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A PRODUCT DECOMPOSITION
OF INFINITE SYMMETRIC GROUPS

ÁKOS SERESS

(Communicated by Stephen D. Smith)

Abstract. We prove that for any infinite κ, the full symmetric group Sym(κ)
is the product of at most 14 abelian subgroups. This is a strengthening of a
recent result of M. Abért.

1. Introduction

For a cardinality κ, where κ can be finite or infinite, let f(κ) denote the minimum
cardinality λ such that Sym(κ) is the product of λ abelian subgroups. For positive
integers n, it is easy to see that f(n) ≥ log3 n, and M. Abért [Ab] proved that
f(n) ≤ 3 log2 n. Abért also proved the surprising result that for all infinite κ,
f(κ) is bounded from above by an absolute constant; his construction shows that
f(κ) ≤ 161. The purpose of this note is to strengthen this result.

Theorem 1. Let κ be any infinite cardinality. Then the full symmetric group
Sym(κ) can be written as the product of 14 abelian subgroups. Namely, there are
four abelian subgroups A,B,C,D ≤ Sym(κ) such that

Sym(κ) = ACABCABABDBABA.

For κ = ω, Abért also proved that there are two abelian subgroups A,B ≤
Sym(ω) such that Sym(ω) = (AB)144A (i.e., Sym(ω) can be written as the prod-
uct of 289 abelian subgroups, using only two different subgroups as terms in the
product). Abért’s construction that showed f(κ) ≤ 161 uses three different sub-
groups, and P. Komjáth [Ko] proved that one of these can be expressed as a short
product of the other two, yielding Sym(κ) = (AB)96A. In the case κ = 2ω, Abért
and Keleti [AK] also demonstrated that Sym(2ω) = (AB)104A for some abelian
subgroups A,B. Moreover, combining the methods of [AK] and [Ko], one can
show that Sym(κ) = (AB)40A for any infinite κ (see Remark 15 in [AK]). In this
direction, our best result is the following.

Theorem 2. Let κ be any infinite cardinality. Then there exist abelian subgroups
A,B ≤ Sym(κ) such that Sym(κ) = (AB)16A.

The bound f(κ) ≤ 14 is small enough that we can start to speculate about the
exact value of f(κ). Ito [It] proved that if a group G is the product of two abelian
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subgroups, then G′ is abelian. Since the derived subgroup of Sym(κ) is not abelian,
Ito’s theorem implies that f(κ) ≥ 3 for all infinite κ. We conjecture that f(κ) < 10.
As a first step, it would be interesting to decide whether f(κ) = 3 holds for some
κ. We also conjecture that f(κ) is the same for all infinite κ.

Although the factorization of infinite groups into a product of two subgroups has
an extensive literature (see the monograph [AFG] and its references), the study of
products of more than two components seems to be more recent. Groups which can
be written as the product of finitely many cyclic subgroups have been investigated
by Lubotzky [Lu], Platonov and Rapinchuk [PR], and Tavgen [Ta]. Groups as
products of abelian subgroups were studied by Abért, Pálfy, and Pyber [APP], who
prove that for any field K and finite dimension n, the special linear group SL(n,K)
is the product of 60 abelian subgroups.

2. The groups

In this section, we define the four groups A,B,C,D mentioned in Theorem 1,
and introduce the notation used in the paper. As usual, we identify a cardinality κ
with the set of ordinals less than κ. We use multiplicative notation for all groups.

We shall work most of the time with two abelian groups A and B, each having κ
orbits of size κ, such that each orbit of A intersects each orbit of B in exactly one
point. Therefore, to simplify notation, we identify the underlying set of Sym(κ)
with Ω := κ× κ, which reflects this orbit structure.

For α < κ, let Aα be an abelian group that acts transitively (and so regularly)
on the vertical line Ψα := {(α, β) ∈ Ω | β < κ}, and define A :=

∏
α<κAα.

Similarly, let Bα be an abelian group that acts transitively on the horizontal line
Φα := {(β, α) ∈ Ω | β < κ}, and define B :=

∏
α<κBα.

Let ∆ := {(α, α) ∈ Ω | α < κ} denote the diagonal in Ω. The third group C
is cyclic, and is generated by some c ∈ Sym(Ω) that maps Ω \∆ onto ∆ (and so
maps ∆ onto Ω \ ∆). The fourth group D is the product of cyclic groups. Let
∆ =

⋃
α<κ ∆α be a partition of the diagonal into κ sets such that |∆α| ≤ ω for

each α < κ, for each positive integer n there are κ sets of size n among the ∆α,
and there are κ sets of size ω among the ∆α. Let Dα be a transitive cyclic group
on ∆α, and let D :=

∏
α<κDα. Note that D fixes Ω \∆ pointwise.

Our basic tool is the following simple lemma.

Lemma 3. Let h ∈ Sym(Ω), and let Γ be a subset of ∆ such that Γh ⊆ ∆. Then
there exist a ∈ A and b ∈ B such that the restrictions h|Γ and ab|Γ are equal.

Proof. For (α, α) ∈ Γ, we define aα ∈ Aα the following way. If (α, α)h = (β, β),
then let aα be the unique element of Aα such that (α, α)aα = (α, β). Let a :=∏

(α,α)∈Γ aα.

After that, for (β, β) ∈ Γh, we define bβ ∈ Bβ . If (β, β)h
−1

= (α, α), then let bβ
be the unique element of Bβ such that (α, β)bβ = (β, β). Let b :=

∏
(β,β)∈Γh bβ .

Clearly, h|Γ = ab|Γ. �

3. Proof of Theorem 1

Given g ∈ Sym(Ω), we shall write g as a product of elements of our groups in two
steps. In the first step, we construct x ∈ ACABCA such that x−1g has a significant
number of fixed points, where we shall define the term “significant” in a precise
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sense. In the second step, we write y := x−1g as an element of ABABDBABA.
Then g = xy, and xy ∈ (ACABCA)(ABABDBABA) = ACABCABABDBABA.

We start with the construction of x. Recursively for α < κ, we define sets
Xα ⊂ Ψα and an element ψα ∈ Ψα \Xα satisfying the following properties:

(i) There exists tα ∈ Aα such that Xα = {(α, β)tα | β ≤ α} (i.e., Xα is a
translate of the below-diagonal portion of Ψα, including the diagonal);

(ii) ψgα 6∈
⋃
β≤αXβ ; and

(iii) {ψgβ | β < α} ∩Xα = ∅.
Such a set Xα exists, since (iii) excludes less than κ elements of Aα which cannot
be used as tα in the definition of Xα. Similarly, (ii) excludes less than κ elements
of Ψα which cannot be used as ψα. Let X :=

⋃
α<κXα.

Let a1 be the unique element of A which maps {ψα | α < κ} onto ∆. Then
(ii) and (iii) ensure that Xa1 ⊆ Ω \∆ and Xg−1a1 ⊆ Ω \ ∆. Hence Xg−1a1c ⊆ ∆
and Xa1c ⊆ ∆. Applying Lemma 3 with Γ := Xg−1a1c and h := c−1a−1

1 ga1c, we
obtain that there are a2 ∈ A and b2 ∈ B such that h|Γ = a2b2|Γ. Then for x :=
a1ca2b2c

−1a−1
1 ∈ ACABCA, we have that (γ, δ)g = (γ, δ)x for all (γ, δ) ∈ Xg−1

.
We record what we have proved so far.

Lemma 4. There exist a1, a2 ∈ A and b2 ∈ B such that the permutation x =
a1ca2b2c

−1a−1
1 ∈ ACABCA satisfies the property that x−1g fixes X pointwise. �

In the second step, we have to write y := x−1g as a short product. The basic idea
is similar to the one used in the construction of x: namely, we conjugate y such that
the points moved by y are all mapped into ∆, and write the appropriate permutation
of ∆ as a short product. However, we need a strengthening of Lemma 3, since we
also have to ensure that Ω \∆ remains fixed pointwise.

Lemma 5. Let h ∈ Sym(Ω), such that h fixes Ω \ ∆ pointwise, and h also fixes
κ elements of ∆ pointwise. Then there exist a ∈ A, b ∈ B, and d ∈ D such that
h = abdb−1a−1 ∈ ABDBA.

Proof. The assumption that h fixes κ elements of ∆ ensures that there exists some
d ∈ D with the same cycle structure as h, and so there exists some r ∈ Sym(Ω)
which fixes Ω \∆ pointwise, and conjugates h to d. By Lemma 3, there are a ∈ A
and b ∈ B such that r|∆ = ab|∆. This means that h = abdb−1a−1, since abdb−1a−1

fixes Ω \∆ pointwise. �

Lemma 6. (a) There exist a3 ∈ A and b3 ∈ B such that b3a3 moves all points of
the closed upper triangle {(α, β) ∈ Ω | α ≤ β} into ∆.

(b) There exist a4 ∈ A and b4 ∈ B such that a4b4 moves all points of the closed
lower triangle {(α, β) ∈ Ω | α ≥ β} into ∆.

(c) In addition, there exists a5 ∈ A such that a5b3a3 moves all points of Ω \X
and κ points of X into ∆.

Proof. (a) Recursively for α < κ, we define uα ∈ Bα with the property that the
projection of {(γ, α)uα | γ ≤ α} onto the first coordinate is disjoint from the
projections of the sets {(γ, β)uβ | γ ≤ β}, for all β < α. Formally, we define
uα ∈ Bα such that the sets {δ < κ | (∃γ ≤ α) ((γ, α)uα = (δ, α))} and⋃

β<α

{δ < κ | (∃γ ≤ β) ((γ, β)uβ = (δ, β))}
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are disjoint. Such uα exists, since the previously defined uβ exclude less than κ
elements of Bα which cannot be used as uα. Let b3 :=

∏
α<κ uα.

Since {(α, β) ∈ Ω | α ≤ β}b3 intersects each vertical line Ψα in at most one
point, there exists a3 ∈ A which maps this set into ∆.

(b) The proof is the same as in part (a), reversing the roles of A and B.
(c) Let a5 :=

∏
α<κ t

−1
α for the permutations tα ∈ Aα used in the definition of

Xα. Then a5 maps Ω \X onto the open upper triangle {(α, β) ∈ Ω | α < β}, and
Xa5 ⊃ ∆. Therefore, by part (a), a5b3a3 maps all points of Ω \X and κ points of
X into ∆. �
Lemma 7. Let a3, a5 ∈ A and b3 ∈ B as defined in Lemma 6. Then there ex-
ist a6 ∈ A, b6 ∈ B, and d ∈ D such that y = a5b3a3a6b6db

−1
6 a−1

6 a−1
3 b−1

3 a−1
5 ∈

ABABDBABA.

Proof. By Lemma 6(c), the conjugate h := a−1
3 b−1

3 a−1
5 ya5b3a3 of y fixes Ω \ ∆

pointwise, and h also fixes κ elements of ∆ pointwise. Hence, by Lemma 5, h =
a6b6db

−1
6 a−1

6 for some a6 ∈ A, b6 ∈ B, and d ∈ D. �
By Lemmas 4 and 7, g = xy ∈ ACABCABABDBABA. Since in this argument

g was an arbitrary element of Sym(Ω), Theorem 1 follows.

4. Proof of Theorem 2

Given g ∈ Sym(Ω), we define x and y as in Section 3.

Lemma 8. x ∈ (AB)4A.

Proof. By Lemma 4, x = a1ca2b2c
−1a−1

1 for some a1, a2 ∈ A and b2 ∈ B. Hence it
is enough to express c as a short product of elements of A,B.

P. Komjáth [Ko] proved that for any Γ ⊂ Ω satisfying |Γ| = κ and |Ω \ Γ| = κ,
there exists p ∈ ABABA or p ∈ BABAB such that Γp = ∆. Since Γ := Ω \ ∆
satisfies this property, we obtain that c can be chosen to be in ABABA∪BABAB.

In fact, analyzing the proof in [Ko], it turns out that Ω\∆ is in the class C+ of sets
defined in that paper, and so Lemmas 3, 4, 5 of [Ko] imply that Ω\∆ can be mapped
onto ∆ by some element of ABAB or BABA. Moreover, since Ω\∆ is invariant for
the operation exchanging the two coordinates of points, it can be mapped onto ∆
both by some element of ABAB and some element of BABA. Thus we can choose
c ∈ ABAB, implying that x ∈ A(ABAB)AB(BABA)A = (AB)4A. �
Lemma 9. Let h ∈ Sym(Ω) such that h fixes Ω \∆ pointwise. Then h ∈ (AB)10.

Proof. By a theorem of Ore [Or], there exist h1, h2 ∈ Sym(∆) such that h|∆ =
[h1, h2]. We claim that there exists r1 ∈ ABABA such that r1 fixes the open lower
triangle {(α, β) ∈ Ω | α > β} pointwise, r1 fixes ∆ setwise, and r1|∆ = h1. We also
claim that similarly there exists r2 ∈ BABAB such that r2 fixes the open upper
triangle {(α, β) ∈ Ω | α < β} pointwise, r2 fixes ∆ setwise, and r2|∆ = h2. These
two claims imply that h = [r1, r2] ∈ ((ABABA)(BABAB))2 = (AB)10.

For i = 1, 2, let hi ∈ Sym(Ω) be the permutation that fixes Ω \∆ pointwise, and
hi|∆ = hi.

Now we prove the existence of r1. Let a4 ∈ A and b4 ∈ B be as defined in
Lemma 6(b) such that a4b4 maps the closed lower triangle into ∆. The conjugate
p1 := b−1

4 a−1
4 h1a4b4 of h1 fixes (Ω \∆)a4b4 pointwise and, since a4b4 maps ∆ into

a subset of ∆, p1 fixes ∆ setwise. By Lemma 3, there exist a7 ∈ A and b7 ∈ B
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such that p1|∆ = a7b7|∆; in particular, a7b7 fixes each element of {(α, β) ∈ Ω |
α > β}a4b4 ⊂ ∆. Hence r1 := a4b4a7b7b

−1
4 a−1

4 ∈ ABABA satisfies the required
properties.

Similarly, using a3 ∈ A and b3 ∈ B from Lemma 6(a), we obtain that p2 :=
a−1

3 b−1
3 h2b3a3 fixes ∆ setwise and fixes {(α, β) ∈ Ω | α > β}b3a3 ⊂ ∆ pointwise.

By Lemma 3, there exist a8 ∈ A and b8 ∈ B such that p2|∆ = a8b8|∆, and so
r2 := b3a3a8b8a

−1
3 b−1

3 ∈ BABAB satisfies the required properties. �
Lemma 10. y ∈ (AB)12A.

Proof. As we have seen in the proof of Lemma 7, y = a5b3a3ha
−1
3 b−1

3 a−1
5 for some

a3, a5 ∈ A, b3 ∈ B, and h ∈ Sym(Ω) which fixes Ω \ ∆ pointwise. Hence, by
Lemma 9, h ∈ (AB)10 and so y ∈ ABA(AB)10ABA = (AB)12A. �

By Lemmas 8 and 10, g = xy ∈ (AB)4A(AB)12A = (AB)16A, and this implies
Theorem 2.
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