≥ 0 for all n ∈ N, then |=Φn(1)| ≤ <Φn(1).

Proof. We proceed by induction. It is clear that

<Φ1(1) = 1 + <a1 ≥ 1 > |a1| = |=Φ1(1)| .
Suppose that the statement is true for k = 1, 2, . . . , n− 1. Put

an = αn + iβn, Φn(1) = <Φn(1) + i=Φn(1) = un + ivn

and write (4) as a system of two linear recurrences
un = un−1 + αnun−1 + βnvn−1,

vn = vn−1 + βnun−1 − αnvn−1.
(6)

We want to show that un ± vn ≥ 0. We have
un + vn = un−1 (1 + αn + βn) + vn−1 (1− αn + βn)

≥ un−1 (1 + αn + βn)− |vn−1| |1− αn + βn|.
But |1 − αn + βn| ≤ 1 + αn + βn since

1 + αn + βn + 1− αn + βn = 2 + 2βn ≥ 0,
1 + αn + βn − 1 + αn − βn = 2αn ≥ 0

by the assumption of Lemma 1. Hence, un + vn ≥ 0.
The same reasoning applied to orthogonal polynomials generated by the sequence

{an} leads to the second inequality un − vn ≥ 0. �
Proof of Theorem 1. It is well known that all zeros of Φn lie inside D [1, p. 9], so
that Φn(1) 6= 0. By Lemma 1 this implies un = <Φn(1) > 0 for all n ∈ N.

For an = αn + iβn put ωn
def=
∏n
k=1 (1 + αk) ≥ 1 and divide the first equation in

(6) by ωn:
un
ωn

=
un−1

ωn−1
+

βn
1 + αn

vn−1

ωn−1
.

Next, by Lemma 1
un
ωn
≥ un−1

ωn−1
− |βn|

1 + αn

|vn−1|
ωn−1

≥ (1− |βn|)
un−1

ωn−1
.

Finally,

um ≥
um
ωm
≥ un−1

ωn−1

m∏
k=n

(1− |βk|) , m > n.

The latter inequality along with (5) yields
∞∑
n=0

|Φn(1)|2 ≥
∞∑
n=0

u2
n =∞.

The result follows immediately from (2) and (3). �
Note that (5) holds as long as

∑∞
n=1 |=an| <∞.

Corollary. If the reflection coefficients an satisfy <an ≥ 0 for all n ∈ N and they
are nonnegative for all but finitely many values of n, then the corresponding measure
µ has no mass point at 1.

It turns out that the first assumption in Theorem 1 is sharp in a sense.
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Theorem 2. For every ε > 0 there is a measure µ in the Szegő class with the re-
flection coefficients an such that <an ≥ −ε for all n ∈ N, an ≥ 0 for all sufficiently
large n and µ{1} > 0.

Proof. We follow the line of reasoning from the example above, but in a more
sophisticated way. For an = αn + iβn put

αk = −α, βk = (−1)kαk, k = 1, 2, . . . , 2p; ak =
1
k
, k ≥ 2p+ 1.

We will show that the parameters α and p can be found from the conditions

(7) 0 < α < ε, u2p = <Φ2p(1) = 0.

To that end let us go back to (4) and write (6) in the matrix form (the matrix
product is taken from right to left)[

un
vn

]
= (I + Vn)

[
un−1

vn−1

]
,

[
un
vn

]
=

x∏
1≤k≤n

(I + Vk)
[
1
0

]
,

where I is the 2× 2 identity matrix and

Vk =
(
αk βk
βk −αk

)
, k = 1, 2, . . . , n.

To meet u2p = 0 we need to choose p and α = αp in such a way that
x∏

1≤k≤2p

(I + Vk) =
(

0 ∗
∗ ∗

)
.

In our case for 1 ≤ m ≤ p

V2m = V+ =
(
−α −α
−α α

)
, V2m−1 = V− =

(
−α α
α α

)
and

x∏
1≤k≤2p

(I + Vk) = [(I + V+) (I + V−)]p .

Note also that

V− = JV+J, I + V− = J (I + V+) J, J =
(
−1 0

0 1

)
so that our matrix product is just the power of a single matrix

x∏
1≤k≤2p

(I + Vk) = [(I + V+)J ]2p = U2p
α , Uα

def=
(
−1 + α −α
α 1 + α

)
.

It is a matter of undergraduate linear algebra to find the eigenvalues of Uα,

λ1 = α+
√

1− α2 > 1, λ2 = α−
√

1− α2 < 0

(we assume that α < 1/2 and, hence, detUα = 2α2 − 1 < 0), and to reduce Uα to
diagonal form by means of a nonsingular transformation

T =
(

1 1
y1 y2

)
, T−1 =

1
y2 − y1

(
y2 −1
−y1 1

)



MASS POINTS 1775

with

y1 =
1− λ2

1− λ1
=

1− α+
√

1− α2

1− α−
√

1− α2
,

y2 =
1− λ1

1− λ2
=

1− α−
√

1− α2

1− α+
√

1− α2
= y−1

1 .

Finally, we arrive at the following expression for the object we are interested in:

U2p
α = T

(
λ2p

1 0
0 λ2p

2

)
T−1 =

1
y2 − y1

(
λ2p

1 y2 − λ2p
2 y1 ∗

∗ ∗

)
.

It remains only to choose p and α to satisfy λ2p
1 y2 = λ2p

2 y1 or, equivalently

(8)
(
λ2

λ1

)2p

=
y2

y1
,

(√
1− α2 − α√
1− α2 + α

)p
=
√

1− α2 − 1 + α√
1− α2 + 1− α

(note that both y1 and y2 are negative numbers).
Consider a transcendental equation(

1− tanx
1 + tanx

)p
= tan

x

2
,

which has a unique solution x = xp on the interval (0, π/4). It is clear that xp → 0
as p → ∞. Put αp = sinxp and pick p to have 0 < αp < ε. A routine calculation
shows that 

√
1− α2

p − αp√
1− α2

p + αp

p

=
(

1− tanxp
1 + tanxp

)p
,

√
1− α2

p − 1 + αp√
1− α2

p + 1− αp
=

cosxp − 1 + sinxp
cosxp + 1− sinxp

= tan
xp
2
,

so that both (8) and (7) hold.
Once this is done, the rest is clear in view of Example 1. Indeed, Φ2p(1) 6= 0

now implies =Φ2p(1) 6= 0, and for n ≥ 2p+ 1 we have

<Φn(1) = <Φ2p(1)
n∏

k=2p+1

(1 + ak) = 0,

=Φn(1) = =Φ2p(1)
n∏

k=2p+1

(
1− 1

k

)
=

2p
n
=Φ2p(1),

so that {Φn(1)} is a square summable sequence and µ{1} > 0. �

Remark. Theorem 2 shows that for every ε > 0 there is a measure µ in the Szegő
class with the reflection coefficients an such that |=an| ≤ ε for all n ∈ N, an ≥ 0
for sufficiently large n and µ{1} > 0. Therefore, the first assumption in Nevai’s
theorem is also sharp in the same sense.
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