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ON BEURLING-TYPE THEOREMS
IN WEIGHTED l2 AND BERGMAN SPACES

SERGUEI SHIMORIN

(Communicated by Joseph A. Ball)

Abstract. We prove that analytic operators satisfying certain series of oper-
ator inequalities possess the wandering subspace property. As a corollary, we
obtain Beurling-type theorems for invariant subspaces in certain weighted l2

and Bergman spaces.

1. Introduction

Let X be a Hilbert space of functions analytic in the unit disk D of the complex
plane. Assume that X is invariant with respect to the shift operator S defined as
(Sf)(z) = zf(z). We shall say that the Beurling-type theorem holds in X if any
S-invariant subspace I ⊂ X is the smallest S-invariant subspace containing I	SI.
The classical example is given by the Hardy space H2 where by Beurling’s theorem
any S-invariant subspace I has the form I = ΘH2 for some inner function Θ. In
this case I	SI is the one-dimensional subspace generated by Θ. Beurling’s descrip-
tion can be considered as a particular case of the Wold-Kolmogorov decomposition
theorem for isometries, and in fact it follows from Wold’s decomposition that the
Beurling-type theorem holds in any space X where S is an isometry.

The first example of spaces X where S is not isometric but the Beurling-type
theorem holds was found by S. Richter [6]. He proved that the Beurling-type
theorem holds in any space X where the shift operator S satisfies the concavity
inequality

‖S2f‖2 + ‖f‖2 6 2‖Sf‖2, f ∈ X.
In fact, he proved a more general theorem: if H is a Hilbert space and an operator
T ∈ L(H) is such that

(1.1)
∞⋂
n=1

T nH = {0}

and T satisfies the concavity inequality

(1.2) ‖T 2x‖2 + ‖x‖2 6 2‖Tx‖2,
then H is the smallest T -invariant subspace containing the wandering subspace
H 	 TH = kerT ∗. We shall say that an operator T is analytic if (1.1) holds, and
that T possesses the wandering subspace property if H is the smallest T -invariant
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subspace containing H	TH . In other words, Richter’s theorem states that analytic
operators satisfying the concavity inequality (1.2) possess the wandering subspace
property.

The next example of spaces X where the Beurling-type theorem holds was found
by A. Aleman, S. Richter and C. Sundberg [1]. This example is the Bergman space
L2
a(D) of functions analytic and square area integrable in D. The original proof in

[1] used special tools of function theory in Bergman spaces such as the biharmonic
Green function, but later it was shown in [8] that the only special property of the
Bergman space L2

a(D) needed for the Beurling-type theorem is the inequality

(1.3) ‖Sf + g‖2 6 2(‖f‖2 + ‖Sg‖2), f, g ∈ L2
a(D).

More generally, it was proved in [8] that any analytic operator T satisfying the
inequality

(1.4) ‖Tx+ y‖2 6 2(‖x‖2 + ‖Ty‖2), x, y ∈ H,
possesses the wandering subspace property.

In the present paper we find one more condition written in terms of operator
inequalities which implies that analytic operators possess the wandering subspace
property. We deal with analytic contractions T which are left invertible, i.e. such
that the operator T ∗T is invertible. We define

(1.5) L := (T ∗T )−1T ∗.

The following theorem is our main result:

Theorem 1.1. Assume that T is a left-invertible analytic contraction such that the
operator L defined by (1.5) has spectral radius one. Assume also that there exists
a family {ϕα}α∈A of functions ϕα ∈ H∞(D) such that

(i) ‖ϕα(T )x‖ > ‖x‖ for any α ∈ A and x ∈ H (ϕα(T ) is taken in the sense of
Sz.-Nagy – Foiaş functional calculus);

(ii) ϕα(0) = 0 for any α ∈ A; the functions ϕα(z)
z are uniformly bounded and

bounded away from zero in D;
(iii) for any z0 ∈ D there exists α0 ∈ A such that |ϕα0(z0)| < 1.

Then T possesses the wandering subspace property.

In applications, it is convenient to deal with families {ϕζ} of the form ϕζ(z) =
ϕ(ζz), where the index ζ runs over T = ∂D. We have the following corollary:

Corollary 1.2. Assume that T is as in Theorem 1.1 and there exists a function
ϕ ∈ H∞(D) such that

(i) ‖ϕ(ζT )x‖ > ‖x‖ for any ζ ∈ T and x ∈ H;
(ii) ϕ(0) = 0 and ϕ(z)

z is bounded away from zero in D;
(iii) |ϕ(r)| < 1 for any r ∈ [0, 1).

Then T possesses the wandering subspace property.

Examples of operators satisfying conditions of Corollary 1.2 are given by the
shift operators in certain weighted l2 and Bergman spaces. For a weight sequence
(wn)n>0, the space l2(wn) consists of sequences (xn)n>0 such that

‖(xn)n>0‖2 :=
∑
n>0

|xn|2wn < +∞.

This space can be naturally considered as a space of analytic functions if we identify
any sequence (xn)n>0 with the function f(z) =

∑
n>0 xnz

n.
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For a weight function ω(z), z ∈ D, the weighted Bergman space L2
a(D, ω) consists

of functions f analytic in D and such that

‖f‖2ω :=
∫
D
|f(z)|2 ω(z) dm2(z) < +∞.

Here, dm2 is the normalized area measure in D.
Let ϕ(z) = z(2− z). Then conditions (ii) and (iii) of Corollary 1.2 are fulfilled.

Moreover, as we shall see later, any contraction T satisfying

(1.6) ‖T (2ζ − T )x‖2 > ‖x‖2, ζ ∈ T, x ∈ H,
is left invertible and such that the operator L defined by (1.5) has spectral radius
one. Therefore, we get the following:

Corollary 1.3. If an analytic contraction T satisfies the inequalities (1.6), then T
possesses the wandering subspace property.

Below, we shall analyse the condition (1.6) for the shift operator in spaces l2(wn)
(see Proposition 3.1). As to weighted Bergman spaces, we have the following result.

Theorem 1.4. Let ω(z), z ∈ D, be such a weight function that

(1.7) ∆ log
(

ω(z)
1− |z|2

)
> 0.

Then the Beurling-type theorem holds in the space L2
a(D, ω).

This theorem will be obtained as an application of Corollary 1.2 with ϕ(z) =
1− (1 − z)3. In particular, we obtain that the Beurling-type theorem holds in the
standard weighted Bergman spaces corresponding to the weight functions ωα(z) =
(α+1)(1−|z|2)α, with α ∈ (−1, 1]. For α > 1, it seems that such a theorem fails; at
least for α > 4 there are examples of zero-based invariant subspaces I in L2

a(D, ωα)
where extremal functions (elements of I 	 SI) may have extra zeros (see [5]). For
the class of logarithmically subharmonic weights ω which is smaller than the class
determined by condition (1.7), the Beurling-type theorem for L2

a(D, ω) was proved
in [8]. In these spaces the shift operator satisfies both inequalities (1.3) and (1.6).

2. Main result

In this section we prove Theorem 1.1. We also prove that under the conditions
(i)–(iii) of Corollary 1.2, some additional assumption on the function ϕ implies that
the spectral radius of L is one.

Let T and L be as in Theorem 1.1. Put E = H 	 TH = kerT ∗. Then there
exists a Hilbert space H of E-valued functions analytic in D and a unitary operator
U : H 7→ H with the following properties:
• H is a reproducing kernel Hilbert space and the (L(E)-valued) reproducing

kernel kH is such that

(2.1) kH(z, 0) = IE

for any z ∈ D;
• UTU−1 = S and ULU−1 = L, where

(Sf)(z) = zf(z) and (Lf)(z) =
f(z)− f(0)

z

for any f ∈ H;
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• E = UE is the subspace of H consisting of constant E-valued functions, and
for e ∈ E we have (Ue)(z) = e.

The details of the construction of U and H are presented in [8]. In brief, we
define (Ux)(z) := PE(I − zL)−1x for x ∈ H , and then H becomes the Hilbert
space of images Ux, x ∈ H , with the norm induced from H . After the passage
to the Hilbert space H, the wandering subspace property of T is equivalent to the
fact that E-valued polynomials are dense in H. Let H0 be the closure of E-valued
polynomials in H.

Let H2(E) be the space of E-valued functions f(z) =
∑
n>0 f̂(n)zn, f̂(n) ∈ E,

with finite norm
‖f‖2H2(E) :=

∑
n>0

‖f̂(n)‖2E .

Lemma 2.1. If T (and hence also S) is a contraction, then H2(E) ⊂ H0 and the
inclusion operator is contractive.

Proof. It suffices to prove that the inequality

(2.2) ‖f‖2H 6
∑
n>0

‖f̂(n)‖2E

holds for any E-valued polynomial f .
The property (2.1) of the reproducing kernel kH implies that the subspace E is

orthogonal to SH . Therefore, for an E-valued polynomial f(z) =
∑

n>0 f̂(n)zn we
have

‖f‖H = ‖f̂(0)‖2H + ‖
∑
n>1

f̂(n)zn‖2H = ‖f̂(0)‖E + ‖SLf‖2H 6 ‖f̂(0)‖2E + ‖Lf‖2H.

Repeated application of this inequality leads to (2.2). �

Corollary 2.2. If K(z), z ∈ D, is a bounded L(E)-valued analytic function, and
e ∈ E, then the function f(z) = K(z)e belongs to H0.

Corollary 2.3. Assume that there exists a positive δ such that for any λ0 with
|λ0| < δ the function z 7→ kH(z, λ0) is bounded. Then H0 = H.

Proof. By the preceding corollary, for any e ∈ E and λ0 with |λ0| < δ, the function

(2.3) z 7→ kH(z, λ0)e

belongs to H0. But the formula (g(λ0), e)E = (g, kH(·, λ0)e)H (valid for any g ∈ H)
implies that the family of functions of the form (2.3) is complete in H, which proves
the corollary. �

Now, we can accomplish the proof of Theorem 1.1. Take some α ∈ A. The
condition (i) of the theorem means that

(2.4) ‖ϕαf‖H > ‖f‖H
for any f ∈ H. Let Hα be the space H supplied with the norm (equivalent to the
original norm in H)

‖f‖Hα := ‖ϕαf‖H.
Then an explicit calculation shows that the reproducing kernel for the space Hα is

kHα(z, λ) =
kH(z, λ)− IE
ϕα(z)ϕα(λ)

.
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Majorization of norms, given by (2.4), implies the domination of reproducing kernels
(see [2]): the function

lα(z, λ) := kH(z, λ)− kHα(z, λ)

is positive definite. We obtain

(2.5)
kH(z, λ)− IE
ϕα(z)ϕα(λ)

= kH(z, λ)− lα(z, λ),

whence

(2.6) kH(z, λ) =
IE − ϕα(z)ϕα(λ)lα(z, λ)

1− ϕα(z)ϕα(λ)
.

Now, let M and m be such positive constants that

m 6
∣∣∣∣ϕα(z)

z

∣∣∣∣ 6M
for any z ∈ D. Put δ = 1/2M2 and fix some λ0 with |λ0| < δ. Then we have for
any z ∈ D

(2.7) ‖kH(z, λ0)‖ 6 2‖IE − ϕα(z)ϕα(λ0)lα(z, λ0)‖

6 2
(

1 +
1
2
‖lα(z, λ0)‖

)
6 2 + ‖lα(z, z)‖1/2‖lα(λ0, λ0)‖1/2

(the last inequality follows from the property that lα is positive definite).
Now, we fix z0 ∈ D with |z0| > 1/2 and we choose such α0 ∈ A that |ϕα0(z0)| < 1.

The substitution z = λ = z0 and α = α0 to (2.6) yields

0 6 kH(z0, z0) =
IE − |ϕα0(z0)|2 lα0(z0, z0)

1− |ϕα0(z0)|2
,

whence

lα0(z0, z0) 6 1
|ϕα0(z0)|2

IE 6
4
m2

IE ,

and hence

(2.8) ‖lα0(z0, z0)‖ 6 4
m2

.

To estimate ‖lα0(λ0, λ0)‖ we just note that

lα0(λ0, λ0) 6 kH(λ0, λ0)

and hence

(2.9) ‖lα0(λ0, λ0)‖ 6 ‖kH(λ0, λ0)‖.
Substituting (2.8) and (2.9) to (2.7), we get

(2.10) ‖kH(z0, λ0)‖ 6 2 +
2
m
‖kH(λ0, λ0)‖1/2.

The right-hand side of this estimate does not depend on z0 ∈ D, and the application
of Corollary 2.3 accomplishes the proof of Theorem 1.1.

It turns out that for some functions ϕ ∈ H∞(D) conditions (i)-(iii) of Corollary
1.2 imply that the spectral radius of L is one.
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Proposition 2.4. Assume that an analytic contraction T and a function ϕ ∈
H∞(D) are such that the conditions (i)-(iii) of Corollary 1.2 are fulfilled and in
addition for any r ∈ [0, 1) the function ϕ(z)−ϕ(r)

z−r is bounded away from zero in D.
Then the spectral radius of L is one.

Proof. Let R0 be the spectral radius of L and r0 = R−1
0 . We will prove that under

the assumption that r0 < 1,

sup
r0/26|λ|<r0

‖(I − λL)−1‖ < +∞,

which is impossible. The case r0 > 1 is also impossible since L is an operator left
inverse to a contraction T . Hence we must have r0 = 1.

So, we assume that r0 < 1. As in the proof of Theorem 1.1, we shall use the
Hilbert space H where T is modelled by the shift operator S and L is modelled
by the backward shift L. By the construction of H (see [8]), functions f ∈ H are
defined and analytic in the disk r0D = {z ∈ C : |z| < r0}. In view of the rotational
symmetry of our arguments, it suffices to estimate

sup
r0/26r<r0

‖(I − rL)−1‖.

Consider the operator Lϕ defined as

(Lϕf)(z) :=
f(z)− f(0)

ϕ(z)
.

It follows from condition (i) of Corollary 1.2 and the identity

‖f(·)− f(0)‖2H = ‖f(·)‖2H − ‖f(0)‖2E
that Lϕ is a contraction. Further, we claim that for r ∈ [0, r0)

(2.11)
[
(I − ϕ(r)Lϕ)−1

]
f(z) =

ϕ(z)f(z)− ϕ(r)f(r)
ϕ(z)− ϕ(r)

.

Indeed, the right-hand side of this formula is well-defined, since

ϕ(z)f(z)− ϕ(r)f(r)
ϕ(z)− ϕ(r)

=
z − r

ϕ(z)− ϕ(r)
· ϕ(z)f(z)− ϕ(r)f(r)

z − r

=
z − r

ϕ(z)− ϕ(r)
·
[
L(I − rL)−1

]
(ϕf)(z)

and the function z−r
ϕ(z)−ϕ(r) is bounded in D. Then an explicit computation shows

that the operator I −ϕ(r)Lϕ applied to the right-hand side of (2.11) gives us f(z).
The formula (2.11) leads to the estimate

‖ϕ(·)f(·)− ϕ(r)f(r)‖H = ‖(ϕ(·)− ϕ(r))
[
(I − ϕ(r)Lϕ)−1

]
f(·)‖H

6 2‖ϕ‖∞
1− |ϕ(r)| ‖f‖H,

whence we obtain that the estimate ‖f(r)‖ 6 C(r0)‖f‖H holds for any f ∈ H and
r ∈ [r0/2, r0). The formula[

(I − rL)−1
]
f(z) =

zf(z)− rf(r)
z − r
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implies the estimate

(1− |ϕ(r)|) · ‖
[
(I − rL)−1

]
f‖H 6 ‖ (ϕ(z)− ϕ(r))

[
(I − rL)−1

]
f(z)‖H

= ‖ϕ(z)− ϕ(r)
z − r · (zf(z)− rf(r)) ‖H

6 2‖ϕ‖∞
1− r · ‖zf(z)− rf(r)‖H

6 2‖ϕ‖∞
1− r (1 + C(r0))‖f‖H.

This inequality implies that supr0/26r<r0 ‖(I − rL)−1‖ < +∞ which accomplishes
the proof. �

Combining this Proposition with Corollary 1.2, we get the following.

Theorem 2.5. Assume that an analytic contraction T and a function ϕ ∈ H∞(D)
are such that

(i) ‖ϕ(ζT )x‖ > ‖x‖ for any ζ ∈ T and x ∈ H;
(ii) ϕ(0) = 0 and ϕ(z)−ϕ(r)

z−r is bounded away from zero in D for any r ∈ [0, 1);
(iii) |ϕ(r)| < 1 for any r ∈ [0, 1).

Then T possesses the wandering subspace property.

The particular choice ϕ(z) = z(2− z) in this theorem gives us Corollary 1.3.

3. Applications

We turn to the applications of the general theorems to weighted l2 and Bergman
spaces. The following proposition gives a necessary and sufficient condition for the
weight sequence (wn)n>0 which guarantees that the shift operator in l2(wn) satisfies
inequalities (1.6).

Proposition 3.1. Let (wn)n>0 be a weight sequence. Then the following conditions
are equivalent:

(1) ‖S(2I − S)x‖ > ‖x‖ for any x ∈ l2(wn). Here, S is the shift operator.
(2) The sequence (βn)n>1, defined recursively as

β1 := 4w1 + w2 − w0,

βn+1 := 4wn+1 + wn+2 − wn −
4w2

n+1

βn
,

is well-defined (i.e., it never happens that βn = 0) and all βn, n > 1, are positive.

Proof. Assume first that all βn in condition (2) are well-defined and positive. The
condition (1) is equivalent to the inequality

(3.1)
∑
n>1

|2yn − yn−1|2wn >
∑
n>0

|yn+1|2wn
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for any finitely supported sequence (yn)n>0 with y0 = 0. We then have∑
n>1

|2yn − yn−1|2wn −
∑
n>0

|yn+1|2wn

=
∑
n>1

(4wn + wn+1 − wn−1)|yn|2 − 2 Re

∑
n>1

2wn+1ynyn+1


= β1|y1|2 − 2 Re (2w2y1y2) +

∑
n>2

(4wn + wn+1 − wn−1)|yn|2

− 2 Re

∑
n>2

2wn+1ynyn+1


=
∣∣∣∣√β1y1 −

2w2√
β1
y2

∣∣∣∣2 + β2|y2|2 − 2 Re(2w3y2y3)

+
∑
n>3

(4wn + wn+1 − wn−1)|yn|2 − 2 Re

∑
n>3

2wn+1ynyn+1


= . . . =

m−1∑
l=1

∣∣∣∣√βlyl − 2wl+1√
βl

yl+1

∣∣∣∣2 + βm|ym|2,

(3.2)

which is positive. Here, m is the greatest integer such that ym 6= 0.
Conversely, assume that condition (2) fails. If m is such a positive integer that

βm < 0 and βl > 0 for 1 6 l 6 m− 1, then we choose such a sequence y = (yl)l>0

that y0 = 0, the sum of squares in the right hand side of (3.2), vanishes, ym 6= 0,
and yj = 0 for j > m+ 1. We then get that (3.1) fails. In the case where βm = 0
and βl > 0 for 1 6 l 6 m− 1, we choose y = (yl)l>0 such that y0 = 0, the sum of
squares in the right-hand side of (3.1), vanishes, ym = 1, ym+1 > 0 and yj = 0 for
j > m+ 2. We then get by the same calculation as in (3.2),∑

n>1

|2yn − yn−1|2wn −
∑
n>0

|yn+1|2wn

= −4wm+1ym+1 + (4wm+1 + wm+2 − wm)y2
m+1

which is negative if ym+1 is sufficiently small. �

Corollary 3.2. Assume that the weight sequence (wn)n>0 is decreasing and sat-
isfies condition (2) of Proposition 3.1. Then the Beurling-type theorem is valid in
the space l2(wn).

It can be shown that condition (2) of Proposition 3.1 is fulfilled ifwn is sufficiently
close to the constant sequence. This fact leads to the following natural question: if
an abstract analytic contraction is a very small (in some sense) perturbation of an
isometry, is it true that it possesses the wandering subspace property?

Our next example is weighted Bergman spaces.

Proposition 3.3. Let the weight function ω(z), z ∈ D, be such that

(3.3) ∆ log
(

ω(z)
1− |z|2

)
> 0, |z| < 1.
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Then for any function f ∈ L2
a(D, ω)

(3.4) ‖ϕf‖ω > ‖f‖ω,
where ϕ(z) = 1− (1− z)3.

Proof. Consider the space L2
a(D, ω0), where ω0(z) = 2(1 − |z|2). Its reproducing

kernel is

k(z, λ) =
1

(1− λ̄z)3
.

For a ∈ D, a 6= 0, let Ia = {f ∈ L2
a(D, ω0) : f(a) = 0}. The extremal function for

the subspace Ia (the normalized projection of 1 to Ia in L2
a(D, ω0)) is

Ga(z) =
1−

(
1−|a|2
1−āz

)3

√
1− (1− |a|2)3

.

It was proved in [3] that for each a ∈ D there exists a function Φa positive and
C2-smooth in D which satisfies{

Φa(ζ) = ∇Φa(ζ) = 0, |ζ| = 1,
∆Φa(z) =

(
|Ga(z)|2 − 1

)
(1 − |z|2), |z| < 1.

Now let ω1(z) = ω(z)/(1 − |z|2) and assume that ω1 is sufficiently smooth (say,
ω1 ∈ C2(D)) and f is analytic in D. Then

(3.5)
∫
D

(
|Ga(z)|2 − 1

)
|f(z)|2ω(z) dm2(z) =

∫
D

∆Φa(z) |f(z)|2ω1(z) dm2(z)

=
∫
D

Φa(z) ∆
[
|f(z)|2ω1(z)

]
dm2(z) > 0.

A standard change of variables in this inequality shows that the inequality

‖ϕaf‖2ω > ‖f‖2ω
holds for the function

ϕa(z) = Ga

(
a− z
1− āz

)
=

1− (1− āz)3√
1− (1− |a|2)3

.

Letting a→ 1, we obtain (3.4) in the case where ω1 is sufficiently smooth and f is
analytic in D. The standard procedure of smoothing the weight (see, e.g. [4], Ch.
9.3) shows that (3.4) is valid for arbitrary ω satisfying (3.3) and f is analytic in D.
For arbitrary f ∈ L2

a(D, ω), we obtain (3.4), letting r → 1− 0 in the inequality∫
rD

(
|ϕ (z/r)|2 − 1

)
|f(z)|2ω(z) dm2(z) > 0.

�

Remark. By rotational symmetry, we also have inequalities

(3.6) ‖ϕ(ζz)f(z)‖ω > ‖f(z)‖ω, ζ ∈ T.

The function ϕ from the preceding proposition satisfies conditions of Theorem
2.5. We immediately obtain Theorem 1.4 of the Introduction.

We also have the following corollary of inequality (2.10).
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Theorem 3.4. There exist positive constants c(r) and C(r) depending on r ∈ [0, 1)
such that for any weight function ω satisfying (3.3) and the reproducing property

(3.7)
∫
D
fω dm2 = f(0)

for f ∈ L2
a(D, ω), we have

(3.8) c(|λ|) 6 |kω(z, λ)| 6 C(|λ|), z ∈ D,
where kω is the reproducing kernel for L2

a(D, ω).

Proof. The reproducing property (3.7) means that kω(z, 0) ≡ 1. Therefore, (3.8)
follows from a more general statement: for any weight function ω satisfying (3.3)
and a, b ∈ D we have

(3.9) c(ρ(a, b)) 6
∣∣∣∣kω(z, a)
kω(z, b)

∣∣∣∣ 6 C(ρ(a, b)), z ∈ D,

where ρ(a, b) =
∣∣∣ a−b1−āb

∣∣∣ is the pseudohyperbolic distance between a and b. It suffices
to check (3.9) only in the case where ρ(a, b) < δ for appropriate positive δ and
then to iterate the obtained inequality. Moreover, in view of conformal invariance
it suffices to consider only the case b = 0 and to obtain only the estimate from
above. We have, therefore, to prove that∣∣∣∣kω(z, λ)

kω(z, 0)

∣∣∣∣ 6 C
holds for all ω satisfying (3.3) and λ with |λ| < δ. For given ω, we introduce a new
weight

ω′(z) :=
|kω(z, 0)|2
kω(0, 0)

ω(z)

which now satisfies both conditions (3.3) and (3.7), and for which

kω′(z, λ) =
kω(z, λ) kω(0, 0)
kω(z, 0) kω(0, λ)

.

The space X = L2
a(D, ω′) is invariant with respect to both forward and backward

shift operators S and L, and its reproducing kernel satisfies kX(·, 0) ≡ 1. Therefore,
X is identical to the space H (of scalar functions) from the proof of Theorem 1.1
associated with the operator S in L2

a(D, ω). Moreover, the shift operator S in X
satisfies ‖ϕ(S)f‖ > ‖f‖ (where ϕ(z) = 1− (1− z)3). The inequality (2.10) gives us

|kω′(z, λ)| 6 2 +
2
m
|kω′(λ, λ)|1/2 , z ∈ D, |λ| < δ,

and hence∣∣∣∣kω(z, λ)
kω(z, 0)

∣∣∣∣ 6 2
|kω(0, λ)|
kω(0, 0)

+
2
m
· (kω(λ, λ))1/2

(kω(0, 0))1/2
6 (2 +

2
m

)
(
kω(λ, λ)
kω(0, 0)

)1/2

.

It remains to apply the following easy lemma.

Lemma 3.5. If the weight function ω satisfies (3.3), then there exists a sufficiently
small δ and an absolute constant A such that for any λ with |λ| < δ

kω(λ, λ) 6 Akω(0, 0).
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Proof. We can assume without loss of generality that kω(0, 0) = 1. The same
arguments which were used for the proof of inequality (3.5) show that

‖zf‖2ω >
1
3
‖f‖2ω.

Therefore, we get for the backward shift L in L2
a(D, ω) the estimate

‖L‖ 6
√

3
(

1 + (kω(0, 0))1/2
)

= 2
√

3

(we use the fact that (kω(0, 0))1/2 is the norm of the evaluation functional f 7→ f(0)
in L2

a(D, ω)). Since [
L(I − λL)−1

]
f(z) =

f(z)− f(λ)
z − λ ,

we have the estimate (provided that ‖f‖ = 1)

|f(λ)| 6 ‖f − f(λ)‖ω + ‖f‖ω 6 (1 + |λ|) ·
∥∥∥∥f(z)− f(λ)

z − λ

∥∥∥∥
ω

+ ‖f‖ω

6 (1 + |λ|) 2
√

3
1− 2

√
3 |λ|

+ 1 6 A if |λ| is sufficiently small,

which shows that kω(λ, λ) 6 A2.
�

The off-diagonal estimates of reproducing kernels of the form (3.8) as well as
Beurling-type theorems are important for the study of approximate spectral syn-
thesis. In particular, it can be derived from Theorems 1.4 and 3.4 that any S-
invariant subspace of index one in L2

a(D, ω) with radial ω satisfying (3.3) is a limit
of zero-based invariant subspaces and any S∗-invariant subspace is a lower limit of
finitely dimensional S∗-invariant subspaces. See [7] and the discussion of Theorem
4.6 in [8] for more details.
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