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SOME REMARKS ON LIOUVILLE TYPE RESULTS
FOR QUASILINEAR ELLIPTIC EQUATIONS

E. N. DANCER AND YIHONG DU

(Communicated by David S. Tartakoff)

Abstract. For a wide class of nonlinearities f(u) satisfying

f(0) = f(a) = 0, f(u) > 0 in (0, a) and f(u) < 0 in (a,∞),

we show that any nonnegative solution of the quasilinear equation −∆pu =

f(u) over the entire RN must be a constant. Our results improve or com-
plement some recently obtained Liouville type theorems. In particular, we
completely answer a question left open by Du and Guo.

1. Introduction

Consider the semilinear diffusion equation

ut = ∆u+ f(u), x ∈ RN , t ∈ [0,∞),

where f is a C1 function satisfying

f(0) = f(a) = 0, f(u) > 0 in (0, a) and f(u) < 0 in (a,∞).

This problem arises in population biology and chemical reaction theory, and has
attracted extensive study; we refer to [AW] and the references therein for more
details of the background.

If

limu→0+
f(u)
u1+2/N

> 0,

then the so-called hair-trigger effect of Aronson and Weinberger [AW] implies that
for any solution u(x, t) ∈ [0, a] with u(x, 0) 6≡ 0, one has limt→∞ u(x, t) = a uni-
formly for x ∈ RN . Moreover, it is shown in [AW] that the exponent 1 + 2/N is
sharp in the sense that the hair-trigger effect fails if 1 + 2/N is replaced by any
ξ > 1 + 2/N in the above condition.

A simple consequence of the above hair-trigger effect is an interesting Liouville
type result for the corresponding elliptic problem, namely, for such f(u), the equa-
tion

(1.1) −∆u = f(u), x ∈ RN ,
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has only the constant solutions u = 0 and u = a satisfying 0 ≤ u ≤ a. Note that
since f(u) < 0 in (a,∞), it can be shown that any globally bounded nonnegative
solution of (1.1) satisfies 0 ≤ u ≤ a; moreover, with certain further conditions for
f(u) near infinity, for example, limu→+∞

−f(u)
uq ∈ (0,∞] for some q > 1, it can be

shown that any nonnegative solution of (1.1) must satisfy 0 ≤ u ≤ a (see [DM]).
One would like to check the sharpness of the exponent 1 + 2/N for this Liouville

type result. For N > 2 and any ξ > N/(N−2), one can find a C1 function f(u) such
that f(0) = f(a) = 0, f(u) > 0 on (0, a), f(u) < 0 for u > a, and f(u) = cuξ for
small positive u, such that −∆u = f(u) has a positive solution satisfying 0 < u < a
and it decays to zero at infinity. Indeed, if ξ ∈ (N/(N − 2), (N + 2)/(N − 2)),
then such an example was constructed near the end of the paper [Da]. If ξ ≥
(N + 2)/(N − 2), it is well known that −∆u = uξ has a bounded positive solution
uξ which decays to 0 at infinity, and the required example can be easily constructed
by making use of this fact.

So the problem reduces to checking whether (1.1) has a nonconstant solution
satisfying 0 ≤ u ≤ a when f(u) behaves like cuξ near 0 with ξ ∈ (1+2/N,N/(N−2)],
the gap left open above.

The present note addresses this question and related problems. In particular, we
will show that the answer to the above question is negative.

Theorem 1.1. Suppose that f(u) is a C1 function satisfying

f(0) = f(a) = 0, f(u) > 0 ∀u ∈ (0, a), limu→0+f(u)/uN/(N−2) ∈ (0,+∞].

Then any solution of (1.1) satisfying 0 ≤ u ≤ a must be a constant.

This result and the examples mentioned above imply that the critical exponent
for the Liouville theorem is N/(N − 2) instead of 1 + 2/N .

Theorem 1.1 will follow as a consequence of one of our general results on solutions
of p-Laplacian equations of the type

(1.2) −∆pu = c(x)f(u) in RN (N ≥ 2)

where ∆pu = div(|Du|p−2Du), p > 1, c ∈ L∞(RN ) and 0 < c1 < c(x) < c2 < ∞.
By a solution of (1.2) we mean a function u ∈ C1(RN ) satisfying∫

RN
|Du|p−2Du ·Dψdx =

∫
RN

c(x)f(u)ψdx, ∀ψ ∈ C∞0 (RN ).

The detailed statements of our main results (Theorem 2.1 and Theorem 2.4) and
their proofs are contained in the next section. These results improve or comple-
ment recent Liouville type theorems obtained in [BP, DG, DM, SZ]. In particular,
Theorem 2.1 completely answers a question left open in [DG]. Our proofs are based
upon recent results of Bidaut-Veron and Pohozaev [BP] and Serrin and Zou [SZ].

2. Main results and proofs

We say that f(s) is locally quasi-monotone on [0,∞) if for any bounded interval
[s1, s2] ⊂ [0,∞), there exists a continuous increasing function L(s) such that f(s)+
L(s) is nondecreasing in s for s ∈ [s1, s2]. Clearly, this condition is less restrictive
than requiring f(s) to be locally Lipschitz continuous on [0,∞).
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Our first main result is the following.

Theorem 2.1. Let f(s) be continuous and locally quasi-monotone on [0,∞) and
satisfy the following conditions:

(F1) For some a > 0,

f(0) = f(a) = 0, f(s) > 0 in (0, a), f(s) < 0 in (a,∞).

(F2) If N ≥ p, we assume further that for some small δ > 0 and ξ ∈ (0, (p−1)N
N−p ]

when N > p, ξ ∈ (0,∞) when N = p, there exists a constant σ > 0 such
that

f(s) ≥ σsξ, ∀s ∈ (0, δ).

Then any solution of (1.2) satisfying 0 ≤ u ≤ a is a constant.

Remark 2.2. (i) It is shown in [DG] that if f(s) satisfies (F1), then any globally
bounded nonnegative solution of (1.2) satisfies 0 ≤ u ≤ a; moreover, if for
some q > p− 1,

lims→∞
−f(s)
sq

∈ (0,∞],

then any nonnegative solution of (1.2) satisfies 0 ≤ u ≤ a.
(ii) The example in Remark 1.2 (iii) of [DG] shows that when N > p, for any

ξ > (p− 1)N/(N − p), one can find c(x) satisfying 0 < c1 ≤ c(x) ≤ c2 <∞
such that −∆pu = c(x)uξ has a positive solution which decays to 0 at
infinity. This implies that our condition (F2) in Theorem 2.1 is sharp.

(iii) Theorem 2.1 positively answers the conjecture in [DG, Remark 1.2 (iv)].
Note that Theorem 1.1 follows from Theorem 2.1 by letting p = 2.

The main ingredient for the proof of Theorem 2.1 is the following recent result
due to Bidaut-Veron and Pohozaev [BP] and Serrin and Zou [SZ, Theorem II].

Proposition 2.3. (i) If N < p, Ω ⊂ RN is an exterior domain in RN (i.e.,
{x ∈ RN : |x| > R} ⊂ Ω for some R > 0), and u ∈ C1(Ω) is nonnegative
and satisfies (in the weak sense) −∆pu ≥ 0, then u must be a constant.

(ii) If N ≥ p, Ω ⊂ RN is an exterior domain, and u ∈ C1(Ω) is nonnegative
and satisfies (in the weak sense) −∆pu ≥ uξ with ξ ∈ (0, (p− 1)N/(N − p)]
when N > p, ξ ∈ (0,∞) when N = p, then u ≡ 0.

Proof of Theorem 2.1. By part (i) of Proposition 2.3, we need only consider the
case that N ≥ p. So we assume N ≥ p from now on.

Since −∆pu ≥ 0 and u ≥ 0, by the strong maximum principle (see [Va] or [PS,
Theorem 1]), either u ≡ 0 or u > 0 everywhere. Therefore we assume u > 0. We
need to show that u ≡ a.

Let us observe that it suffices to show u(x) → a as |x| → ∞. Indeed, if this is
true but u 6≡ a, then infx∈RN u(x) < a is achieved at some x0 ∈ RN . Therefore the
function v(x) = u(x)− u(x0) satisfies

v ≥ 0, v(x0) = 0, −∆pv = −∆pu ≥ 0.

By the strong maximum principle we deduce v ≡ 0, that is, u(x) ≡ u(x0). But this
is a contradiction to the assumption that u(x)→ a as |x| → ∞.
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To show that u(x) → a as |x| → ∞, we choose R > 0, α ∈ (0,min|x|=R u(x))
and consider the boundary value problem

(2.1)
−∆pw = c1f(w) when R < |x| < Rn,

w = α when |x| = R,
w = 0 when |x| = Rn,

where {Rn} is an increasing sequence of numbers satisfying R < R1, Rn → ∞ as
n → ∞. For each n ≥ 1, w = u is a super solution to (2.1) while w = 0 is a
sub-solution. Hence by the well known sub- and super-solution method (see [D]),
(2.1) has a minimal and maximal solution satisfying 0 ≤ w ≤ u. Let wn denote the
minimal solution. We observe that wn must be radially symmetric as it is minimal
and problem (2.1) is invariant under rotations around the origin. Furthermore,
wn+1 is a super-solution to (2.1) while 0 is a sub-solution. Hence (2.1) has a
solution between 0 and wn+1. It follows that its minimal solution wn must satisfy
wn ≤ wn+1. Therefore, we have

wn(x) ≤ wn+1(x) ≤ u(x) when R < |x| < Rn, n = 1, 2, ....

It follows that w(x) := limn→∞wn(x) is well-defined for |x| > R and 0 ≤ w(x) ≤
u(x).

Since 0 ≤ cf(wn) ≤ c2 maxs∈[0,a] f(s) and 0 ≤ wn ≤ u ≤ a, for any given
bounded smooth sub-domain Ω of {x ∈ RN : |x| > R}, applying standard regularity
theory (see [To]) to the equation −∆pwn = cf(wn) for all large n so that Ω ⊂ An :=
{x ∈ RN : R < |x| < Rn}, we find that {un|Ω} is bounded in C1,α(Ω) for some α.
As C1,α(Ω) imbeds compactly into C1(Ω), {wn|Ω} has a convergent subsequence
in C1(Ω). It follows that wn → w in C1(Ω) for any bounded smooth domain Ω of
{x ∈ RN : |x| > R}. Therefore, w satisfies

−∆pw = c1f(w) when |x| > R, w = α when |x| = R.

Since each wn is radially symmetric, so is w: w(x) = w(r), r = |x|. Hence we can
write

−(rN−1|w′|p−2w′)′ = rN−1c1f(w) for r > R, w(R) = α.

Denote φ(r) = rN−1|w′(r)|p−2w′(r). We find from the above equation that φ′(r) =
−rN−1c1f(w(r)) ≤ 0 for r > R. Hence φ(r) is a nonincreasing function and there
are two possibilities:

(i) φ(r) is negative for large r, or (ii) φ(r) ≥ 0 on [R,∞).
Case (i) cannot occur because otherwise, there exists R0 ≥ R such that w′(r) < 0

for r > R0. Thus w(r) < w(R0 + 1) < w(R0) ≤ a for all r > R0 + 1. Let
α1 = w(R0 + 1). Then we can use (F1) and (F2) to find some σ1 ∈ (0, σ] such that
f(s) ≥ σ1s

ξ for s ∈ (0, α1). Thus,

−∆pw = c1f(w) ≥ c1σ1w
ξ

in the exterior domain ΩR0+1 := {x ∈ RN : |x| > R0 + 1}. We can now easily check
that for β = (c1σ1)−p, v(x) := w(βx) is a positive solution of −∆pv ≥ vξ in the
exterior domain Ω(R0+1)/β , contradicting Proposition 2.3.

So case (ii) must occur which implies that w′(r) ≥ 0 for r > R. Since w ≤ u ≤ a,
α2 := limr→∞w(r) exists. If α2 < a, then w(r) ≤ α2 for all r > R and we can
use the same argument as in case (i) to deduce a contradiction to Proposition 2.3.
Thus we necessarily have limr→∞w(r) = a and hence, due to a ≥ u(x) ≥ w(x),
lim|x|→∞ u(x) = a, as we wanted. This finishes the proof. �
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Let us note that while condition (F1) can be regarded as a kind of global restric-
tion on f(u), condition (F2) is local, it only restricts the behaviour of f(u) near
u = 0. When condition (F1) is strengthened, it is possible to relax condition (F2)
and still obtain some Liouville type theorems. Our second main result addresses
this point.

Theorem 2.4. Suppose N > p > 1 and f(u) is a C1 function satisfying (F1) and
furthermore,

(F3) for some ξ ∈ (0, Np
N−p − 1) and all u ∈ (0, a), d

du [f(u)/uξ] ≤ 0,
(F4) for some small δ1 > 0,∫ a

a−δ1
[
∫ a
s
f(t)dt]−1/pds =∞.

Then the only solutions to

(2.2) −∆pu = f(u) in RN

satisfying 0 ≤ u ≤ a are u ≡ 0 and u ≡ a.

Let us note that f(u) = uξ − uq satisfies (F3) whenever ξ ∈ (0, Np
N−p − 1) and

q > ξ, but it satisfies (F2) only if ξ ∈ (0, (N−1)p
N−p − 1] and q > ξ.

Condition (F4) is satisfied when f(a) = 0 and 0 ≤ f(s) ≤M |s− a|p−1 for some
M > 0 and all s ∈ (a− δ1, a). Thus, if f is C1, then (F4) is automatically satisfied
provided that 1 < p ≤ 2, but it is an extra restriction when p > 2. We suspect that
(F4) is unnecessary in Theorem 2.4.

The main ingredients in our proof of Theorem 2.4 are the following two results.

Proposition 2.5. Suppose N > p > 1. If the C1 function f(u) satisfies
(i) f(0) = 0, f(u) ≥ 0 for u > 0,
(ii) d

du [f(u)/uξ] ≤ 0 for some ξ ∈ (0, Np
N−p − 1) and all u > 0, and

(iii) f(u) ≥ uq for some q > p− 1 and all large u,
then problem (2.2) has only the trivial solution u ≡ 0 in RN .

Proposition 2.6. Suppose that N > p > 1. Let f(s) be continuous and locally
quasi-monotone on [0,∞). Suppose f(s) satisfies (F1), (F4) and

(F ′2) for some small δ > 0, there exist constants σ > 0 and ξ ∈ (p− 1, Np
N−p − 1)

such that
f(s) ≥ σsξ, ∀s ∈ (0, δ).

Then for any solution of (1.2) satisfying 0 ≤ u ≤ a, we have supx∈RN u(x) < a
unless u ≡ a.

Proposition 2.5 is due to Serrin and Zou (see [SZ, Theorem II(c)]). To prove
Proposition 2.6, we will make use of the following variant of a weak sweeping
principle used in [DG], which develops the idea of the well-known sweeping principle
due to Serrin [S] for Laplacian equations.

Lemma 2.7 (Weak sweeping principle). For each t ∈ [0, 1], let ζt : RN → RN be a
diffeomorphism of RN onto itself, satisfying ζ0(x) = x and that ζt(x) → ζt0(x) as
t→ t0 uniformly for x in compact subsets of RN . Let D be a bounded smooth domain
in RN and Dt := ζt(D). Suppose that h(x, s) is measurable in x ∈ RN , continuous
and locally quasi-monotone (uniformly for x in compact subsets of RN ) with respect
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to s ∈ (−∞,∞). Let ut and vt, t ∈ [0, 1], be functions in W 1,p(Dt) ∩ C(Dt) and
satisfy in the weak sense, for some ε > 0,

(2.3) −∆put ≥ h(x, ut) + ε, −∆pvt ≤ h(x, vt) in Dt, ∀t ∈ [0, 1],

ut ≥ vt + ε on ∂Dt, ∀t ∈ [0, 1].
Moreover, suppose that ut0 ≥ vt0 in Dt0 for some t0 ∈ [0, 1], and t → ut ◦ ζt and
t→ vt ◦ ζt are continuous from [0, 1] to C(D). Then

ut ≥ vt on Dt, ∀t ∈ [0, 1].

Proof. Denote

T = {t ∈ [0, 1] : ut ≥ vt on Dt} = {t ∈ [0, 1] : ut ◦ ζt ≥ vt ◦ ζt on D}.
Clearly T is a closed set with t0 ∈ T . We show that T is relatively open in [0, 1],
which implies T = [0, 1], as required.

Since ut ◦ ζt and vt ◦ ζt vary continuously with t, it is easily seen that there exist
finite numbers s1 < s2 such that ut(x), vt(x) ∈ [s1, s2] for all x ∈

⋃
0≤t≤1Dt and

all t ∈ [0, 1].
Since h(x, s) is locally quasi-monotone in s, we can find a continuous increasing

function L(s) such that h̃(x, s) := h(x, s) + L(s) is nondecreasing in s for all x ∈⋃
0≤t≤1Dt and s ∈ [s1, s2].
Let δ > 0 be sufficiently small. Then, for any t ∈ T ,

−∆put + L(ut) ≥ h̃(x, ut) + ε ≥ h̃(x, vt) + ε ≥ −∆pvt + L(vt) + ε

≥ −∆p(vt + δ) + L(vt + δ) in Dt,
and

ut ≥ vt + δ on ∂Dt.
By the weak maximum principle (see, e.g., [D, Theorem 4.9]) we obtain ut ≥ vt + δ
in Dt, i.e., ut ◦ ζt ≥ vt ◦ ζt + δ in D. Thus for all τ ∈ [0, 1] with |τ − t| small,
uτ ◦ ζτ ≥ vτ ◦ ζτ in D. This shows that T is relatively open in [0, 1]. The proof is
complete. �
Remark 2.8. From the above proof, we immediately see that Lemma 2.7 remains
true if (2.3) is replaced by

(2.4) −∆put ≥ h(x, ut), −∆pvt ≤ h(x, vt)− ε in Dt, ∀t ∈ [0, 1].

Proof of Proposition 2.6. Suppose a = supx∈RN u(x). We want to show that u ≡ a.
If u(x0) = a for some x0 ∈ RN , then by condition (F4), a simple application of the
strong maximum principle (see [Va] or [PS, Theorem 1]) shows that u ≡ a. Suppose
now u < a on RN . We are going to deduce a contradiction.

Let xn ∈ RN be such that u(xn)→ a as n→∞. Define un(x) = u(x+ xn) and
cn(x) = c(x + xn) for x ∈ RN . Then

−∆pun = cnf(un), x ∈ RN .
Since 0 ≤ cnf(un) ≤ c2 maxs∈[0,a] f(s) and 0 ≤ un ≤ a, by standard regularity
theory (see [To]) we find that {un|Ω} is bounded in C1,α(Ω) for some α and any
bounded smooth domain Ω of RN . Now C1,α(Ω) imbeds compactly into C1(Ω).
Thus {un|Ω} has a convergent subsequence in C1(Ω). From this fact and a standard
diagonal process, we can find a subsequence of {un}, say {unk}, that converges to
some u∗ ∈ C1(RN ) in the C1 norm on any compact subsets of RN . Clearly we
must have 0 ≤ u∗ ≤ a and u∗(0) = a.
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Since c1 ≤ cn(x) ≤ c2, we have −∆pun ≤ c2f(un) and hence, by passing to the
limit,

−∆pu
∗ ≤ c2f(u∗).

Since u∗ ≤ a and u∗(0) = a, we can now apply the strong maximum principle
to conclude that u∗ ≡ a. It follows in particular that unk → a uniformly on any
compact subsets of RN as k →∞.

Since ξ ∈ (p − 1, Np
N−p − 1), it is well known (see, for example, [Dr]) that the

problem
−∆pu = uξ, x ∈ B1(0), u|∂B1(0) = 0

has a radially symmetric positive solution u = u1 with u1(0) = maxx∈B1(0) u1(x).
Here, and in what follows, we use the notation Br(x0) = {x ∈ RN : |x− x0| < r}.

Denote α = −p/(ξ − p+ 1) and c = (c1σ/2)α/p. Then for any R > 0, it is easily
checked that vR(x) := cRαu1(x/R) satisfies

−∆pvR = (c1σ/2)vξR, x ∈ BR(0), vR|∂BR(0) = 0.

Clearly vR(x) ≤ vR(0) = cRαu1(0). We now fix R large enough such that cRαu1(0)
= δ/2, where δ is given in (F ′2). Then vR ≤ δ/2 on BR(0).

We next show that u(x) ≥ δ/2 over RN . To this end, we fix an arbitrary
x0 ∈ RN . Since unk(x) → a as k → ∞ uniformly for x ∈ BR(0), we can find
m = nk with large enough k so that um(x) > δ on BR(0). We now make use of the
weak sweeping principle. For t ∈ [0, 1] we define ζt(x) = x+ t(xm−x0), Dt = ζt(D)
with D = BR(x0). Clearly D0 = D and D1 = BR(xm).

Since −∆pu ≥ 0 on RN , by the strong maximum principle we know that u(x) > 0
for all x. By our previous assumption, u(x) < a for all x. Hence there exists
δ1 ∈ (0, δ/2) such that a− δ1 ≥ u(x) ≥ δ1 for all x in the compact set

⋃
t∈[0,1]Dt.

Define
vt(x) = vR[x− x0 − t(xm − x0)].

Then clearly

−∆pvt(x) = (c1σ/2)vξt (x) ≤ (1/2)c(x)f(vt(x)), ∀x ∈ Dt, ∀t ∈ [0, 1].

Define ut = u for t ∈ [0, 1]. Since a− δ1 ≥ u(x) ≥ δ1 for x ∈
⋃
t∈[0,1]Dt, we can

find ε ∈ (0, δ1) such that (c1/2)f(u(x)) ≥ ε for all such x. Hence,

−∆put = c(x)f(ut) ≥ (1/2)c(x)f(ut) + ε, ∀x ∈ Dt, ∀t ∈ [0, 1],

ut(x) ≥ δ1 ≥ vt(x) + ε, ∀x ∈ ∂Dt, ∀t ∈ [0, 1].
Note also that on D1 = BR(xm), u(x) ≥ δ and v1(x) ≤ δ/2. Therefore, we can use
Lemma 2.7 to conclude that

u(x) ≥ vt(x), ∀x ∈ Dt, ∀t ∈ [0, 1].

In particular, u(x) ≥ v0(x) on D0 = BR(x0) and u(x0) ≥ v0(x0) = vR(0) = δ/2.
As x0 ∈ RN is arbitrary, this implies that u(x) ≥ δ/2 on RN . It now follows from
Lemma 2.3 of [DG] that u(x) ≥ a on RN . Hence u ≡ a. But this contradicts our
previous assumption that u < a on RN . �
Proof of Theorem 2.4. Suppose that u is a solution to (2.2) satisfying 0 ≤ u ≤ a.
We may assume that ‖u‖∞ < a for otherwise u ≡ a by Proposition 2.6. By our
assumption we can write f(u) = uξg(u) with g(u) positive, C1 and nonincreasing
in (0, a). Now we define a C1 function g̃(u) for u > 0 such that
g̃(u) = g(u) for u ∈ (0, ‖u‖∞],
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g̃(u) = positive constant for u > (1/2)(‖u‖∞ + a),
g̃′(u) ≤ 0 for u ∈ (‖u‖∞, (1/2)(‖u‖∞ + a)).
Then clearly f̃(u) := uξg̃(u) satisfies the conditions (i)–(iii) of Proposition 2.5,

and u solves −∆pu = f̃(u). It follows that u ≡ 0. �

Remark 2.9. By using a more involved proof for Proposition 2.6, condition (F ′2) can
be removed. As this point does not improve our main result, Theorem 2.4, we only
give a brief sketch of its proof here. The idea is to construct the lower solutions vt
in a different way. Indeed, let u > 0 be a solution of (1.2) as given in Proposition
2.6. By minimizing the corresponding functional of the problem

−∆pv = λf(v), v|∂B1(0) = 0

over the order interval [0, u|B1(0)] one finds that it has a radial solution v satisfying
0 < v ≤ u provided that λ is large enough. Then vt can be obtained by a rescaling
and shifting of v much as before.

Remark 2.10. The conclusion of Proposition 2.6 can be strengthened. We can
show that there is a positive δ such that any nonconstant solution in Proposition
2.6 satisfies u(x) ≤ a− δ on RN . This is useful for studying solutions on bounded
domains when the diffusion rate is small. Note also that the results here could be
used to simplify the proof of Theorem 4 in [Da].

Let us end this note with some discussions of a simple yet illustrative example.
From Theorem 2.4 and Remark 2.2 (i), we immediately see that when 1 < p ≤ 2,
if ξ ∈ (p− 1, Np

N−p − 1) and q > ξ, then the only nonnegative entire solutions of

(2.5) −∆pu = uξ − uq

are u ≡ 0 and u ≡ 1. The restriction that p ≤ 2 is due to condition (F4); we believe
that this restriction can be removed. Note that if ξ > Np

N−p −1 and q > ξ, then it is
known that (2.5) has radial ground state solutions (see [KMPT] for the case p = 2
and [T] for the general case p > 1). When ξ = Np

N−p − 1 and q > ξ, it follows from
[T, Theorem (i)] that (2.5) has no radial ground states. It would be interesting
to know whether there can be other types of nonconstant positive solutions in this
latter case.

In the case p = 2, this question has a negative answer. Indeed, by Theorem 3 of
Bianchi [B], if for s ∈ (0,∞), the function g(s) is locally Lipschitz, is nonnegative
and g(s)/s(N+2)/(N−2) is nonincreasing, then any positive C2 solution of −∆u =
g(u) in RN (N > 2) is either a constant and g vanishes on that constant, or

u(x) =
k

(|x− x0|2 + h2)(N−2)/2

for some x0 ∈ RN and positive constants k and h, and g(s) is a suitable scalar
multiple of s(N+2)/(N−2) for s ∈ (0,maxRN u].

If we take g(s) = s(N+2)/(N−2) − sq with q > (N + 2)/(N − 2) for s ∈ [0, 1] and
g(s) = 0 for s > 1, then Bianchi’s result implies that

(2.6) −∆u = u(N+2)/(N−2) − uq

has no solution in RN satisfying 0 < u ≤ 1 except u ≡ 1. On the other hand, by
Remark 2.2 (i), we know that any positive solution of (2.6) satisfies 0 < u ≤ 1.
Thus u ≡ 1 is the only positive solution of (2.6).
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