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ON SAMPLING THEORY
ASSOCIATED WITH THE RESOLVENTS

OF SINGULAR STURM-LIOUVILLE PROBLEMS

M. H. ANNABY

(Communicated by Carmen C. Chicone)

Abstract. This paper is concerned with the sampling theory associated with
resolvents of eigenvalue problems. We introduce sampling representations for
integral transforms whose kernels are Green’s functions of singular Sturm-
Liouville problems provided that the singular points are in the limit-circle
situation, extending the results obtained in the regular problems.

1. Introduction

In their article, [14], Haddad et al. indicated that the celebrated Whittaker-
Kotel’nikov-Shannon sampling theorem can be derived using the eigenfunctions
expansion of the Green’s function of first order eigenvalue problems. They also
gave examples including second order regular Sturm-Liouville systems; cf. [23].
The work is extended to nth order regular operators, which are either self-adjoint
or non-self-adjoint in [2], [22]. Thus integral transforms whose kernels are the
Green’s function of the eigenvalue problems are reconstructed from their values at
the eigenvalues of the associated problems via (interpolation) sampling series. As
an example (cf. [2]), consider the problem

(1.1) −y′′ = λy, 0 ≤ x ≤ π, λ ∈ C,

(1.2) y(0) + y(π) = 0, y′(0) + y′(π) = 0.

This problem has the double eigenvalues λn = (2n − 1)2, n = 1, 2, . . ., with the
corresponding eigenfunctions ϕ1

n(x) = sin(2n − 1)x, ϕ2
n(x) = cos(2n − 1)x. The

Green’s function of this problem is

(1.3) G(x, ξ, λ) =
1

4(1 + cos
√
λπ)


2 sin

√
λπ cos(ξ − x)
−(1 + cos

√
λπ) sin(ξ − x), x ≥ ξ,

2 sin
√
λπ cos(x − ξ)
−(1 + cos

√
λπ) sin(x− ξ), x ≤ ξ.
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Let ξ0 ∈ [0, π] be a fixed point and Ψ(x, λ) := p(λ)G(x, ξ0, λ), λ ∈ C, p(λ) :=∏∞
n=1

(
1− λ

(2n−1)2

)
. The function Ψ(x, λ) is an entire function of λ for every x

since the simple poles of G(x, ξ0, λ) are exactly the simple zeros of the infinite
product. Knowing that p(λ) = cos

√
λπ/2, the integral transform

(1.4) f(λ) =
∫ π

0

g(x)Ψ(x, λ) dx, g(·) ∈ L2(0, π),

has the sampling representation

(1.5) f(λ) =
∞∑
n=1

(−1)nf(4n2 − 4n+ 1)
4(2n− 1) cos

√
λπ/2

π(λ− 4n2 + 4n− 1)
.

Series (1.5) converges absolutely and uniformly on compact subsets of the complex
plane. For details, see [2], and for other articles dealing with sampling theory
associated with Green’s functions, see, e.g., [3]. We would like to mention that
Green’s function of eigenvalue problems is the resolvent kernel associated with these
problems.

The aim of this article is to investigate the situation when regular problems are
replaced by singular ones. We prove that integral transforms whose kernels are
Green’s functions of singular Sturm-Liouville problems can be recovered from their
values at the eigenvalues. In [4, 9, 20, 21], the study of Kramer’s sampling theorem,
[5, 15], associated with singular problems was carried out where the kernels of the
sampled transforms are solutions of the problems. In the next section we introduce
the singular Sturm-Liouville problem as well as the associated Green’s function.
We assume that the limit-circle case holds at any singular point. Then, boundary
conditions at the singular points are defined using the approach established by
Fulton in [11], [12]. Then we state the main result of the present paper. Section 3
contains a proof of the main result introduced in §2. The last section, §4, is devoted
to applications including Legendre and Bessel functions.

2. The main result

Consider the Sturm-Liouville equation

(2.1) `(y) := −y′′ + q(x)y = λy, −∞ ≤ a ≤ x <∞, λ ∈ C,
and the boundary condition

(2.2) cosαy(a) + sinαy′(a) = 0,

where q(·) is continuous on [a,∞). Moreover, the limit-circle case is assumed to be
satisfied at ∞. Thus, we must add another condition at ∞ to define an eigenvalue
problem. Following the theory derived by Fulton in [11], [12], we may define the
following boundary condition at ∞:

(2.3) cos γ (Sy)1(∞) + sinγ (Sy)2(∞) = 0,

where

(2.4) (Sy)1(∞) = lim
x→∞

Wx(y, v), (Sy)2(∞) = lim
x→∞

Wx(y, u)

and u, v are two solutions of (2.1) when λ = 0 satisfying Wx(u, v) ≡ 1 on [a,∞).
Here Wx(u, v) denotes the Wronskian of u, v, i.e., Wx(u, v) :=u(x)v′(x)−u′(x)v(x).
Consequently, our problem is the eigenvalue problem (2.1)–(2.3) which we denote
by (*). According to the limit-circle situation [19], the spectrum of (*) is discrete,
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simple and can be ordered in a sequence of real numbers {λn}∞n=0 with no finite
limit points. Moreover, all solutions of (2.1) are L2(a,∞)-functions; cf. [18], [19].

Let φ(·, λ) and χ(·, λ) be the solutions of (2.1) defined by the initial conditions

φ(a, λ) = sinα, φ′(a, λ) = − cosα,(2.5)

(Sχ(·, λ))1(∞) = sin γ, (Sχ(·, λ))2(∞) = − cos γ, λ ∈ C.(2.6)

These solutions are entire functions of λ for every x. We denote their Wronskian,
which is independent of x, by ωα,γ(λ), i.e.,

(2.7) ωα,γ(λ) := Wx(φ(·, λ), χ(·, λ)).

The function ωα,γ(λ) is entire in λ with (simple) zeros that are exactly the eigen-
values of (*), [12]. Every eigenvalue λn has one and only one linearly independent
eigenfunction, which might be either φ(·, λn) or χ(·, λn). The sequence of eigenfunc-
tions corresponding to the sequence of eigenvalues {λn}∞n=0 is either {φ(·, λn)}∞n=0

or {χ(·, λn)}∞n=0. Each sequence is an orthogonal basis of L2(a,∞) and (cf. [12])
there are constants κn such that

(2.8) χ(x, λn) = κn φ(x, λn), κn ∈ R− {0}.
If λ ∈ C is not an eigenvalue, then the Green’s function of problem (*) is given

by ([12])

(2.9) G(x, ξ, λ) =
1

ωα,γ(λ)


φ(ξ, λ)χ(x, λ), a ≤ ξ ≤ x <∞,

φ(x, λ)χ(ξ, λ), a ≤ x ≤ ξ <∞.
The Green’s function (2.9) is a meromorphic function of λ with simple poles at the
eigenvalues. κnφ(x, λn)φ(ξ, λn)/ω′α,γ(λn) is the residue of G(x, ξ, λ) at an eigen-
value λn [12]. Since φ(·, λ) and χ(·, λ) are L2(a,∞)-functions, then G(x, ξ, λ) is
also in L2([a,∞)× [a,∞)) when λ is not an eigenvalue. Moreover, it is not hard to
see that ∫ ∞

a

∫ ∞
a

|G(x, ξ, λ)|2 dx dξ

≤ 2
|ωα,γ(λ)|2 ‖φ(·, λ)‖2 ‖χ(·, λ)‖2 <∞, λ ∈ C− {λn}∞n=0.

(2.10)

Let ξ0 ∈ [a,∞) be an arbitrary fixed point. Define the function Φ(·, λ) to be

(2.11) Φ(x, λ) := ωα,γ(λ)G(x, ξ0, λ), λ ∈ C, a ≤ x <∞.
Obviously, Φ(x, λ) is an entire function of λ for all x and it belongs to L2(a,∞)
for any λ ∈ C. Before we state the main result of the paper, we mention a couple
of things. The first one is Green’s identity, which is a needed tool to prove the
sampling theorem of this article. Green’s identity states that for suitable functions
y, z and a ≤ x1 ≤ x2 <∞, we have

(2.12)
∫ x2

x1

z(x) `(y(x))− y(x) `(z(x)) dx = Wx(y, z)
∣∣∣∣x2

x1

.

See [7, p. 86] for a more general form. The second thing we would like to mention
is that although the main result is derived in the case when we have a half-line
interval, the results might be extended when the left end point is also singular and
the right end point is singular or regular. In case we have a finite singular point,
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this means that q(·) has a singularity at this point. Also the expression `(·) may
be replaced by −(p(x)y′)′ + q(x)y = λr(x)y, r, 1/p, q ∈ L1

loc[a,∞), r(x) is positive
and p(x) does not vanish at any point of [a,∞). See [9, 10, 12].

Theorem 2.1. Let Φ(·, λ) be the function defined in (2.11) and let g(·) ∈ L2(a,∞).
Define the integral transform

(2.13) f(λ) =
∫ ∞
a

g(x) Φ(x, λ) dx.

Then f(λ) is an entire function of λ that admits the sampling expansion

(2.14) f(λ) =
∞∑
n=0

f(λn)
ωα,γ(λ)

(λ− λn)ω′α,γ(λn)
.

Moreover, expansion (2.14) converges absolutely and uniformly on compact subsets
of the complex plane.

3. A proof of the main result

In the following we give a proof of Theorem 2.1 above. Let N0 denote the set
of non-negative integers and ϕn(x) := φ(x, λn), n ∈ N0. The eigenfunctions can be
chosen to be real-valued. We start with the following lemma.

Lemma 3.1. Let Ω be a compact subset of C. Then, there exists a positive constant
C(Ω), which does not depend on λ, such that

(3.1) ‖Φ(·, λ)‖ ≤ C(Ω), for all λ ∈ Ω.

Proof. Since Ω is compact, then from [7, Theorem 2.1, p. 225], there is a positive
constant δ1, which is independent of λ, such that

‖φ(·, λ)‖, ‖χ(·, λ)‖ ≤ δ1 for all λ ∈ Ω.

Also, the compactness of Ω and the fact that both φ(ξ0, λ) and χ(ξ0, λ) are entire
imply that there is δ2 > 0, which is independent of λ, such that

|φ(ξ0, λ)|2, |χ(ξ0, λ)|2 < δ2 for all λ ∈ Ω.

Choosing C(Ω) =
√

2 δ1 δ2, the lemma is proved �

Proof of Theorem 2.1. We assume first that ϕn(ξ0) 6= 0 for all n ∈ N0. Since the
functions g(·) and Φ(·, λ) belong to L2(a,∞) for all λ and since the sequence {ϕn(·) :
n ∈ N0} is an orthogonal basis of L2(a,∞), then applying Parseval’s equality to
the integral transform (2.13), we obtain

(3.2) f(λ) =
∞∑
n=0

ĝ(n) Φ̂(n, λ)
‖ϕn(·)‖2 , λ ∈ C,

where

(3.3) ĝ(n) =
∫ ∞
a

g(x)ϕn(x) dx, Φ̂(n, λ) =
∫ ∞
a

Φ(x, λ)ϕn(x) dx

are the Fourier coefficients of g(·) and Φ(·, λ) respectively. Let λ ∈ C and n ∈ N0

be fixed. Then for every λ ∈ C− {λn}∞n=0 we have

Φ̂(n, λ) = lim
M→∞

∫ M

a

Φ(x, λ)ϕn(x) dx.
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Using the definition of Φ(·, λ),∫ M

a

Φ(x, λ)ϕn(x) dx = χ(ξ0, λ)
∫ ξ0

a

φ(x, λ)ϕn(x) dx

+ φ(ξ0, λ)
∫ M

ξ0

χ(x, λ)ϕn(x) dx,
(3.4)

where M is sufficiently large. Now we use Green’s identity (2.12) and the fact that
φ(·, λ) and χ(·, λ) are solutions of (2.1) to obtain

(λ− λn)
∫ M

a

Φ(x, λ)ϕn(x) dx = χ(ξ0, λ)
[
φ(ξ0, λ)ϕ′n(ξ0)− φ′(ξ0, λ)ϕn(ξ0)

− φ(a, λ)ϕ′n(a) + φ′(a, λ)ϕn(a)
]

+ φ(ξ0, λ)
[
χ(M,λ)ϕ′n(M)− χ′(M,λ)ϕn(M)

− χ(ξ0, λ)ϕ′n(ξ0) + χ′(ξ0, λ)ϕn(ξ0)
]
.

(3.5)

Simplifying (3.5), we obtain

(λ− λn)
∫ M

a

Φ(x, λ)ϕn(x) dx = ϕn(ξ0)
[
φ(ξ0, λ)χ′(ξ0, λ) − φ′(ξ0, λ)χ(ξ0, λ)

]
+ χ(ξ0, λ)

[
ϕn(a)φ′(a, λ)− ϕ′n(a)φ(a, λ)

]
+ φ(ξ0, λ)

[
ϕ′n(M)χ(M,λ)− ϕn(M)χ′(M,λ)

]
.

(3.6)

From (2.5) and (2.7), one gets

(3.7) (λ−λn)
∫ M

a

Φ(x, λ)ϕn(x) dx = ϕn(ξ0)ωα,γ(λ)+φ(ξ0, λ)WM (χ(·, λ), ϕn(·)).

From [12, p. 55],
(3.8)

WM (χ(·, λ), ϕn(·)) = DM (S(χ(·, λ), ϕn(·))) :=
∣∣∣∣(Sχ(·, λ))1(M) (Sϕn(·))1(M)
(Sχ(·, λ))2(M) (Sϕn(·))2(M)

∣∣∣∣ .
Taking the limit in (3.8) when M −→∞, we obtain
(3.9)
W∞(χ(·, λ), ϕn(·)) = (Sχ(·, λ))1(∞) (Sϕn(·))2(∞)− (Sχ(·, λ))2(∞) (Sϕn(·))1(∞).

From (2.6) and since ϕn(·) is an eigenfunction, W∞(χ(·, λ), ϕn(·)) = 0. Therefore,
if we take the limit in (3.7) as M −→∞, we get

(3.10)
∫ ∞
a

Φ(x, λ)ϕn(x) dx = ϕn(ξ0)
ωα,γ(λ)
λ− λn

.

If λ approaches λn in the previous equation, then

(3.11)
∫ ∞
a

Φ(x, λn)ϕn(x) dx = ϕn(ξ0)ω′α,γ(λn).

Relation (2.8) and the definition of Φ(·, λ) imply that

(3.12)
∫ ∞
a

Φ(x, λn)ϕn(x) dx = κnϕn(ξ0)‖ϕn(·)‖2.
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Hence ‖ϕn(·)‖2 = κ−1
n ω′α,γ(λn). Substituting from (3.10) and (3.12) in (3.2) we

have

(3.13) f(λ) =
∞∑
n=0

ĝ(n)
κn ϕn(ξ0)ωα,γ(λ)
(λ − λn)ω′α,γ(λn)

.

Moreover, for any n ∈ N0 we can see that

(3.14) f(λn) =
∫ ∞
a

g(x) Φ(x, λn) dx = κn ĝ(n)ϕn(ξ0).

Expansion (2.14) results by combining (3.13) and (3.14) and the convergence is
pointwise on C. To prove absolute convergence on C, let λ ∈ C be arbitrary. Then

∞∑
n=0

∣∣∣∣f(λn)
ωα,γ(λ)

(λ− λn)ω′α,γ(λn)

∣∣∣∣ =
∞∑
n=0

∣∣∣∣ĝ(n)
Φ̂(n, λ)
‖ϕn(·)‖2

∣∣∣∣
≤
( ∞∑
n=0

∣∣∣∣ ĝ(n)
‖ϕn(·)‖

∣∣∣∣2
) 1

2
( ∞∑
n=0

∣∣∣∣ Φ̂(n, λ)
‖ϕn(·)‖

∣∣∣∣2
) 1

2

.

(3.15)

The right-hand side of the last equation is ‖g(·)‖ ‖Φ(·, λ)‖ <∞, implying absolute
convergence. As for uniform convergence, let Ω ⊂ C be compact. Then from
Lemma 3.1 above, there exists a positive constant C(Ω), which is independent of
λ such that ‖Φ(·, λ)‖ ≤ C(Ω), for all λ ∈ Ω. Again, using the Cauchy-Schwarz
inequality we have for any positive integer N,

∣∣∣∣f(λ)−
N−1∑
n=0

f(λn)
ωα,γ(λ)

(λ− λn)ω′α,γ(λn)

∣∣∣∣ ≤ ∞∑
n=N

∣∣∣∣ĝ(n)
Φ̂(n, λ)
‖ϕn(·)‖2

∣∣∣∣
≤
( ∞∑
n=N

∣∣∣∣ ĝ(n)
‖ϕn(·)‖

∣∣∣∣2
) 1

2
( ∞∑
n=N

∣∣∣∣ Φ̂(n, λ)
‖ϕn(·)‖

∣∣∣∣2
) 1

2

≤ C(Ω)

( ∞∑
n=N

∣∣∣∣ ĝ(n)
‖ϕn(·)‖

∣∣∣∣2
) 1

2

, λ ∈ Ω.

(3.16)

Letting N −→∞, the right-hand side of (3.16) approaches zero without depending
on λ, proving the uniform convergence on Ω. Therefore, f is analytic on compact
subsets of C, i.e., f is entire. When ϕm(ξ0) = 0, for some m ∈ N0, the proof is
similar to the one above, but in this case we should notice that f(λm) = 0. �

Remark 3.2. The above proof is based on the theory of differential operators. In
[1] a sampling theorem is derived for integral transforms whose kernels are the
resolvent kernels of the Fredholm integral operator of the second kind; see also [24].
The proof of uniform convergence of the sampling result of [1, 2] is derived using
Carleman’s inequality [6, p. 50]. Examples were given in [1] where the kernel of the
integral operator is defined on infinite intervals, while the theory of [6] is developed
for compact intervals; see [6, p. 11]. We can give a proof which does not depend
on Carleman’s inequality. We might use the eigenfunction expansion

(3.17) Φ(x, λ) =
∞∑
n=0

ϕn(ξ0)ωα,γ(λ)
(λ − λn)‖ϕn(·)‖2ϕn(x),
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which results from using the definition of Φ(·, λ) and Green’s identity. Such a
proof, where the Weierstrass test can be used, covers the examples of [1], when the
intervals are not finite. The other advantage offered by the theory of differential
operators is that for any ξ0 ∈ [a,∞), the corresponding kernel Φn(·, λ) is a well-
defined L2-function. This is not the case when we have resolvent kernels of square
integrable symmetric kernels. Thus in [1], the square integrability of the kernels of
the sampled integral transforms must be added. This makes no serious restrictions
on the results of [1] since the parameter ξ0 exists almost every where such that this
condition is fulfilled.

4. Examples

Example 4.1. In this example we consider the Legendre equation

(4.1) −((1− x2)y′)′ +
1
4
y′ = λy, −1 < x < 1.

The solutions u, v of (4.1) when λ = 0, for which (1−x2)Wx(u, v) ≡ 1 on (−1, 1) are
u(x) = 1

2 tanh−1 x and v(x) = −1. Both are L2(−1, 1)-functions. Hence the limit-
circle case holds at the singular points ±1. The boundary conditions associated
with (4.1) are [8, 13]

(4.2) (Sy)−1 (−1) cosα+ (Sy)−2 (−1) sinα = 0,

(4.3) (Sy)+
1 (1) cos γ + (Sy)+

2 (1) sin γ = 0,

where
(4.4)

(Sy)∓1 (∓1) = lim
x→∓1

(1 − x2)Wx(y, v), (Sy)∓2 (∓1) = − lim
x→∓1

(1− x2)Wx(y, u).

Let Pw(·) and Qw(·) be the Legendre functions of the first and second type respec-
tively, i.e.,

(4.5) Pw(z) = 2F1

(
−w,w + 1; 1;

1− z
2

)
,

(4.6) Qw(z) =
√
π Γ(w + 1)

Γ(w + 3
2 )(2z)(w+1) 2F1

(
1
2
w + 1,

1
2
w +

1
2

;w +
3
2

; z−2

)
where 2F1(a, b; c, ·) is the well-known hypergeometric function and Γ(·) is the
Gamma function; see [16]. The domain of the definition of Qw(z) is the set of
all z ∈ C such that |z| > 1, but it can be extended to include the interval (−1, 1);
see [16]. In the notation of Section 2 above, we have the following (cf. [13]):
(4.7)

φ(x, λ) =
[
cosα− sinα

(
ψ
(√
λ+

1
2
)

+ µ

)]
P√λ− 1

2
(−x)− sinαQ√λ− 1

2
(−x),

(4.8) χ(x, λ) =
[
− cos γ − sin γ

(
ψ
(√
λ+

1
2
)

+ µ

)]
P√λ− 1

2
(x)− sin γ Q√λ− 1

2
(x),

(4.9)

ωα,γ(λ) = −2(cosα cos γ)B(s) + sin(α − γ)A(s)− 1
2

(sinα sin γ)
(

1−A2(s)
B(s)

)
,
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where ψ(z) = Γ′(z)/Γ(z), µ is the Euler constant and

(4.10) A(s) := − sin sπ − 2
π

(
ψ
(
− s+

1
2
)

+ µ

)
cos sπ, B(s) := −cos sπ

π
,

s :=
√
λ with a branch taken along the negative part of the real axis. Let ξ0 be a

fixed point of (−1, 1). Then

(4.11) Φ(x, λ) =


φ(ξ0, λ)χ(x, λ), −1 < ξ0 ≤ x < 1,

φ(x, λ)χ(ξ0, λ), −1 < x ≤ ξ0 < 1.

Applying Theorem 2.1 of Section 2 above, the integral transform

(4.12) f(λ) =
∫ 1

−1

g(x) Φ(x, λ) dx, g(·) ∈ L2(−1, 1),

has the (interpolation) sampling expansion

(4.13) f(λ) =
∞∑
n=0

f(λn)
ωα,γ(λ)

(λ− λn)ω′α,γ(λn)
,

where {λn : n ∈ N0} are the zeros of ωα,γ(λ). In the special case α = γ = 0, the
kernel Φ(·, λ) becomes

(4.14) Φ(x, λ) =


P√λ− 1

2
(−ξ0)P√λ− 1

2
(x), −1 < ξ0 ≤ x < 1,

P√λ− 1
2
(−x)P√λ− 1

2
(ξ0), −1 < x ≤ ξ0 < 1.

A simple calculation yields that the sampling series of the corresponding integral
transform will have the form

(4.15) f(λ) =
∞∑
n=0

f
(
n2 + n+

1
4
) (2n+ 1) sinπ

(√
λ− n− 1

2

)
π(λ − n2 − n− 1

4 )
.

Example 4.2. The Bessel equation

(4.16) −y′′ +
ν2 − 1

4

x2
y = λy, 0 < x ≤ 1,

where 0 ≤ ν ≤ 1, ν 6= 1
2 , has the L2(0, 1)-solutions u(x) = 1√

2ν
x

1
2−ν , v(x) =

1√
2ν
x

1
2 +ν when λ = 0, i.e., the limit circle case holds at the left end point. Also,

Wx(u, v) = 1, 0 < x ≤ 1. Let us have the following two boundary conditions:

(4.17) (Sy)1(0) cosα+ (Sy)2(0) sinα = 0, y(1) = 0.

In the above notations (see [11], [19])

(4.18) φ(x, λ) = − π
√
x

2 sin νπ
[
Jν(sx)J−ν(s)− J−ν(sx)Jν(s)

]
,

χ(x, λ) =
[

sinα (Sθλ)2(0) + cosα (Sθλ)1(0)
]
φ(x, λ)

−
[

cosα (Sφλ)1(0) + sinα (Sφλ)2(0)
]
θ(x, λ),

(4.19)
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where

θ(x, λ) =
s
√
x

2 sin νπ
[
Jν(sx)J ′−ν(s)− J−ν(sx)J ′ν(s)

]
+
φ(x, λ)

2
,(4.20)

(Sφλ)1(0) =
π
√
ν√

2 sin νπ

(s
2

)−ν 1
Γ(1− ν)

Jν(s),

(Sφλ)2(0) = − π
√
ν√

2 sin νπ

(s
2

)ν 1
Γ(1 + ν)

J−ν(s),

(Sθλ)1(0) =
π
√
ν√

2 sin νπ

(s
2

)−ν 1
Γ(1− ν)

[
sJ ′ν(s) +

1
2
Jν(s)

]
,

(Sθλ)2(0) = − π
√
ν√

2 sin νπ

(s
2

)ν 1
Γ(1 + ν)

[
sJ ′−ν(s) +

1
2
J−ν(s)

]
(4.21)

and s =
√
λ. Hence the eigenvalues of the present problem, {λn : n ∈ N} are the

zeros of the function

(4.22) ωα(λ) = 2


s−νJν(s)22ν Γ(1+ν)

Γ(1−ν) cotα− sνJ−ν(s), α 6= 0,

s−ν2νΓ(1 + ν)Jν(s), α = 0.

In a way similar to that of the previous example we could derive the sampling
representation

(4.23) f(λ) =
∞∑
n=0

f(λn)
ωα,γ(λ)

(λ− λn)ω′α,γ(λn)

for the transform

(4.24) f(λ) =
∫ 1

0

g(x) Φ(x, λ) dx, g(·) ∈ L2(0, 1),

where

(4.25) Φ(x, λ) =


φ(ξ0, λ)χ(x, λ), 0 < ξ0 ≤ x ≤ 1,

φ(x, λ)χ(ξ0 , λ), 0 < x ≤ ξ0 ≤ 1.
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