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p-RIDER SETS ARE q-SIDON SETS

P. LEFÈVRE AND L. RODRÍGUEZ-PIAZZA

(Communicated by Andreas Seeger)

Abstract. The aim of this paper is to prove that for every p < 4
3

, every

p-Rider set is a q-Sidon set for all q > p
2−p · This gives some positive answers

for the union problem of p-Sidon sets. We also obtain some results on the
behavior of the Fourier coefficient of a measure with spectrum in a p-Rider
set.

Let G be an infinite metrizable compact abelian group, equipped with its normal-
ized Haar measure dx, and Γ its dual group (discrete and countable). For example,
when G is the unit circle of the complex plane, then Γ will be identified with Z by
p 7→ ep, where ep(x) = e2iπpx. The space of complex regular Borel measures over G,
equipped with the norm of total variation will be denoted by M(G). If µ ∈M(G),
its Fourier transform at the point γ is defined by µ̂(γ) =

∫
G
γ(−x)dµ(x). As usual

C(G) is the space of continuous functions on G equipped with the supremum norm
and P(G) is the space of trigonometric polynomials.

For B ⊂M(G) and Λ ⊂ Γ, set

BΛ = {f ∈ B| ∀γ /∈ Λ, f̂(γ) = 0}.
BΛ is the set of elements of B whose spectrum is contained in Λ.

Definition 0.1. Let 1 ≤ p < 2 and Λ a subset of Γ; Λ is a p-Sidon set if there
exists C > 0 such that for all f ∈ PΛ(G) : (

∑
λ∈Λ

|f̂(λ)|p)1/p ≤ C‖f‖∞.

1-Sidon sets are simply called Sidon sets.

The best constant C is called the p-Sidonicity constant of Λ and is denoted by
Sp(Λ). Obviously, Λ is a p-Sidon set implies Λ is a q-Sidon set for q > p. If Λ is a
p-Sidon set and not a q-Sidon set for any q < p, Λ is called a true p-Sidon set.

For more about these sets, see [B], [BP], [JW], [W] and more recently [L], [LQR].

Definition 0.2. A subset A of Γ is quasi-independent (resp. dissociated) if for
every (nγ)γ∈A ∈ {−1; 0; 1}A (resp. ∀(nγ)γ∈A ∈ {−2; . . . ; 2}A) with almost all nγ
equal to zero: ∏

γ∈A
γnγ = 1⇒ ∀γ ∈ A : γnγ = 1.
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We recall that if A is quasi-independent, then A is a Sidon set, with S1(A) ≤ 8.
In the sequel, we shall denote by [Q] the mesh spanned by a subset Q of Γ:

[Q] =
{ ∏

finite
γ∈Q

γnγ | nγ ∈ {−1, 0, 1}
}
.

We introduce the following notion. Lemma 1.2 below shows that quasi-indepen-
dent sets are a particular case of it.

Definition 0.3. Let β ≥ 1. A subset A of Γ shall be called an R-set of type β if
there is some constant B > 0 such that∑

k≥0

rk(1Γ)β−k ≤ B and ∀γ ∈ Γ,
∑
k≥1

r2k+1(γ)β−(2k+1) ≤ B

where rk(γ) denotes the number of words equal to γ, built on A, with length k.

Note that rk(γ) =card
{

(αa)a∈A ∈ {−1, 0, 1}A| γ =
∏
a∈A

aαa and
∑
|αa| = k

}
.

Moreover, in order to be an R-set of type β, it is sufficient to verify that for every
γ ∈ Γ and every k ≥ 0, rk(γ) ≤ Bbk, for some b < β.

Definition 0.4. We shall denote by Ca·s(G) the completion of trigonometric poly-
nomials for the norm

[[f ]] = E
∥∥∥∑
γ∈Γ

εγ f̂(γ)γ
∥∥∥
∞

where f ∈ P and (εγ)γ∈Γ is a family of independent Bernoulli variables with values
in {−1, 1}.

An equivalent norm is obtained replacing (εγ)γ∈Γ by a family (gγ)γ∈Γ of standard
gaussian independent variables (see [P1]). This space is intensively studied in [MP]
and [P1].

Following the result of Drury (“the union of two Sidon sets is a Sidon set”),
many improvements were achieved in the 70s for Sidon sets. Rider [R], particularly,
showed that they may be characterized by the inequality

∀f ∈ PΛ(G), ‖f̂‖1 =
∑
γ∈Γ

|f̂(γ)| ≤ C [[f ]] .

This led the second author to introduce and study the following notion (we use
the terminology “p-Rider” although these sets were named “p-Sidon ps” in [RP1],
[RP2])

Definition 0.5. Let p ∈ [1, 2). A subset Λ of Γ is p-Rider if there exists a constant
C such that

∀ f ∈ PΛ(G), ‖f̂‖p ≤ C [[f ]] .

The lowest constant in the previous inequality is denoted by ρp(Λ).

The main references on this subject are [RP1] and [RP2]. Some new results on
these sets are obtained in [LQR] and [LLQR].

This notion has no interest when p ≥ 2; any subset of Γ is a 2-Rider set because
the `2 norm of the coefficient is dominated by the norm [[.]].
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It is easy to see that the preceding notion is more general than the one of the
p-Sidon set. Indeed, let us fix Λ a p-Sidon set. For any trigonometric polynomial
f ∈ PΛ, we have

‖f̂‖p ≤ Sp(Λ)‖f‖∞.
Hence, the inequality still holds replacing f by fω =

∑
γ∈Λ

εγ(ω)f̂(γ)γ, for any

ω ∈ Ω. Thus, for every ω ∈ Ω, ‖f̂ω‖p = ‖f̂‖p. Now, integrating over Ω, we obtain
the inequality

‖f̂‖p ≤ Sp(Λ) [[f ]]
so Λ is a p-Rider set with ρp(Λ) ≤ Sp(Λ).

Concerning the converse, the problem is open in full generality. In her habili-
tation thesis, M. Déchamps-Gondim ([DG], p. 41) states (without proof) a result
privately communicated to her by J. Bourgain: Let p < 4

3 . Let Λ ⊂ Γ such that for
every f ∈ PΛ, ‖f̂‖p ≤ C [[f ]], for some constant C > 0. Then Λ is a q-Sidon set for
some q < 2.

In this paper, we shall prove the following theorem, which obviously implies the
preceding statement.

Main Theorem. Let Λ ⊂ Γ, p < 4
3 , s = p

2−p , ρ > 0 and ϕ(x) = x1/s

1+log(x) ·.
Let us consider the following assertions:

(i) Λ is a p-Rider set with ρp(Λ) ≤ ρ.
(ii) There exists a constant K > 0 depending on ρ such that:

∀ f ∈ CΛ(G), ∀t > 0, ϕ
(

card{γ ∈ Λ : |f̂(γ)| ≥ t}
)
≤ K

t
‖f‖∞.

(iii) Λ is a q-Sidon set for any q > s.

Then (i) =⇒ (ii) =⇒ (iii).

Remark 0.6. The second statement in the preceding theorem means that if f ∈
CΛ(G), then f̂ belongs to the Lorentz space {(an)/ supn≥1 ϕ(n)a∗n < ∞}, (a∗n)
being the decreasing rearrangement of {|an|}n≥1.

Remark 0.7. The main theorem also holds when we only assume p ∈ [1, 2) but if
p ≥ 4

3 , then s ≥ 2 so that the conclusion is not interesting.

The main result may appear more interesting with the following obvious corol-
lary.

Corollary 0.8. Let Λ ⊂ Γ. Then Λ is a p-Rider set for every p > 1 if and only if
Λ is a p-Sidon set for every p > 1.

1. The proof

The proof of the main theorem relies on some results obtained by the second
author in [RP1] (see also his thesis [RP2]) and on several lemmas.

Lemma 1.1. Let Λ ⊂ Γ, p ∈ [1, 2) and s = p
2−p . We suppose that Λ is a p-Rider

set.
Then there exists a constant C = C(ρp(Λ)) such that, for every quasi-independent

subset Q of Γ, we have

card(Λ ∩ [Q]) ≤ C
(
card(Q). log card(Q)

)s
.
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Proof. The set Λ ∩ [Q] is a subset of Λ and then a p-Rider set with ρp(Λ ∩ [Q]) ≤
ρp(Λ). By Theorem Th.6 of [RP1], there exists a quasi-independent subset I of

Λ ∩ [Q] with cardinal greater than δ
(
card(Λ ∩ [Q])

) 1
s , where δ depends only on

ρp(Λ).
We have card(I) = card(I ∩ Λ ∩ [Q]) = card(I ∩ [Q]). But the mesh condition

(see [K]) for the Sidon set I (with S1(I) ≤ 8) gives (k being an absolute constant)

card(I ∩ [Q]) ≤ k card(Q). log card(Q).

We then deduce
(
card(Λ∩[Q])

) 1
s ≤ Kcard(Q). log card(Q) and the result follows.

�

The following lemma is well known.

Lemma 1.2. Every quasi-independent set Q ⊂ Γ is an R-set of type 2.

Proof. Fix N ≥ 1 and write Q = {λj | j ≥ 0}. Now we use the Riesz product

P =
N∏
j=0

[
1 +

1
2

(λj + λ̄j)
]
.

As P is a product of nonnegative terms, it is itself nonnegative, so that ‖P‖1 =
P̂ (1Γ) (where 1Γ is the unit of Γ). As Q is a quasi-independent set, it is easy to see
that P̂ (1Γ) = 1. Now, for every γ ∈ Γ,

N∑
k=0

rk(γ)2−k = P̂ (γ) ≤ ‖P‖1 = 1. �

Lemma 1.3. Let ε ∈ (0, 1
2 ] and β > 0. There exists a measure σ on [0, 1

2β ] such
that∫

d|σ| ≤ cβ| log ε|,
∫
sdσ(s) = 1, ∀ k ∈ N \ {0},

∣∣∣∫ s2k+1dσ(s)
∣∣∣ ≤ εβ−2k

where c is an absolute constant.

Proof. Let σ0 be the measure on [0, 1
2 ] constructed in Lemma 3 [M], which verifies

‖σ0‖ =
∫
d|σ0| ≤ c0| log ε|,

∫
sdσ0(s) = 1, ∀ k ∈ N \ {0},

∣∣∣∫ s2k+1dσ0(s)
∣∣∣ ≤ ε,

where c0 is an absolute constant.
We then define σ by σ(A) = βσ0(βA), for any Borel set A. The measure σ has

norm ‖σ‖ = β‖σ0‖ and for every n ∈ N \ {0},
∫
sndσ(s) = β1−n

∫
tndσ0(t). The

result follows. �

The following proposition is a generalization of a result due to J.F. Méla [M],
which was stated only for dissociated sets. We shall use it when Q is a quasi-
independent set (see Lemma 1.2: take β = 2 and B = 1).

Proposition 1.4. Let Q ⊂ Γ be an R-set of type β and ε ∈ (0, 1
2 ].

There exists a measure µ ∈M(G) such that
(i) ‖µ‖ ≤ cβB| log ε|,
(ii) ∀γ /∈ [Q], µ̂(γ) = 0,
(iii) ∀γ /∈ Q, |µ̂(γ)| ≤ βBε,
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(iv) ∀γ ∈ Q, |µ̂(γ)| ≥ 1− βBε,
where c is an absolute constant.

Proof. The proof essentially uses the ideas of [M] and we adapt it to the present
arithmetical framework. For the sake of completeness, we give the whole proof for
R-sets.

We write Q = {γj : j ≥ 1} and fix an integer N ≥ 1. For every s ∈ [0, 1
2β ], the

following partial products (with spectrum contained in [Q]) are bounded in L1(G)
for every x ∈ T:

νs,N =
N∏
j=1

[
1 + s(e1(x)γj + e1(−x)γ̄j)

]
.

Indeed, it is a product of nonnegative terms, so its L1-norm coincides with its
Fourier coefficient at 1Γ, the unit of Γ. Hence the L1-norm is less than

N∑
k=0

rk(1Γ)sk ≤
N∑
k=0

rk(1Γ)β−k ≤ B,

where the constant B is the one in Definition 0.3.
We have for every x ∈ T, ‖νs,N (., x)‖

M(G) ≤ B, so that ‖νs,N‖M(G×T) ≤ B.
First, we note that for any γ ∈ Γ and any n ∈ Z, the Fourier coefficient ν̂s,N (γ, n)

is nonzero only if n =
N∑
1

εj for some (εj)1≤j≤N ∈ {−1, 0, 1}N and γ has the form

γ =
N∏
1

γ
εj
j .

In this case,
ν̂s,N (γ, n) =

∑
γ=
∏
γ
αj
j

n=
∑
αj

s
∑
|αj |

where the sum covers all the ways to write γ as
N∏
1

γ
αj
j and n =

N∑
1

αj with

αj ∈ {−1, 0, 1}.
Let us define the measure µs,N =

∫
T
νs,N (., x)e1(x)dx ∈ M(G), for s ∈ [0, 1

2β ].

Obviously, ‖µs,N‖ ≤ B.
Moreover, for every γ ∈ Γ, we have µ̂s,N (γ) = ν̂s,N (γ, 1). Hence, the Fourier co-

efficient µ̂s,N (γ) is nonzero only if γ =
N∏
1

γ
εj
j , where εj ∈ {−1, 0, 1} and

N∑
1

εj = 1.

If γ =
N∏
1

γ
εj
j , where εj ∈ {−1, 0, 1} with

N∑
1

|εj | even, then µ̂s,N (γ) = 0.

Indeed, the condition
N∑
1

εj = 1, i.e. |{εj = 1}| − |{εj = −1}| = 1, implies that

N∑
1

|εj | = |{εj = 1}|+ |{εj = −1}| is odd.
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We now use Lemma 1.3 and define the measure µN =
∫
µs,Ndσ(s).

We have ‖µN‖ ≤ cβB| log ε|.

For every γ ∈ Γ, µ̂N (γ) =
∫
µ̂s,N (γ)dσ(s). More precisely, if γ =

N∏
1

γ
εj
j , then

µ̂N (γ) =
∑

γ=
∏
γ
αj
j

αj∈{−1,0,1}

∫
s
∑
|αj |dσ(s).

Testing this in the special case γ = γi ∈ {γ1, . . . , γN}, we get

µ̂N (γi) =
∫
sdσ(s) +

∑
γ=
∏
γ
αj
j

αj∈{−1,0,1}

∫
s
∑
|αj |dσ(s)

where in the right-hand term, we necessarily have 3 ≤
∑
|αj | ≤ N .

Then

µ̂N (γi) =
∫
sdσ(s) +

∑
γ=
∏
γ
αj
j

3≤
∑
|αj |=2k+1≤N

∫
s2k+1dσ(s).

By Lemma 1.3, we then have∣∣µ̂N (γi)
∣∣ ≥ 1−

∑
γ=
∏
γ
αj
j∑

|αj |=2k+1;k≥1

∣∣∫ s2k+1dσ(s)
∣∣ ≥ 1−

∑
k≥1

r2k+1(γi)εβ−2k.

Since Q is an R-set of type β, we get∣∣µ̂N (γi)
∣∣ ≥ 1− βBε.

In the same way, when γ /∈ {γ1, . . . , γN},

µ̂N (γ) =
∑

γ=
∏
γ
αj
j

3≤
∑
|αj |=2k+1≤N

∫
s2k+1dσ(s) =

∑
3≤2k+1≤N

r2k+1(γ)
∫
s2k+1dσ(s)

so ∣∣µ̂N (γ)
∣∣ ≤ βBε.

As the sequence (µN )N is bounded in M(G) by cβB| log ε|, we deduce that there
is a subsequence converging (for the w∗-topology of M(G)) to a measure µ, which
has all the required properties. �

Note that the preceding property is still true when we assume that Q is a finite
union of R-sets (with a similar proof).

Proof of the main theorem. (i) =⇒ (ii). It is sufficient to prove it for a function
f ∈ CΛ(G) such that ‖f‖∞ = 1. For every t > 0, the set At = {γ ∈ Λ : |f̂(γ)| ≥ t}
is finite (as f̂ ∈ c0(Γ)). Applying Theorem Th.6 [RP1], as Λ is a p-Rider set, there
exists a quasi-independent set Q ⊂ At such that card(Q) ≥ δcard(At)

1
s , where δ

depends only on ρ.
Now, we fix for a moment ε ∈ (0, 1

4 ]. Proposition 1.4 (applied for the quasi-
independent set Q with β = 2 and B = 1) provides a measure µ, whose spectrum
is a subset of [Q], hence is finite.
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We then have

(1)
2c| log ε| ≥ ‖µ‖.‖f‖∞ ≥ ‖f ∗ µ‖∞

≥ ‖
∑
γ∈Q

f̂(γ)µ̂(γ)γ‖∞ − ‖
∑

γ∈Λ∩[Q]\Q
f̂(γ)µ̂(γ)γ‖∞.

But Q is a Sidon set (with constant less than 8) so

‖
∑
γ∈Q

f̂(γ)µ̂(γ)γ‖∞ ≥
1
8
‖f̂ µ̂‖`1(Q).

Using the fact that |µ̂| ≥ 1− 2ε and |f̂ | ≥ t on Q ⊂ At, we get

(2)
‖
∑
γ∈Q

f̂(γ)µ̂(γ)γ‖∞ ≥ 1
8
t(1− 2ε)card(Q) ≥ δ

8
t(1− 2ε)card(At)

1
s

≥ tδ

16
card(At)

1
s .

On the other hand, by the properties of µ,

(3)
‖

∑
γ∈Λ∩[Q]\Q

f̂(γ)µ̂(γ)γ‖∞ ≤ supγ∈[Q]\Q |µ̂(γ)|.‖f‖∞card(Λ ∩ [Q])

≤ 2εcard(Λ ∩ [Q]).

Injecting inequalities (2) and (3) into (1), we get

2c| log ε|+ 2εcard(Λ ∩ [Q]) ≥ tδ

16
card(At)

1
s .

We now choose ε =
(

2card(Λ ∩ [Q])
)−1

(we may and do suppose that card(At)
is large enough to have card(Λ ∩ [Q]) ≥ 2).

Using Lemma 1.1, we have

card(Λ ∩ [Q]) ≤ C
(
card(Q). log(card(Q))

)s ≤ C(card(At)
)2s
.

We get the following inequality:

1 + 2c log
(

2C
(
card(At)

)2s) ≥ tδ

16
card(At)

1
s .

Then, with M = max(1 + 2c log(2C), 4cs), we finally obtain

ϕ
(
card(At)

)
≤ 16M

δt

which is the first part of the theorem.
(ii) =⇒ (iii). The second part is very easy: Let f ∈ CΛ(G) with ‖f‖∞ = 1.

Note that for any q > s and r ∈ (s, q), there exists a constant kr > 0 such that

ϕ(x) ≥ krx
1
r for x ≥ 1, hence

(
card(At)

) 1
r ≤ Kr

t , where Kr depends only on ρ and
r.

For every n ≥ 0, let

Λn = {γ ∈ Λ : |f̂(γ)| ∈ (2−(n+1), 2−n]}.

We have
(
card(Λn)

) 1
r ≤ Kr2n+1.
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We now compute

‖f̂‖qq =
∑
n≥0

∑
γ∈Λn

|f̂(γ)|q ≤
∑
n≥0

2−nqcard(Λn) ≤
∑
n≥0

2−nq.Kr
r2r(n+1).

As q > r, the right-hand term converges and the theorem is proved. �

2. Applications

Is the union of two p-Sidon sets still a p-Sidon set? The problem is still open in
full generality. It was proved by Woodward [W] that the union of a p-Sidon set and
a Sidon set is still a p-Sidon set. On the other hand, it is obvious that the union of
two p-Rider sets is still p-Rider (this is due to the unconditionality of the character
basis in the space Ca·s(G)). Our main theorem implies

Corollary 2.1. Let p < 4
3 and s = p

2−p · The union of two p-Sidon sets is a q-Sidon
set for all q > s.

Indeed, the union of two p-Sidon sets is a p-Rider set hence q-Sidon.
As a special case, the class of subsets of Γ which are p-Sidon for every p > 1, is

stable under finite union.
On the other hand, the ideas used to prove the main theorem give a similar

result for the space MΛ(G) when Λ is a p-Rider set. These results are very close to
the ones obtained for p-Sidon sets in [L] (see Corollary 2.4).

Theorem 2.2. Let p ∈ [1, 2) and α = 2p
2−p · Let Λ ⊂ Γ, ρ > 0 and ψ(x) = x1/α

1+log(x) ·
Let us consider the following assertions:

(i) Λ is a p-Rider set with ρp(Λ) ≤ ρ.
(ii) There exist a constant K > 0 depending on ρ such that

∀ m ∈MΛ(G), ∀t > 0, ψ
(

card{γ ∈ Λ : |m̂(γ)| ≥ t}
)
≤ K

t
‖m‖

M(G) .

(iii) For every m ∈MΛ(G), we have m̂ ∈ `a, for any a > α.
Then (i) =⇒ (ii) =⇒ (iii).

Proof. We adapt the argument given in the main theorem. Let us fix a function
m ∈ L1

Λ(G), normalized by ‖m‖1 = 1. For every t > 0, the set At = {γ ∈ Λ :
|m̂(γ)| ≥ t} is finite (as m̂ tends to zero). Applying Theorem Th.6 [RP1], there
exists a quasi-independent set Q ⊂ At such that card(Q) ≥ δcard(At)

1
s , where δ

depends only on Λ.

Now, we take ε =
(

2card(Λ∩ [Q])
)− 1

2
and we can assume ε ∈ (0, 1

4 ]. Proposition
1.4 provides us with a measure µ. We then have

2c| log ε| ≥ ‖µ‖.‖m‖1 ≥ ‖m ∗ µ‖1 ≥ ‖
∑
γ∈Q

m̂(γ)µ̂(γ)γ‖1 − ‖
∑

γ∈Λ∩[Q]\Q
m̂(γ)µ̂(γ)γ‖1.

But Q is a Sidon set (with constant less than 8) and then a so-called Λ(2) set,
i.e., ‖

∑
γ∈Q

m̂(γ)µ̂(γ)γ‖1 ≥ k‖m̂µ̂‖`2(Q), where k > 0 is an absolute constant. We

get

‖
∑
γ∈Q

m̂(γ)µ̂(γ)γ‖1 ≥ kt(1− 2ε)card(Q)
1
2 ≥ 1

2
kδt card(At)

1
α .
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On the other hand, we have

‖
∑

γ∈Λ∩[Q]\Q
m̂(γ)µ̂(γ)γ‖1 ≤ 2εcard(Λ ∩ [Q])

1
2 = 1.

We conclude that there is some constant K (depending only on ρ) such that

ψ
(
card(At)

)
≤ K

t

Now, to conclude for every m ∈M(G), it suffices to apply the preceding result to
FN ∗m, where FN is an approximate identity. We then conclude ψ(card(B)) ≤ K/t
for arbitrary finite subsets B of {γ ∈ Λ : |m̂(γ)| ≥ t}, therefore for the whole set.
This gives the first part of the theorem.

The second part follows the scheme of the proof of the second part of the main
theorem and is left to the reader. �

The preceding theorem gives some results on the regularity of measures with
spectrum in a p-Rider set. Using a principle due to J. Fournier and L. Pigno [FP]
(see also [L]), we get that every p-Rider subset of Γ is a set of continuity: for every
ε > 0, there exists δ > 0 such that for every µ ∈M(G) with ‖µ‖ = 1,

lim
Γ\Λ
|µ̂(γ)| < δ ⇒ lim

Λ
|µ̂(γ)| < ε.

As an immediate consequence, every p-Rider set is a so-called Rajchman set:
every measure with spectrum in a p-Rider set has a Fourier transform whose coef-
ficients tend to zero at infinity.
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[LLQR] P. Lefèvre, D. Li, H. Queffélec, L. Rodŕıguez-Piazza, Lacunary sets and function spaces
with finite cotype, J. Functional Analysis 188 (2002), 272-291.
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continues, Sem. Géometrie des Espaces de Banach. Ecole Polytechnique 1977-78.
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