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THE PRODUCT OF A NONSYMMETRIC JACK POLYNOMIAL
WITH A LINEAR FUNCTION

DAN MARSHALL

(Communicated by John R. Stembridge)

Abstract. In this paper a decomposition in terms of the nonsymmetric Jack
polynomials is given for the product of any nonsymmetric Jack polynomial
Eη(z) with zi. This decomposition generalises a recurrence formula satisfied by
single variable orthogonal polynomials on the unit circle. The decomposition
also allows the evaluation of the generalised binomial coefficients

(η
ν

)
associated

with the nonsymmetric Jack polynomials for |η| = |ν|+ 1.

1. Introduction

Let κ := (κ1, . . . , κn) be a partition. The modulus of κ is defined by |κ| :=∑n
i=1 κi. The symmetric Jack polynomial Pκ := Pκ(z;α) is a function of n variables

z = (z1, . . . , zn) and has coefficients in the field Q(α) of rational functions of the
indeterminant α. It can be defined as the unique symmetric eigenfunction of the
differential operator

(1.1) D2(α) :=
n∑
j=1

z2
j

∂2

∂z2
j

+
2
α

∑
1≤j,k≤n
j 6=k

z2
j

zj − zk
∂

∂zj

that is of the form

(1.2) Pκ(z;α) = mκ(z) +
∑
λ<κ

uκλmλ(z).

In (1.2), mκ(z) is the monomial symmetric function in the variables z1, . . . , zn. The
ordering < is the dominance ordering on partitions having the same modulus. It is
defined by λ < κ iff λ 6= κ and

∑p
i=1(κi − λi) ≥ 0 for all 1 ≤ p ≤ n.

The symmetric Jack polynomials are a class of multi-variable orthogonal polyno-
mials on the unit circle. They possess a number of important properties including
analogues of properties held by classical single variable orthogonal polynomials. In
particular, they satisfy the Pieri formula (1.3) [13].
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Figure 1. The Young diagram of (7,6,4,3,3,2,1)

Presenting the Pieri formula requires some notation. The Young diagram of κ
is the set diag(κ) := {(i, j)|1 ≤ j ≤ κi, 1 ≤ i ≤ n} which is drawn with i increasing
from top to bottom and j from left to right. Each element of diag(κ) is called a node
of κ. If diag(κ) ⊂ diag(λ), then the skew diagram λ/κ is the set diag(λ)/ diag(κ).
The skew diagram λ/κ is said to be a vertical r-strip if it consists of r nodes, all of
which are in distinct rows. The Pieri formula is

(1.3) er(z)Pκ(z;α) =
∑

λ:λ/κ is a vertical r-strip

ψλ/κ(α)Pλ(z;α),

where

(1.4) er(z) =
∑

1≤i1<···<ir≤n
zi1 · · · zir

is the rth elementary symmetric function. For each node s = (i, j) of κ, the number
of points to the right, left, below and above s are its arm length aκ(s) := κi − j,
arm colength a′κ(s) := a′κ(j) := j − 1, leg length lκ(s) := #{k|k > i, j ≤ κk},
and leg colength l′κ(s) := l′κ(i) := i − 1. Let χ(λ/κ) denote the set of all nodes
(i, j) ∈ diag(λ) such that κi = λi and lκ(1, j) < lλ(1, j). Then

(1.5) ψλ/κ(α) :=
∏

s∈χ(λ/κ)

(αaλ (s) + lλ (s) + 1) (α(aκ (s) + 1) + lκ (s))
(αaκ (s) + lκ (s) + 1) (α(aλ (s) + 1) + lλ (s))

.

When n = 1, the Pieri formula reduces to

(1.6) zPk(z;α) = Pk+1(z;α).

This is a special case of a recurrence formula which applies to any class of single
variable orthogonal polynomials on the unit circle [14, p. 291].

The symmetric Jack polynomials are closely related to a more fundamental class
of orthogonal polynomials called the nonsymmetric Jack polynomials [8]. These
polynomials can be usefully employed to illuminate and simplify the theory of
their symmetric counterparts [2]. They also possess many interesting properties in
their own right. In this paper a decomposition in terms of the nonsymmetric Jack
polynomials is given for the product of any nonsymmetric Jack polynomial with
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zi. The existence of this decomposition was conjectured by Cherednik [3]. Like the
Pieri formula (1.3) the decomposition reduces to (1.6) when n = 1.

The derivation of this formula is similar to Knop and Sahi’s derivation of (1.3)
[6]. Knop and Sahi’s derivation exploits the theory of the recently introduced
interpolated symmetric Jack polynomials [9]. We shall proceed along similar lines
using the interpolated nonsymmetric Jack polynomials which are nonsymmetric
analogues of these polynomials [10, 5].

The interpolated nonsymmetric Jack polynomials are closely related to a class
of generalised binomial coefficients

(
η
ν

)
indexed by pairs of compositions [1]. As a

corollary we give an evaluation of these coefficients for |η| = |ν|+ 1.

2. Preliminaries

Let η := (η1, . . . , ηn) be a composition, that is, an n-tuple of non-negative in-
tegers. The modulus and Young diagram of η receive the same definition as that
given in Section 1 for partitions. The partition η+ is defined as the unique partition
obtained by permuting the components of η. The nonsymmetric Jack polynomial
Eη can be defined as the unique polynomial of the form

(2.1) Eη(z;α) = zη +
∑
µ≺η

aηµz
µ,

that is, an eigenfunction of each of the Cherednik operators
(2.2)

ξi := αzi
∂

∂zi
+
∑
p<i

zi
zi − zp

(1− sip) +
∑
p>i

zp
zi − zp

(1− sip) + 1− i, i = 1, . . . , n.

In (2.1), zη := zη1
1 · · · zηnn and ≺ is a partial ordering on compositions having the

same modulus. The ordering ≺ is defined by ν ≺ η iff

(2.3) either ν+ < η+, or else ν+ = η+ and ν < η.

The ordering < in (2.3) is the dominance ordering on compositions having the same
modulus and receiving the same definition as the dominance ordering on partitions.
The eigenvalue of Eη with respect to ξi is

(2.4) η̄i := αηi − l′η(i),

where l′η(i) is the leg colength of s = (i, j) with respect to the composition η.
The definition of leg colength given in Section 1 has to be extended to apply to
compositions. The extension is [11]

(2.5) l′η(i) := #{k|k < i, ηk ≥ ηi}+ #{k|k > i, ηk > ηi}.

Arm length, arm colength, and leg length are also extended. Arm length and
colength receive the same definition as in Section 1. Leg length has definition [7]

(2.6) lη(s) = #{k|k < i, j ≤ ηk + 1 ≤ ηi} + #{k|k > i, j ≤ ηk ≤ ηi}.

A diagrammatic computation of (2.5) and (2.6) is undertaken in Figure 2.
The interpolated Jack polynomials are generalisations of the classical shifted

polynomials

(2.7) (−1)p(−z)p := z(z − 1) · · · (z − p+ 1).
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l’(s)=2

s s

l(s)=3

Figure 2. In the left-hand side diagram the leg length is calcu-
lated as the number of rows which have shaded boxes and no un-
shaded boxes to the right of the shaded boxes. In the right-hand
side diagram the leg colength is calculated as the number of rows
which have any box shaded.

The interpolated nonsymmetric Jack polynomial E∗η can be defined as the unique
polynomial satisfying:

i): E∗η ( ν̄α ) = 0, |ν| ≤ |η|, ν 6= η;
ii): E∗η( η̄α ) 6= 0;
iii) : E∗η(z) = zη +

∑
|ν|≤|η|
ν 6=η

bηνz
ν .

Two properties of the polynomials E∗η are given by the following two lemmas.

Lemma 2.1 ([5]). If ηn = 0, then

(2.8) E∗η(z1, . . . , zn−1,−
n− 1
α

) = E∗η′(z1, . . . , zn−1),

where η′ := (η1, . . . , ηn−1).

Lemma 2.2 ([5]). Define an operator ∆ so that for any polynomial f(z),

(2.9) ∆f(z1, . . . , zn) := f(zn − 1, z1, . . . , zn−1).

We have

(2.10) E∗Φη(z) = (zn +
n− 1
α

)∆E∗η(z),

where Φη := (η2, . . . , ηn, η1 + 1).

The interpolated Jack polynomial E∗η is defined to vanish for all z = ν̄
α where

|ν| ≤ |η|, ν 6= η. It turns out that E∗η vanishes on a larger domain. To state
this domain requires introducing a further partial ordering on compositions. For
compositions ν, η we say that ν �′ η iff there exists a permutation π such that

(2.11) νi < ηπ(i) if i < π(i), and νi ≤ ηπ(i) if i ≥ π(i).

This partial order reduces to the usual inclusion relation among diagrams when
restricted to partitions.

Proposition 2.3 ([5]). If η �′ µ, then E∗η( µ̄α ) = 0.
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The minimal elements lying above η according to ≺′ play an important role in the
next section. Let I = {i1, . . . , ir} where i1 < . . . < ir. We define the composition
cI(η) := µ by:

i): µij = ηij+1 , j = 1, . . . , r − 1;
ii): µir = ηi1 + 1;
iii): µi = ηi, i /∈ I.

For example, if

η := (. . . , ηi1 , . . . , ηi2 , . . . , ηi3 , . . . , ηir−1 , . . . , ηir , . . .),

then
cI(η) := (. . . , ηi2 , . . . , ηi3 , . . . , ηi4 , . . . , ηir , . . . , ηi1 + 1, . . .).

Clearly η ≺′ cI(η). The following gives the converse.

Lemma 2.4 ([5]). If η ≺′ µ, then there exists an I such that cI(η) �′ µ.

Define the operator σi by

(2.12) σi := si +
1
α

1− si
zi − zi+1

, i = 1, . . . , n− 1,

where si is the transposition operator that acts on functions of z := (z1, . . . , zn) by
interchanging the variables zi and zi+1. The interpolated Jack polynomial E∗η is a
simultaneous eigenfunction of the family of operators

(2.13) Ξ̃i := zi − σi · · ·σn−1(zn +
n− 1
α

)∆ σ1 · · ·σi−1, i = 1, . . . , n− 1.

These operators can be used to show that the interpolated Jack polynomials are
triangular with respect to the nonsymmetric Jack polynomials. For each polynomial
E∗η we can write

(2.14) E∗η(z) = Eη(z) +
∑
|ν|<|η|

ãηνEν(z)

for coefficients ãην . This decomposition shows that the top homogeneous com-
ponent of any interpolated Jack polynomial E∗η (z) is the Jack polynomial Eη(z).
Using (2.14) we can define an isomorphism Ψ mapping each Jack polynomial Eη to
its corresponding interpolated polynomial E∗η . This isomorphism allows us to state
the following important inversion formula.

Proposition 2.5 ([5]). Define

(2.15) Z̃i := σi · · ·σn−1(zn +
n− 1
α

)∆σ1 · · ·σi−1, i = 1, . . . , n− 1.

We have

(2.16) Z̃iΨ = Ψzi.

3. A Jack polynomial decomposition

We first give an evaluation formula for the interpolated Jack polynomials.

Proposition 3.1. We have

(3.1) E∗η(
η̄

α
) =

d′η
α|η|
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where

(3.2) d′η :=
∏

s∈diag(η)

(α(aη(s) + 1) + lη(s)) .

Proof. We proceed by induction on n + |η|. First suppose that ηn = 0. Then
( η̄α )n = −n−1

α . Applying Lemma 2.1 and the inductive hypothesis we obtain

(3.3) E∗η(
η̄

α
) = E∗µ(

µ̄

α
) =

1
α|η|

∏
s∈diag(µ)

(α(aµ(s) + 1) + lµ(s))

where µ := (η1, . . . , ηn−1). We obtain (3.1) since aη(s) = aµ(s) and lη(s) = lµ(s)
for each s ∈ diag(µ) = diag(η).

Now suppose that ηn > 0. Applying Lemma 2.2 gives

(3.4) E∗η(z) = (zn +
n− 1
α

)E∗µ(zn − 1, z1, . . . , zn−1)

where µ := Φ−1η. Evaluating (3.4) at z = η̄
α we obtain

E∗η(
η̄

α
) = (ηn +

n− 1− l′η(n)
α

)E∗µ(
µ̄

α
)

=
1
α|η|

(α (aη(n, 1) + 1) + lη(n, 1))
∏

s∈diag(µ)

(α (aµ(s) + 1) + lµ(s)) .(3.5)

In the second line we have used the inductive hypothesis together with the identities
ηn = aη(n, 1) + 1 and lη(n, 1) = n − 1 − l′η(n). Now consider the bijection ψ :
diag(µ) 7→ diag(Φµ)/{(n, 1)} where

(3.6) ψ(i, j) :=
{

(n, j + 1) if i = 1,
(i− 1, j) if i > 1.

We obtain (3.1) by noting that aµ(s) = aΦµ(ψs) and lµ(s) = lΦµ(ψs) for each
s ∈ diag(µ). �

Proposition 3.2. The action of Z̃i on f(z) is given by

(3.7) Z̃if(z) =
∑

I⊆{1,...,n}
i∈I

a
(i)
I (z)f(c−1

I (z)).

The rational function a
(i)
I (z) can be expressed as

(3.8) a
(i)
I (z) = χ

(i)
I (z)AI(z)BI(z)
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where

AI(z) :=
1

αs−1(zts − zt1 − 1)

s−1∏
u=1

1
(ztu − ztu+1)

,(3.9)

BI(z) :=

 n∏
j=ts+1

zts − zj − 1
α

zts − zj

(zts +
n− 1
α

)
(3.10)

×

t1−1∏
j=1

zts − 1− zj − 1
α

zts − 1− zj

s−1∏
u=1

tu+1−1∏
j=tu+1

ztu − zj − 1
α

ztu − zj

 ,

χ
(i)
I (z) :=

{
ztk−1 − zi if i = tk, k ∈ {2, 3, . . . , s},
zts − zi − 1 if i = t1,

(3.11)

and I = {t1, . . . , ts}, 1 ≤ t1 < · · · < ts ≤ n.

Proof. The action of σi on any polynomial f(z) is given by

(3.12) σif(z) = Aif(z) + Bif(z),

where

Ai :=
1

α(zi − zi+1)
, Bi :=

zi − zi+1 − 1
α

zi − zi+1
si.

Given definition (2.15) of Z̃i we can write

(3.13) Z̃i =
∑

1≤t1<···<ts≤n
i=tk

Utk · · ·UtsUt1 · · ·Utk−1 ,

where

Utj := AtjBtj+1 · · · Btj+1−1, 1 ≤ j < k,(3.14)

Uts := Ats−1Bts · · · Bn−1(zn +
n− 1
α

)∆B1 · · · Bt1−1,(3.15)

Utj := Atj−1Btj · · · Btj+1−2, k < j < s,(3.16)

and

Ui :=
{
Bi · · · Btk+1−2 if i 6= s,
Bi · · · Bn−1(zn + n−1

α )∆B1 · · · Bt1−1 if i = s.
(3.17)

By applying (3.13) to f(z) we can directly compute (3.7). �

We are now in a position to derive an expansion of ziEη in terms of the Jack
polynomials.

Proposition 3.3. We have

(3.18) ziEη(z) = αd′η
∑

I⊆{1,...,n}
i∈I

a
(i)
I ( cI(η)

α )
d′cI(η)

EcI(η)(z).

Proof. The nonsymmetric Jack polynomials Eη with |η| = d form a basis for the
homogeneous polynomials of degree d. Hence we can write

(3.19) ziEη(z) =
∑

|µ|=|η|+1

cµEµ(z)
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for coefficients cµ. Applying Ψ to both sides of (3.19) and using the inversion
formula (2.16) gives

(3.20) Z̃iE
∗
η(z) =

∑
|µ|=|η|+1

cµE
∗
µ(z).

We now evaluate (3.20) at z = λ̄
α where |λ| = |η|+ 1. It follows from the vanishing

properties of the interpolated Jack polynomials and Proposition 3.2 that

(3.21) cλ =
∑

I⊆{1,...,n}
i∈I,cI(η)=λ

a
(i)
I ( cI(η)

α )E∗η( η̄α )

E∗cI(η)(
cI(η)
α )

.

We obtain (3.18) by applying Proposition 3.1 to (3.21). �

We can make two improvements to the formula (3.18). First, we can simplify
the coefficient a(i)( cI (η)

α ).1 Let

B̃I(z) :=

 n∏
j=ts+1

zt1 + 1− zj − 1
α

zt1 + 1− zj

(zt1 + 1 +
n− 1
α

)
(3.22)

×

t1−1∏
j=1

zt1 − zj − 1
α

zt1 − zj

 s∏
u=2

tu−1∏
j=tu−1+1

ztu − zj − 1
α

ztu − zj

 ,

χ̃
(i)
I (z) :=

{
zi − ztk+1 if i = tk, k ∈ {1, 2, 3, . . . , s− 1},
zi − zt1 − 1 if i = ts,

(3.23)

where I = {t1, . . . , ts}, 1 ≤ t1 < · · · < ts ≤ n. We have B̃I( ηα ) = BI(
cI(η)
α ) and

χ̃
(i)
I ( ηα ) = χ

(i)
I ( cI(η)

α ). Since AI( ηα ) = AI(
cI (η)
α ), it follows that

(3.24) a
(i)
I (

cI(η)
α

) = χ̃
(i)
I (

η̄

α
)AI(

η̄

α
)B̃I(

η̄

α
).

Second, we can restrict the domain of summation in (3.18) by removing a number
of vanishing terms. This allows us to give a unique decomposition of ziEη in terms
of the nonsymmetric Jack polynomials.

Proposition 3.4. Let I := {t1, . . . , ts} with 1 ≤ t1 < · · · < ts ≤ n and I 6= ∅. We
call I maximal with respect to η iff:

i): ηj 6= ηt1 , j = 1, . . . , t1 − 1,
ii): ηj 6= ηtu , j = tu−1 + 1, . . . , tu − 1 and u = 2, . . . , s,
iii): ηj 6= ηt1 + 1, j = ts + 1, . . . , n.

Let Jη be the set of non-empty subsets of {1, . . . , n} which are maximal with respect
to η. The decomposition of ziEη in terms of the nonsymmetric Jack polynomials is
given by

(3.25) ziEη(z) = αd′η
∑
I∈Jη
i∈I

χ̃
(i)
I ( η̄α )AI( η̄α )B̃I( η̄α )

d′cI(η)

EcI(η)(z).

1This simplification was pointed out to me by David McAnally.
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Proof. If I is a non-empty subset of {1, . . . , n} with I /∈ Jη, then B̃I( η̄α ) = 0. Hence,
we can restrict (3.18) to range over Jη. Furthermore, if I, I ′ ∈ Jη and cI(η) = cI′(η),
then I = I ′. It follows that each Jack polynomial in the restricted sum only appears
once. �

4. Generalised binomial coefficients

The classical binomial coefficients

(4.1)
(
l

p

)
:=

l!
(l − p)! p!

occur in the identities

(4.2) ezzp =
∞∑
l=p

(
l

p

)
p!
l!
zl

and

(4.3) (1 + z)l =
l∑

p=0

(
l

p

)
zp.

Rather than using (4.1) to define the binomial coefficients we could use either
(4.2) or (4.3). Taking this latter perspective, we can define generalised binomial
coefficients by an appropriate Jack polynomial generalisation of (4.2) or (4.3) [1, 12].
For |η| ≥ |ν|, we can define the generalised nonsymmetric binomial coefficients

(
η
ν

)
by

(4.4)
Eη(1 + z)
Eη(1n)

=
∑

ν||ν|≤|η|

(
η

ν

)
Eν(z)
Eν(1n)

.

This identity reduces to (4.3) when n = 1. Using (4.4) to define
(
η
ν

)
we can derive

the natural Jack polynomial generalisation of (4.2) (see e.g. [4])

(4.5)
α|η|

d′η
ee1(z)Eη(z) =

∑
ν||ν|≥|η|

α|ν|

d′ν

(
ν

η

)
Eν(z)

where e1(z) is the first elementary symmetric function defined by (1.4). Alterna-
tively, we may use (4.5) to define the generalised binomial coefficients and derive
(4.4) as a consequence.

The generalised binomial coefficients are closely related to the interpolated Jack
polynomials via the formula [12]

(4.6)
(
η

ν

)
=
E∗ν (η)
E∗ν (ν)

.

This formula generalises the classical identity

(4.7)
(
l

p

)
=

(−1)p(−l)p
(−1)p(−p)p

,

which relates the binomial coefficients
(
l
p

)
to the classical shifted polynomials.

Using the decomposition of the product of Eη(η) with zi we can give an evalua-
tion of the generalised binomial coefficients for a restricted domain. We first require
an analogue of (1.3) when r = 1.
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Proposition 4.1.

(4.8) e1(z)Eη(z) = −αd′η
∑
I∈Jη

AI( η̄α )B̃I( η̄α )
d′cI(η)

EcI(η)(z).

Proof. It follows from (3.25) that

(4.9) (
n∑
i=1

zi)Eη(z) = αd′η
∑
I∈Jη

(
∑
i∈I

χ̃
(i)
I (

η̄

α
))
AI( η̄α )B̃I( η̄α )

d′cI(η)

EcI (η)(z).

The identity (4.8) follows since e1(z) =
∑n
i=1 zi and

∑
i∈I χ̃

(i)
I ( η̄α ) = −1. �

Corollary 4.2. Suppose |µ| = |η|+ 1. Then

(4.10)
(
µ

η

)
= −AI(

η̄

α
)B̃I(

η̄

α
),

where µ = cI(η). If there is no I such that µ = cI(η), then
(
µ
η

)
= 0.

Proof. It follows from (4.5) that

(4.11) e1(z)Eη(z) = αd′η
∑

|ν|=|η|+1

1
d′ν

(
ν

η

)
Eν(z).

Comparison with (4.8) gives (4.10). �
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