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A GLOBAL COMPACTNESS RESULT
FOR SINGULAR ELLIPTIC PROBLEMS

INVOLVING CRITICAL SOBOLEV EXPONENT

DAOMIN CAO AND SHUANGJIE PENG

(Communicated by David S. Tartakoff)

Abstract. Let Ω ⊂ RN be a bounded domain such that 0 ∈ Ω, N ≥ 3, 2∗ =
2N
N−2

, λ ∈ R, ε ∈ R. Let {un} ⊂ H1
0 (Ω) be a (P.S.) sequence of the functional

Eλ,ε(u) = 1
2

∫
Ω(|∇u|2− λu2

|x|2 −εu
2)− 1

2∗
∫
Ω |u|

2∗ . We study the limit behaviour

of un and obtain a global compactness result.

1. Introduction

Let Ω be a bounded domain in RN such that 0 ∈ Ω, N ≥ 3, 2∗ = 2N
N−2 , λ ∈ R, ε ∈

R.
In recent years, much attention has been paid to the existence of nontrivial

solutions to the following problem:

(Pλ,ε)
{
−∆u = λ

|x|2u+ |u|2∗−2u+ εu, x ∈ Ω,
u = 0, x ∈ ∂Ω,

where 0 ≤ λ < λ̄ = (N−2
2 )2, ε ∈ R. For instance, in [11], by using a variational

approach, E. Jannelli proved that if λ ≤ λ̄ − 1, then problem (Pλ,ε) has at least
one solution u ∈ H1

0 (Ω) when 0 < ε < ε1(λ). If λ̄− 1 < λ < λ̄, then problem (Pλ,ε)
has at least one solution u ∈ H1

0 (Ω) when ε∗(λ) < ε < ε1(λ), where ε1(λ), ε∗(λ) are
some positive constants depending on λ.

Let

(1.1) Eλ,ε(u) =
1
2

∫
Ω

(|∇u|2 − λu2

|x|2 − εu
2)− 1

2∗

∫
Ω

|u|2∗ , for u ∈ H1
0 (Ω).

The crucial step in [11] was to overcome the lack of compactness for Eλ,ε(u). Indeed,
the invariance of H1

0−norm, L2∗−norm and
∫

Ω
λu2

|x|2 with respect to rescaling u 7→
ur = r

N−2
2 u(r(·)) and the existence of non-trivial entire solution of the limiting
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problem (see [4], [10], [12] and [14])

(1.2)
{
−∆u = λ

|x|2u+ |u|2∗−2u, x ∈ RN ,
u→ 0, |x| → ∞,

result in the failure of the classical Palais-Smale (P.S. for short) condition for Eλ,ε
on H1

0 (Ω). However a local (P.S.) condition can be established. Indeed, let |u|pp =∫
Ω |u|p for p ∈ (1,∞) and

(1.3) Sλ := inf{
∫
RN

(|∇u|2 − λu2

|x|2 ) | u ∈ H1
0 (RN ), |u|2∗ = 1}.

Suppose {um} ⊂ H1
0 (Ω) is a sequence such that Eλ,ε(um) ≤ c < 1

N S
N
2
λ , DEλ,ε(um)

→ 0 strongly in H−1(Ω) = (H1
0 (Ω))∗; then {um} contains a strongly convergent

subsequence. Using this local (P.S.) condition, E.Jannelli was able to obtain the
existence of one nontrivial solution in [11]. For earlier work, see [3].

As indicated above it is always very important to understand the convergence of
the (P.S.) sequence in using variational methods. When λ = 0, M.Struwe [14] gives
a complete description of all energy levels c of Eλ,ε on which the (P.S.)c sequence
is not compact, and he obtains the well known global compactness theorem, with
which J.M.Coron [6] and W.-Y. Ding [7] obtained the positive critical points of
E0,0 with some non-starshaped domains. In [16] S.Yan generalizes this global com-
pactness result to the case of p-Laplacian successfully. Very recently, Adimurthi
and M.Struwe in [1] have studied the convergence of (P.S.) sequences of the energy
functional associated with a semilinear elliptic problem on a bounded domain in
R2 with critical nonlinearity f(s) growing like exp(4πs2) as s→∞.

As can easily be seen, problem (Pλ,ε) is the general case of problem (P0,ε). So
it is very interesting and important to see whether a global compactness result
similar to that of problem (P0,ε) still exists or not. In this paper we investigate this
problem and obtain an affirmative answer.

Our proof is based on rescaling arguments. Such methods have been repeatedly
used to extract convergent subsequence from families of solutions or minimizing
sequence to nonlinear variational problems; see [13], [14], and [16]).

In the following, let D1,2(RN) be the completion of C∞0 (RN ) with respect to the
inner product (u, v) =

∫
RN ∇u · ∇v, S0 = inf{

∫
RN |∇u|2 | u ∈ H1

0 (RN), |u|2∗ = 1}.
Let B(x, r) denote the ball centered at x with radius r. For simplicity, we use the
same notation Ω̃m and ṽm in different situations.

Remark 1.1. (i) By Proposition 8.1 in [4], the solutions of (1.2) are in one-to-one
correspondence to solutions of the following type of problem:

−div(|x|−2a∇w) = |x|b2∗w2∗−1, w ≥ 0 in RN ,

where a and b are constants depending on λ. From Theorem B in [5], any solution
of the above equations is radially symmetric with respect to the origin, that is, u(x)
depends on |x| only. So according to the theory of ordinary differential equations,
the solution of (1.2) is unique (up to a dilation). Using the results in [4], we can
deduce that when 0 ≤ λ < λ̄, the solutions of (1.3) are of the following:

u(x) = ε
N−2

2 U(εx), ε > 0,

U(x) = C(λ, λ̄)|x|−
√
λ̄+
√
λ̄−λ(1 + |x|

4
√
λ̄−λ

N−2 ),
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where C(λ̄, λ) is a constant depending only on λ and λ̄. So Sλ can be attained in
RN when 0 ≤ λ < λ̄.

(ii) Sλ < S0 when 0 < λ < λ̄. While λ < 0, we can prove that Sλ = S0 and Sλ
cannot be attained, even though in RN .

2. Global compactness

To state the main result, it is convenient to introduce the “problem at infinity”.
The first one is

(P∞0 ) −∆v = |v|2∗−2v, v ∈ D1,2(RN ).

Moreover, for 0 ≤ λ < λ̄, the problem ”at infinity” is given by

(P∞λ ) −∆v =
λv

|x|2 + |v|2∗−2v, v ∈ D1,2(RN ).

To unify the notations we shall refer to the solutions of problems at infinity as
critical points of the following family of functionals:

F∞λ (u) =
1
2

∫
RN

(|∇u|2 − λu2

|x|2 )− 1
2∗

∫
RN
|u|2∗

and in the cases of (P∞0 ) and (P∞λ ), the respective energy functionals are F∞0 (u)
and F∞λ (u).

Theorem 2.1. Let N ≥ 3, 0 ≤ λ < λ̄, ε ∈ R, and suppose that {um} ⊂ H1
0 (Ω)

satisfies Eλ,ε(um) ≤ c,DEλ,ε(um)→ 0 strongly in H−1(Ω) as m→∞. Then there
exist a critical point u0 of Eλ,ε, k sequences of positive numbers {rjm}m (1 ≤ j ≤ k),
l sequences of positive numbers {kjm}m (1 ≤ j ≤ l) and l sequences of points
{xjm}m (1 ≤ j ≤ l) in Ω which converge to xj0 ∈ Ω̄, such that up to a subsequence,

(i) um = u0 +
k∑
j=1

(rjm)
N−2

2 vj1(rjmx) +
l∑

j=1

(kjm)
N−2

2 vj0(kjm(x − xjm)) + ωm,

where ‖ωm‖H1
0 (Ω) → 0, rjm →∞, kjm →∞, vj0 solves (P∞0 ), and vj1 solves (P∞λ ).

(ii) Eλ,ε(um)→ Eλ,ε(u0) +
l∑

j=1

F∞0 (vj0) +
k∑
j=1

F∞λ (vj1).

To prove this theorem, let us first recall some known results and establish some
preliminary lemmas. The following lemma can be found in [9].

Lemma 2.2 (Hardy inequality). If u ∈ H1
0 (Ω), then u

|x|2 ∈ L2(Ω) and∫
Ω

u2

|x|2 ≤
1
λ̄

∫
Ω

|∇u|2,

moreover λ̄ is optimal.

Lemma 2.3. Let {um} ⊂ H1
0 (Ω), um → u weakly in H1

0 (Ω). Then

(i)
∫

Ω
|um|2

∗
=
∫

Ω
|um − u|2

∗
+
∫

Ω
|u|2∗ + o(1),

(ii)
∫

Ω |∇um|2 =
∫

Ω |∇(um − u)|2 +
∫

Ω |∇u|2 + o(1),

(iii)
∫

Ω
|um|2
|x|2 =

∫
Ω
|um−u|2
|x|2 +

∫
Ω
|u|2
|x|2 + o(1).
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Proof. (i) and (ii) are the well known results of Brezis-Lieb in [2]. (iii) can be easily
proved by Vitali’s theorem and we omit the detail.

Lemma 2.4. Let {vm} ⊂ H1
0 (Ω) be a (P.S.) sequence for Eλ,0 at level β, that is,

Eλ,0(vm) → β as m → ∞, and assume that vm converges weakly but not strongly
to zero in H1

0 (Ω). Then either
(i) there exists a sequence of positive numbers {rm}, such that up to a subse-

quence,

wm(x) = vm(x)− r
N−2

2
m V1(rmx) + o(1) (x ∈ Ω)

is a (P.S.) sequence for Eλ,0 in H1
0 (Ω) at level β − F∞λ (V1); moreover, wm → 0

weakly in H1
0 (Ω),

or
(ii) there exists a sequence of positive numbers {km} and a sequence of points

{ym} ⊂ Ω satisfying ym → x0 ∈ Ω̄, such that up to a subsequence,

wm(x) = vm(x)− k
N−2

2
m V0(km(x− ym)) + o(1) (x ∈ Ω)

is a (P.S.) sequence for Eλ,0 in H1
0 (Ω) at level β − F∞0 (V0). Moreover, wm → 0

weakly in H1
0 (Ω), kmdist(xm, ∂Ω) → ∞, where V0 and V1 solve (P∞0 ) and (P∞λ )

respectively, o(1)→ 0 in D1,2(RN ) as m→∞.

Proof. If Eλ,0(vm)→ β < 1
N S

N
2
λ , then sequence {vm} is strongly relatively compact

and hence vm → 0, β = 0. Therefore we may assume that Eλ,0(vm)→ β ≥ 1
N S

N
2
λ .

Moreover, from DEλ,0(vm)→ 0, we also have

(2.1)
1
N

∫
Ω

(|∇vm|2 −
λv2

m

|x2| ) = Eλ,0(vm)− 1
2
〈DEλ,0(vm), vm〉 → β ≥ 1

N
S
N
2
λ .

By Hardy inequality, we have for m large enough

(2.2) S
N
2
λ ≤ Nβ ≤

∫
Ω

|∇vm|2 ≤
Nβ

1− λ
λ̄

and hence there are positive constants ci (i = 1, 2) such that

(2.3) c1 ≤
∫

Ω

|∇vm|2 ≤ c2, ∀m.

Let δ > 0 small (will be determined later) such that

(2.4) lim sup
m→∞

∫
Ω

|∇vm|2 > δ.

Up to a subsequence, choose minimal 1
rm

> 0 such that
∫
B(0, 1

rm
)
|∇vm|2 = δ. Define

ṽm := r
2−N

2
m vm( x

rm
); then

∫
B(0,1)

|∇ṽm|2 = δ.
Let us point out that, thanks to (2.3) and (2.4), the sequence {rm} is bounded

away from zero.
Denote Ω̃m := {x ∈ RN | x

rm
∈ Ω}; then ṽm ∈ H1

0 (Ω̃m) ⊂ D1,2(RN ). Moreover,
‖ṽm‖2D1,2(RN ) = ‖vm‖2D1,2(RN ) → Nβ < ∞. Up to a subsequence there exists
V1 ∈ D1,2(RN) satisfying ṽm → V1 weakly in D1,2(RN ), ṽm → V1 a.e. in RN . We
have either V1 6≡ 0 or V1 ≡ 0.
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(I): Assume V1 6≡ 0. Since vm → 0 weakly in H1
0 (Ω), we have rm → ∞, Ω̃m →

RN . For this case we claim that V1 satisfies (P∞λ ) and the sequence wm(x) :=

ṽm(x)− r
N−2

2
m V1(rmx) is a (P.S.) sequence for Eλ,0 at level β − F∞λ (V1).

Indeed, let us fix a ball B(0, r) and a test function ψ ∈ C∞0 (B(0, r)) and remark
that for sufficiently large m,B(0, r) ⊂ Ω̃m. So

〈DF∞λ (V1), ψ〉

=
∫
B(0,r)

∇V1 · ∇ψ −
∫
B(0,r)

λV1ψ

|x|2 −
∫
B(0,r)

|V1|2
∗−2V1ψ

=
∫

Ω̃m

∇ṽm · ∇ψ −
∫

Ω̃m

λṽmψ

|x|2 −
∫

Ω̃m

|ṽm|2
∗−2ṽmψ + o(1)

=
∫

Ω

∇vm · ∇ψ̄m −
∫

Ω

λvmψ̄m
|x|2 −

∫
Ω

|vm|2
∗−2vmψ̄m + o(1)

= 〈DEλ,0(vm), ψ̄m〉+ o(1) (by the (P.S.) condition)

where ψ̄m(x) = r
N−2

2
m ψ(rmx). Thus V1 solves (P∞λ ).

Let ϕ ∈ C∞0 (RN ) satisfying 0 ≤ ϕ ≤ 1, |∇ϕ| ≤ 2 in RN ,ϕ ≡ 1, in B(0, 1), ϕ ≡ 0
outside B(0, 2), and let

wm(x) = vm(x) − r
N−2

2
m V1(rmx)ϕ(r̄mx) ∈ H1

0 (Ω)

where the sequence {r̄m} is chosen such that r̃m := rm
r̄m
→∞ while r̄mdist(0, ∂Ω̃m)

→∞ as m→∞, that is, w̃m(x) = ṽm(x) − V1(x)ϕ( x
r̃m

).
Set ϕm(x) = ϕ( x

r̃m
). Note that |∇V1| ∈ L2(RN ), so as m→∞,∫

RN
|∇V1(ϕm − 1)|2

≤ 2
∫
RN
|∇V1|2(ϕm − 1)2 + 2

∫
RN
|V1|2|∇(ϕm − 1)2|

≤ 2
∫
RN\B(0,rm)

|∇V1|2 + 8r̃−2
m

∫
B(0,2r̃m)\B(0,r̃m)

|V1|2

≤ 2
∫
RN\B(0,rm)

|∇V1|2 + 8(
∫
B(0,2r̃m)\B(0,r̃m)

|V1|2
∗
)

2
2∗

= o(1).

Thus we have w̃m = ṽm−V1 +o(1), where o(1)→ 0 in D1,2(RN ). So by Lemma 2.3
and the invariance of dilation, we have for m large

Eλ,0(wm) = Eλ,0(ṽm)− F∞λ (V1) + o(1) = β − F∞λ (V1) + o(1),

‖DEλ,0(wm)‖H−1(Ω) = o(1).

Also, it is obvious that wm → 0 weakly in H1
0 (Ω).
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(II): Assume V1 ≡ 0. Let h ∈ C∞0 (B(0, 1)); we have∫
RN
|∇(ṽmh)|2

=
∫
RN
∇ṽm · ∇(h2ṽm) +

∫
RN

ṽ2
m|∇h|2

=
∫
RN
∇ṽm · ∇(h2ṽm) + o(1)

= 〈DEλ,0(ṽm), h2ṽm〉+
∫
RN

λh2ṽm
|x|2 +

∫
RN
|ṽm|2

∗
h2 + o(1)

≤ 4λ
(N − 2)2

∫
RN
|∇(ṽmh)|2 + S−1

0 (
∫
B(0,1)

|ṽm|2
∗
)
N
2

∫
RN
|∇(ṽmh)|2 + o(1).

Choose δ suitably small. From the above inequality and the fact 0 ≤ λ < (N−2)2

4 ,
we can find an a ∈ (0, 1) such that

(2.5)
∫
B(0,a)

|∇ṽm|2 → 0.

For simplicity, substitute ṽm by zm and Ω̃m by Ω (because of dilation invariance),
and without loss of generality, we still suppose that zm satisfies (2.3) and (2.4).
Denote

Qm(r) = sup
x∈Ω

∫
B(x,r)

|∇zm|2

the concentration function of zm, choose xm ∈ Ω̄ and scale

(2.6) zm 7→ z̃m(x) := R
2−N

2
m zm(

x

Rm
+ xm)

such that

(2.7) Q̃m(1) = sup
x
Rm

+xm,x∈RN

∫
B(x,1)

|∇z̃m|2 =
∫
B(0,1)

|∇z̃m|2 =
1

2L
S
N
2
λ ,

where L denotes the least number of balls with radius 1 in RN that are needed to
cover a ball of radius 2.

Note that {Rm} is obviously bounded away from zero. Setting Ω̃m := {x ∈
RN | x

Rm
+ xm ∈ Ω}, we may regard z̃m ∈ D1,2(RN ), moreover, {z̃m} is bounded

uniformly in D1,2(RN ). Thus up to a subsequence,

(2.8) z̃m → V0 weakly in D1,2(RN ).

We are going to prove that the convergence actually holds in the strong H1
loc(R

N )
sense. To do this, following the analogous argument in [14], for any x ∈ RN , we
can find ρ ∈ [1, 2] such that the solution φm of the Dirichlet problems{

−∆φ = 0, x ∈ B(x, 3) \B(x, ρ),
φ|∂B(x,ρ) = z̃m − V0, φ|∂B(x,3) = 0,

satisfies

(2.9) φm → 0 in H1(B(x, 3) \B(x, ρ)).

Let

(2.10) ϕm =
{
z̃m − V0, x ∈ B(x, ρ),
φm, x ∈ B(x, 3) \B(x, ρ).
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It follows that

(2.11) ϕm = ϕ̃m + o(1) ∈ H1
0 (Ω̃m) +D1,2(RN ),

where ϕ̃m ∈ H1
0 (Ω̃m) and o(1)→ 0 in D1,2(RN ) as m→∞ (see for instance [14]).

Hence, scaling back the ϕm’s,

ϕ̄m(x) := R
N−2

2
m ϕm(Rm(x− xm)),

we have, taking into account of (2.9), (2.10) and (2.11),

(2.12) ‖∇ϕ̄m‖2L2(Ω) = ‖ϕm‖2D1,2(RN ) + o(1) = ‖z̃m − V0‖2D1,2(B(x,ρ)) + o(1).

By scale invariance, (2.11) and the fact {zm} is a (P.S.) sequence for Eλ,0,

〈DEm(z̃m), ϕm〉 = 〈DEλ,0(zm), ϕ̄m〉+ o(1) = o(1)

where

Em(z̃m) :=
1
2

∫
Ω̃m

(|∇z̃m|2 −
λz̃2
m

|x+Rmxm|2
)− 1

2∗

∫
Ω̃m

|z̃m|2
∗
.

Therefore, from the definitions of Em, ϕm and (2.9), we infer by using arguments
similar to those in [14]

o(1) =
∫

Ω̃m∩B(x,ρ)

∇z̃m · ∇(z̃m − V0)−
∫

Ω̃m∩B(x,ρ)

λz̃m(z̃m − V0)
|x+Rmxm|2

−
∫

Ω̃m∩B(x,ρ)

|z̃m|2
∗−2z̃m(z̃m − V0)

=
∫

Ω̃m∩B(x,ρ)

|∇(z̃m − V0)|2 −
∫

Ω̃m∩B(x,ρ)

λ(z̃m − V0)2

|x+Rmxm|2

−
∫

Ω̃m∩B(x,ρ)

|z̃m − V0|2
∗

+ o(1)

=
∫

Ω̃m

|∇ϕm|2 −
∫

Ω̃m

λϕ2
m

|x+Rmxm|2
−
∫

Ω̃m

|ϕm|2
∗

+ o(1).

Moreover, by scale invariance, Sobolev inequality and Hardy inequality,

o(1) =
∫

Ω

|∇ϕ̄m|2 −
∫

Ω

λϕ̄2
m

|x|2 −
∫

Ω

|ϕ̄m|2
∗

≥ (
∫

Ω

|∇ϕ̄m|2 −
∫

Ω

λϕ̄2
m

|x|2 )(1 −
‖∇ϕ̄m‖2

∗−2
L2(Ω)

S
2∗
2
λ

)

≥ c
∫

Ω

|∇ϕ̄m|2(1−
‖z̃m‖2

∗−2
D1,2(B(x,ρ))

S
2∗
2
λ

),

(2.13)

where (2.12) and the convergence of z̃m to V0 have been used to get the last inequal-

ity. Recalling (2.7) we have ‖∇z̃m‖2L2(B(x,ρ)) ≤ L‖∇z̃m‖2L2(B(0,1)) ≤ 1
2S

N
2
λ , so that

(2.13) yields ‖∇ϕ̄m‖L2(Ω) → 0. From (2.12) we obtain ‖z̃m − V0‖D1,2(B(x,ρ)) → 0.

In particular,
∫
B(0,1)

|∇V0|2 = 1
2LS

N
2
λ > 0 and V0 6≡ 0. By zm → 0 weakly, we also

have Rm →∞ as m→∞.
Now using the result of case (I), we have

z̃m(x) = R
2−N

2
m ṽm(

x

Rm
+ xm) = (Rmrm)

2−N
2 vm(

x

Rmrm
+
xm
rm

).
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Define km = Rmrm, ym = xm
rm

; then ym → y0 ∈ Ω̄, km|ym| = Rm|xm|. By (2.5) we
have |xm| > a > 0, so km|ym| → +∞. Also, by the fact that {rm} is bounded away
from zero, km → +∞(m → ∞). Denote Ω̃m = {x ∈ RN | xkm + ym ∈ Ω}, ṽm =

k
2−N

2
m vm( x

km
+ ym).

Now we distinguish two cases:
(1) kmdist(ym, ∂Ω) ≤ c < ∞, uniformly. Then after an orthogonal transforma-

tion,

Ω̃m → Ω̃∞ = RN+ = {x = (x1, . . . , xN ), x1 > 0},

(2) kmdist(ym, ∂Ω)→∞, in this case Ω̃m → Ω̃∞ = RN .
In each case we have for large m and any given ϕ ∈ C∞0 (Ω̃∞),

∫
Ω̃m

ṽmϕ
|x+kmym|2 =

o(1). Hence there holds, as m→∞,∫
Ω̃∞

(∇V0 · ∇ϕ− |V0|2
∗−2V0ϕ)

=
∫

Ω̃m

(∇ṽm · ∇ϕ−
λṽmϕ

|x+ kmym|2
− |ṽm|2

∗−2ṽmϕ) + o(1)

=
∫

Ω

(∇vm · ∇ϕ−
λvmϕ

|x|2 − |vm|
2∗−2vmϕ) + o(1)

= o(1).

(2.14)

If Ω̃∞ = RN+ , (2.14) implies that V0 ∈ H1
0 (Ω̃∞) is a weakly solution of the

equation

−∆u = u2∗−1, u > 0, x ∈ RN+ ; u = 0, x ∈ ∂RN+ .

Thus, V0 ≡ 0, which is impossible. So case (2) is true, that is, V0 solves (P∞0 ).
Let

wm(x) = vm(x) − k
N−2

2
m V0(km(x− ym))ϕ(k̄m(x− ym)) ∈ H1

0 (Ω),

where k̄m, ϕ are defined similarly to case (I). We can also get w̃m = ṽm−V0 + o(1),
where o(1)→ 0 in D1,2(RN ). Using the fact that km|ym| → +∞, the invariance of

scaling and Lemma 2.3 we obtain that wm(x) = vm(x)−k
N−2

2
m V0(km(x−xm))+o(1)

is still a (P.S.) sequence for Eλ,0 at level β − F∞0 (V0) and of course it converges
weakly to zero.

This concludes the proof of Lemma 2.4.

Proof of Theorem 2.1. By Eλ,ε(um) ≤ c,DEλ,ε(um) → 0 strongly in H−1(Ω), we
have um → u0 weakly in H1

0 (Ω) and u0 solves problem (Pλ,ε). Moreover, setting
vm = um − u0, we then have vm → 0 strongly in L2(Ω) and by Lemma 2.3 we get∫

Ω

|um|2
∗

=
∫

Ω

|um − u|2
∗

+
∫

Ω

|u|2∗ + o(1),∫
Ω

|∇um|2 =
∫

Ω

|∇(um − u)|2 +
∫

Ω

|∇u|2 + o(1),∫
Ω

|um|2
|x|2 =

∫
Ω

|um − u|2
|x|2 +

∫
Ω

|u|2
|x|2 + o(1).
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Hence,

Eλ,ε(um) = Eλ,ε(u0) + Eλ,0(vm) + o(1),

DEλ,ε(um) = DEλ,ε(u0) +DEλ,0(vm) + o(1),

DEλ,0(vm) = o(1).

By applying Lemma 2.4 to {vm} recursively, the iteration must stop after finite
steps; moreover the last (P.S.) sequence must strongly converge to zero. �

Applying Theorem 2.1, we can prove the following:

Corollary 2.5. Suppose 1
N S

N
2
λ < c < 2

N S
N
2
λ and c 6= 1

N S
N
2

0 , then functional Eλ,0
satisfies the (P.S.)c condition.

Proof. Suppose {um} is a (P.S.)c sequence for Eλ,0(u). Notice that for any u ∈
D1,2(RN )\{0} satisfying (P∞λ ) (0 ≤ λ < λ̄), F∞λ (u) ≥ 1

N S
N
2
λ . Moreover, if u

changes sign, then F∞λ (u) ≥ 2
N S

N
2
λ . By Theorem 2.1,

c+ o(1) = Eλ,0(um)→ Eλ,0(u0) +
l∑

j=1

F∞0 (vj0) +
k∑
j=1

F∞λ (vj1).

Suppose that u0 ≡ 0; then c =
∑l

j=1 F
∞
0 (vj0) +

∑k
j=1 F

∞
λ (vj1). If there exist some

l or k such that vl0 or vk1 changes sign, then by Remark 1.1 (ii) we get c ≥ 2
N S

N
2
λ ,

which is a contradiction, so we can assume vi0 ≥ 0, vj1 ≥ 0 (1 ≤ i ≤ l, 1 ≤ j ≤ k).
By the uniqueness of solutions of problem (P∞0 ) and (P∞λ ) (see Remark 1.1 (i)),

we have c = l
N S

N
2

0 + k
N S

N
2
λ , which is impossible. So u0 6≡ 0, and we can infer

Eλ,0(u0) ≥ 1
N S

N
2
λ , which follows that l = 0, k = 0. Hence um → u0 in H1

0 (Ω).

Remark 2.6. (i) Let

σ = {Eλ,ε(u) | u ∈ H1
0 (Ω) solves (Pλ)},

σ0 = {F∞0 (u) | u ∈ H1
0 (RN) solves (P∞0 )},

σλ = {F∞λ (u) | u ∈ H1
0 (RN ) solves (P∞λ )},

be the “spectral” of (Pλ), (P∞0 ) and (P∞λ ), respectively. Then in particular, Theo-
rem 2.1 implies that any sequence {um} satisfying Eλ,ε(um) → β,DEλ,ε(um)→ 0
in H−1(Ω)(m→∞) is strongly relatively compact in H1

0 (Ω), provided

β∈̄{β̄ +
k∑
i=1

βi0 +
l∑
i=1

βiλ | β̄ ∈ σ \ β, βi0 ∈ σ0 \ 0, βiλ ∈ σλ \ 0}.

(ii) Assume uε ∈ H1
0 (Ω) is the ground state solution of (Pλ,ε), 0 < λ < λ̄ − 1.

Then |∇uε|2 − λu2
ε

|x|2 → Sλδ0 in the sense of measure as ε→ 0, where δx denotes the
Dirac mass at x.
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