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RATIONAL VERSUS REAL COHOMOLOGY ALGEBRAS
OF LOW-DIMENSIONAL TORIC VARIETIES
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(Communicated by John R. Stembridge)

Abstract. We show that the real cohomology algebra of a compact toric
variety of complex dimension 2 is determined, up to isomorphism, by the
combinatorial data of its defining fan. Surprisingly enough, this is no longer
the case when taking rational coefficients. Moreover, we show that neither the
rational nor the real or complex cohomology algebras of compact quasi-smooth
toric varieties are combinatorial invariants in general.

1. Introduction

The interest in toric varieties from various fields of mathematics is widely due
to their two-fold nature: On one hand, they are algebro-geometric objects; on the
other hand, they are defined through discrete geometric objects and possess natural
combinatorial data. Much as algebro-geometric properties of toric varieties have
combinatorial characterizations, one is led to ask whether topological invariants of a
toric variety are determined by the combinatorics of the defining fan, i.e., whether,
as a matter of fact, they are combinatorial invariants of the fan. In the present
paper we address this question with regard to the rational cohomology algebras of
compact quasi-smooth toric varieties.

On the discrete-geometric side, we will be concerned with complete fans of
strictly convex, simplicial cones in Rd. Let Σ be such a fan, generated by primitive
lattice vectors v1, . . . , vn in N ∼=Zd. Denote by ∆(Σ) the simplicial complex defined
on the index set of generating lattice vectors, with a subset forming a simplex in
∆(Σ) if and only if the corresponding lattice vectors span a cone in Σ. We refer to
the abstract simplicial complex ∆(Σ) as the combinatorial data of Σ. Equally, we
could refer to the face poset of Σ. Asking whether a topological invariant is in fact
a combinatorial invariant thus means asking whether the invariant only depends
on ∆(Σ).

Complete simplicial fans define toric varieties that are compact and quasi-
smooth, the latter meaning that at worst they have finite quotient singularities. For
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the basic theory of toric varieties we refer to the standard textbooks by Oda, Fulton,
or Ewald [Od, Fu, Ew], as well as to the classical survey paper by Danilov [Da].

For a compact quasi-smooth toric variety the cohomology groups with rational
coefficients are determined by the combinatorial data of the defining fan. Together
with a description of the ring structure due to Danilov [Da], this makes compact
quasi-smooth toric varieties a natural class for our investigations. Let us men-
tion here that the integer cohomology of toric varieties is not even combinatorially
determined in complex dimension 2 [FY], nor are the rational Betti numbers com-
binatorial invariants beyond the quasi-smooth case [McC].

Let us sketch the contents of this paper: In Section 2 we state Danilov’s result
(Theorem 2.1) along with a discussion of some geometric aspects of his algebra
presentation.

Section 3 is devoted to the situation in complex dimension 2 which turns out to
be surprisingly intricate: We show that the real cohomology algebra of a compact
toric variety of complex dimension 2 is completely determined by the combina-
torial data of its defining fan, i.e., by the number of rays alone (Theorem 3.7).
We obtain this result as a consequence of certain real symmetric bilinear forms
on cohomology algebras of projective quasi-smooth toric varieties being combina-
torially determined (Theorem 3.6). This fact, in turn, is the algebro-geometric
counterpart of the Hodge-Riemann-Minkowski inequalities on weight spaces of sim-
ple polytopes [McM, Thm. 8.2]. Here we give a proof of Theorem 3.6 from the
algebro-geometric viewpoint. In contrast to our result on the real cohomology al-
gebra, we show that the rational cohomology algebra of a compact toric variety in
complex dimension 2 is no longer a combinatorial invariant (Example 3.8).

In Section 4 we present an example of toric varieties in complex dimension 3
which shows that neither the rational nor the real or the complex cohomology
algebras of compact quasi-smooth toric varieties are combinatorial invariants in
general (Example 4.1).

Contrasting our results, let us mention that the rational equivariant cohomology
algebra of a compact quasi-smooth toric variety XΣ with its natural torus action
is combinatorially determined: it is isomorphic to the Stanley-Reisner ring of the
simplicial complex ∆(Σ) ([Br, Remark p. 17] and [Bi]).

2. Preliminaries on Danilov’s algebra presentation

We first state a presentation for the rational cohomology algebra of a compact
quasi-smooth toric variety due to Danilov [Da], undoubtedly, a fundamental result
on the cohomology ring structure of toric varieties. Along with summarizing some
of the algebraic-topological properties of the varieties in question, we recall the
geometric meaning of the multiplicative generators (compare [Da, §5.7, §10]), and
subsequently derive a description of the cohomological dual of the fundamental
class for further reference.

Theorem 2.1 ([Da, §10]). Let Σ be a complete simplicial fan in Rd, generated by
primitive lattice vectors v1, . . . , vn in N ∼= Zd with the coordinates of vi denoted by
v

(1)
i , . . . , v

(d)
i for i= 1, . . . , n. Let fi(Σ) denote the number of i-dimensional sim-

plices in ∆(Σ), i= 0, . . . , d−1, and set f−1(Σ):=1.
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The rational cohomology algebra of the associated toric variety XΣ has the fol-
lowing presentation in terms of generators and relations:

H∗(XΣ,Q) ∼= Q[z1, . . . , zn]

/〈 ∏k
j=1 zij for {i1, . . . , ik} 6∈ ∆(Σ),∑n
i=1 v

(t)
i zi for 1 ≤ t ≤ d

〉
.

The rational Betti numbers are determined by the face numbers of Σ:

dimQ H2k(XΣ,Q) =
k∑
i=0

(−1)k−i
(
d−i
d−k

)
fi−1(Σ) , 0 ≤ k ≤ d .

Remark 2.2. Presentations for the real and complex cohomology algebras are ob-
tained by tensoring with R or C, respectively. In case XΣ is smooth, i.e., the
defining fan is unimodular, the above presentation holds with coefficients in Z. Let
us further point out that the rational Betti numbers coincide with the entries of
the h-vector of ∆(Σ) (compare [Zi, Def. 8.18]).

Any toric variety XΣ is endowed with a natural torus action, where the orbits
are in one-to-one correspondence with the cones in the defining fan Σ ⊆ Rd. The
orbit closures FS for S ∈∆(Σ) are toric subvarieties of XΣ with combinatorial
data given by the star of S in ∆(Σ), st(S) = {T ∈∆(Σ) |S⊆T }. In particular,
dimC FS = d−1−dimS. In case Σ is a complete simplicial fan, the associated
algebraic cycles [FS ], S ∈∆(Σ), generate the homology of XΣ [Da, Prop. 10.3].

A compact quasi-smooth toric variety XΣ is a rational homology manifold [Da,
§14]. In particular, this allows for a canonical homology generator in top dimension,
the fundamental class [XΣ]∈H2d(XΣ,Q): It is the unique class that restricts to the
local (canonical) orientation class in H2d(XΣ, XΣ \{x},Q) for every x∈XΣ. More-
over, all rational intersection homology groups are isomorphic, and the canonical
maps connecting cohomology, resp. homology, groups with intersection homology
are isomorphisms [Fu, p. 105]:

H2d−k(XΣ,Q)
∼=−→ IHk(XΣ,Q)

∼=−→ Hk(XΣ,Q) for 0≤ k≤ 2d .

This composition of maps factors the Poincaré duality map

φ = − ∩ [XΣ] : H2d−k(XΣ,Q) −→ Hk(XΣ,Q) for 0≤ k≤ 2d ,

given by cap product multiplication of cohomology classes on XΣ with the funda-
mental class [XΣ] [GM, §1.4].

The Poincaré duality isomorphism allows us to relate the algebraic cycles [FS ],
S ∈∆(Σ), to the cohomology presentation stated in Theorem 2.1: the Poincaré
duals [F{i}]∨ :=φ−1( [F{i}] ) of homology classes represented by the divisors F{i},
{i}∈∆0(Σ), generate the rational cohomology algebra of XΣ. In fact, they corre-
spond to the abstract algebra generators in the Danilov presentation.

Multiplication among these generators – in the dual picture: intersection of the
divisors – is described by

[F{i1}]
∨ ^ . . . ^ [F{ik}]

∨

=

{
1

mult(σ(S);N) [FS ]∨ for {i1, . . . , ik}=S ∈ ∆(Σ),
0 otherwise ,

(∗)
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where [FS ]∨ :=φ−1( [FS ] ), σ(S) is the cone in Σ corresponding to S ∈∆(Σ), and
mult(σ;N), the multiplicity of σ, is defined as the index

mult(σ;N) := |N ∩ (σ − σ) : 〈 vi1 , . . . , vik 〉 |

of the subgroup generated by the primitive generating vectors vi1 , . . . , vik of σ in
the lattice N restricted to the linear hull of σ. Equivalently, mult(σ;N) is the
number of lattice points in the parallelotope Pσ := {

∑k
j=1 αj vij | 0 ≤ αj < 1}.

The multiplicity is a measure of how far the generating vectors of a simplicial
cone σ are from being part of a lattice basis for N , i.e., how far σ is from being
unimodular.

Proposition 2.3. Let XΣ be a compact quasi-smooth toric variety with defining
fan Σ ⊆ Rd as in Theorem 2.1. Then the cohomological dual of the fundamental
class of XΣ can be written as

[XΣ]∗ = det (vi1 , . . . , vid)
d∏
j=1

zij for any {i1, . . . , id} ∈ ∆d−1(Σ) ,

where the zij denote generators in the Danilov presentation.

Proof. For S ∈∆d−1(Σ) representing a top-dimensional cone in Σ the subvariety
FS is a single point in XΣ. The Poincaré dual [FS ]∨ of the algebraic cycle [FS ] ∈
H0(XΣ), S ∈∆d−1(Σ), evaluates to 1 on the fundamental class [XΣ]:

〈 [FS ]∨, [XΣ] 〉 = ε ( [FS ]∨ ∩ [XΣ] )
(1)
= ε ( [FS ] ) = 1 ,

where ε denotes the augmentation map taking points to 1, and (1) is a consequence
of the explicit description of the Poincaré duality isomorphism stated above. Hence

[XΣ]∗ = [FS ]∨ for any S ∈ ∆d−1(Σ) ,

and the stated description follows from the multiplication rule (∗) for generators in
the Danilov presentation. �

3. Cohomology of toric varieties of complex dimension 2

In this section we consider compact toric varieties associated with complete fans
in R2. Such fans are per se simplicial and strongly polytopal, hence the associated
toric varieties are quasi-smooth and projective.

Let Σ denote a complete fan in R2, spanned by n primitive lattice vectors
v1, . . . , vn in N ∼=Z2. According to Theorem 2.1 the cohomology of the associ-
ated toric variety XΣ with coefficients in K, K = Q,R or C is linearly isomorphic
to a graded vector space U over K with total dimension n:

dimK Ui =


1 for i = 0, 4,
n− 2 for i = 2,
0 otherwise .

The structure of an associative graded-commutative algebra on U is fully described
by specifying a symmetric bilinear map ◦ : U2×U2 −→ U4 that describes multipli-
cation among elements of degree 2. Fix a linear basis B for U , say B0 = {1} for U0,
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B2 = {u1, . . . , un−2} for U2, and B4 = {u} for U4. We encode the algebra structure
on U determined by ◦ : U2 × U2 −→ U4 into a matrix over K:

M
(U,◦)
B = (αi,j )1≤i,j≤n−2 ,

with αi,j ∈ K defined by ui ◦ uj = αi,j u.

Proposition 3.1. Symmetric bilinear maps ◦1, ◦2 : U2 × U2 −→ U4 yield isomor-
phic algebra structures on U if and only if

M
(U,◦1)
B = qIn−2 QM

(U,◦2)
B QT

for some q ∈ K∗, Q ∈ GL(n−2,K), where In−2 denotes the identity in GL(n−2,K).

Proof. Let ϕ : (U, ◦1) −→ (U, ◦2) be an isomorphism of algebras. Then

M
(U,◦1)
B = M

(U,◦2)
ϕ(B) .

Encoding (U, ◦2) with respect to B requires basis changes byQ := ϕ|U2
∈GL(n−2,K)

in degree 2, and by 1
q ∈ K∗ – a scalar multiplication – in degree 4, where q is defined

by ϕ(u) = q · u.
Conversely, if matrices that encode algebra structures (U, ◦1) and (U, ◦2), re-

spectively, are related as described in the proposition, then ϕ : (U, ◦1) −→ (U, ◦2)
defined by ϕ(ui) = Qui, i = 1, . . . , n−2, and ϕ(u) = 1

q · u is an algebra isomor-
phism. �

We introduce an invariant of the toric varieties under consideration that is closely
related, but finer than the abstract isomorphism type of their cohomology algebras:

Definition 3.2. Let XΣ be a compact toric variety of complex dimension 2. We
associate a symmetric bilinear form ξ(Σ) : H2(XΣ,K) ⊗ H2(XΣ,K) −→ K by
defining

ξ(Σ)(a, b) = 〈 a ^ b , [XΣ] 〉 for a, b ∈ H2(XΣ,K) ,
where 〈 · , [XΣ] 〉 denotes evaluation on the fundamental class of XΣ.

With Proposition 2.3 at hand we are able to write out explicit matrix descriptions
for the symmetric bilinear forms ξ(Σ). In the linear basis for H2(XΣ,K) given by
the generators z1, . . . , zn−2 of the Danilov presentation, the matrix description reads

M(ξ(Σ)) = (βi,j )1≤i,j≤n−2

with βi,j ∈ K defined by zi ^ zj = βi,j · [XΣ]∗.
Using our characterization of isomorphisms of algebra structures on the graded

vector space U ∼= H∗(XΣ,K) (Proposition 3.1) we can state the following observa-
tion:

Proposition 3.3. Let XΣ and XΣ′ be compact toric varieties of complex dimen-
sion 2. If the symmetric bilinear forms ξ(Σ) and ξ(Σ′) are equivalent over K, then
the cohomology algebras of the varieties with coefficients in K are isomorphic. �

The converse however is not true:

Example 3.4. Consider the complete fans Σ and Σ′ in R2, where Σ is spanned by
v1 = (1, 0), v2 = (0, 1), and v3 = (−1,−1), and Σ′ is spanned by v′1 = (1, 0), v′2 =
(0, 1), and v′3 = (−2,−1). The Danilov presentations for the rational cohomology
algebras of the toric varieties XΣ and XΣ′ both reduce to Q[z] / 〈z3〉, where z
corresponds to [F{3}]∨ in H2(X,Q). Descriptions of the cohomological duals of the
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fundamental classes in terms of z however read: [XΣ]∗ = [F{2,3}Σ ]∨ = z2 and
[XΣ′ ]∗ = [F{2,3}Σ′ ]

∨ = 2z2. Hence, M(ξ(Σ)) = (1), whereas M(ξ(Σ′)) = (1/2),
and thus the symmetric bilinear forms ξ(Σ) and ξ(Σ′) are non-equivalent over Q.

The forms ξ(Σ) belong to a larger family of bilinear forms defined on the coho-
mology of any compact complex projective quasi-smooth variety. Recall that the
Hard Lefschetz Theorem holds for such varieties, i.e., iterated cup product multi-
plication with the cohomology class of a hyperplane section, ω ∈ H2(X,K), gives
isomorphisms on the graded pieces of H∗(X,K):

(3.1) Hk(X,K) ^ωd−k−−−−−→ H2d−k(X,K) for 0 ≤ k ≤ d = dimCX .

For a detailed formulation of the Hard Lefschetz Theorem in the toric case see [Od,
Sect. 3.3, p. 135]; the general result is a consequence of work by Saito [Sa].

Definition 3.5. Let X be a compact complex projective quasi-smooth variety of
complex dimension d. Define bilinear forms ξk : Hk(X,K) ⊗ Hk(X,K) −→ K ,
0 ≤ k ≤ d, by

ξk(a, b) = 〈 a ^ b ^ ωd−k , [X ] 〉 for a, b ∈ Hk(X,K) ,

where ω∈ H2(X,K) is the “Lefschetz element” of (3.1) and 〈 · , [X ] 〉 denotes
evaluation on the fundamental class.

Theorem 3.6. Let XΣ be a compact projective quasi-smooth toric variety with
complete defining fan Σ⊆Rd. Then the real symmetric bilinear forms ξ2k on
H2k(XΣ,R), 0 ≤ k ≤ bd2c, are determined up to equivalence by the combinatorial
data of Σ : ξ2k is non-degenerate and (−1)kξ2k has

∑k
i=0 (−1)i hk−i(Σ) positive

and
∑k−1

i=0 (−1)i hk−i−1(Σ) negative eigenvalues, with hj(Σ) denoting the h-vector
entries of ∆(Σ).

Taking into account the isomorphism between real cohomology algebras of com-
pact projective quasi-smooth toric varieties and certain subalgebras of the polytope
algebra [McM, Thm.14.1], our result translates into a result by P. McMullen [McM,
Sect. 8], the so-called Hodge-Riemann-Minkowski inequalities on weight spaces of
simple polytopes. Our theorem complements McMullen’s result from an algebro-
geometric viewpoint: Due to de Rham and Hodge theory extending to the varieties
in question [Da, § 4, § 12], we obtain Theorem 3.6 as a consequence of the classi-
cal Hodge-Riemann bilinear relations [GH, p. 123], and we explain why they take a
particularly simple form in the toric case.

Proof of Theorem 3.6. As a consequence of the Hard Lefschetz Theorem for com-
pact projective quasi-smooth toric varieties, there is a direct sum decomposition on
each graded piece of the cohomology algebra, the so-called Lefschetz decomposition:

(3.2) H2k(XΣ,K) ∼=
⊕
j≥0

ωj P 2k−2j(XΣ,K) for 0 ≤ k ≤ d ,

where
P 2r(XΣ,K) = Ker (H2r(XΣ,K) ^ωd−2r+1

−−−−−−−→ H2d−2r+2(XΣ,K) )

is the primitive cohomology of XΣ in degree 2r, 0 ≤ r ≤ bd2c.
It is easy to see that the Lefschetz decomposition of H2k(XΣ,K) is orthogonal

with respect to ξ2k. Moreover, ξ2k(a, b) = ξ2k−2j(a′, b′) for a=ωja′, b=ωjb′ ∈
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ωj P 2k−2j(XΣ), and thus it suffices to study the symmetric bilinear forms ξ2k on
the primitive part of H∗(XΣ,K).

The real symmetric bilinear forms ξ2k on H∗(XΣ,R) are induced by the corre-
sponding forms on H∗(XΣ,C). The Hodge-Riemann bilinear relations (cf. [GH, p.
123]), a consequence of the Hard Lefschetz Theorem and of Hodge theory for the
varieties in question, ensure that the forms are non-degenerate. Moreover, in even
degrees the relations specify the number of positive and negative eigenvalues on the
primitive cohomology referring to the Hodge filtration on P ∗(XΣ,C):

(3.3)
√
−1

p−q
(−1)(p+q)(p+q−1)/2ξ2k(x, x̄) > 0 ,

for x ∈ P p+q(XΣ,C) ∩H2k(XΣ,R).
Whereas all before-mentioned arguments hold in the generality of compact com-

plex projective quasi-smooth varieties, we now need to use a particular feature
of Hodge filtrations in the toric case: There is a spectral sequence converging to
H∗(XΣ,C),

Ep,q1 = Hq(XΣ,Ω
p
XΣ

) ⇒ Hp+q(XΣ,C) ,

with the E1-term the cohomology of sheaves of differential forms on XΣ. The
spectral sequence collapses in its first term and yields the Hodge filtration on
H∗(XΣ,C) [Da, Thm. 12.5]. From [Da, Prop. 12.11] we see that for quasi-smooth
toric varieties the tableau entries Hq(XΣ,Ω

p
XΣ

) are trivial unless p= q, thus we con-
clude that the only non-trivial summand in the Hodge decomposition ofH2k(XΣ,C)
is the summand of symmetric degree (k, k).

The Hodge-Riemann bilinear relations (3.3) thus assert that the symmetric bi-
linear forms ξ2k on H2k(XΣ,R), 0 ≤ k ≤ bd2c, either have positive or negative
eigenvalues on entire summands of the Lefschetz decomposition (3.2) and that the
signs of eigenvalues alternate with k.

To determine the number of positive and negative eigenvalues observe that as a
consequence of the Hard Lefschetz Theorem

dimRP 2k(XΣ,R) = dimRH2k(XΣ,R)− dimRH2k−2(XΣ,R) = hk(Σ)− hk−1(Σ)

for 0 ≤ k ≤ bd2c. The statement of the theorem thus follows. �

Our main result on the description of real (and thus of complex) cohomology
algebras of compact toric varieties in complex dimension 2 is now an easy conse-
quence:

Theorem 3.7. The real cohomology algebra of a compact toric variety of complex
dimension 2 is completely determined by the combinatorial data of its defining fan,
i.e., by the number of rays alone. Let Σ denote a complete fan in R2 as described
above. Then

H∗(XΣ,R) ∼= R[z1, . . . , zn−2]
/ 〈

z2
1 + z2

i for 2 ≤ i ≤ n−2,
zizj for 1 ≤ i < j ≤ n−2

〉
.

Proof. Theorem 3.6 asserts that for a fixed number of rays in Σ the symmetric
bilinear forms ξ(Σ) = ξ2 are all equivalent over R. Using Proposition 3.3 this
implies that the real cohomology algebras are all of the same isomorphism type.
In particular, ξ(Σ) has h0(Σ) = 1 positive eigenvalue and h1(Σ)− h0(Σ) =n − 3
negative eigenvalues. The explicit algebra presentation for H∗(XΣ,R) follows. �
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Theorem 3.7 does not extend to cohomology algebras with rational coefficients:

Example 3.8. Let Σ denote the complete fan spanned by

v1 = ( 1, 0) , v2 = ( 0, 1) , v3 = (−1, 0) , v4 = ( 0,−1) ,

and Σ′ the complete fan spanned by

v′1 = ( 1, 0) , v′2 = ( 0, 1) , v′3 = (−1, 1) , v′4 = (−1,−1) .

We will show that the rational cohomology algebras of the associated toric varieties
XΣ and XΣ′ are not isomorphic. Straightforward simplifications of the algebra
presentations according to Danilov (compare Theorem 2.1) yield the following de-
scriptions:

H∗(XΣ,Q) ∼= Q[u1, u2]
/
〈u1u2, u

2
1 + u2

2 〉 ,
H∗(XΣ′ ,Q) ∼= Q[u1, u2]

/
〈u1u2, u

2
1 + 2 u2

2 〉 .
We compare nontrivial solutions for the system of equations

x2 = −y2 = z,

xy = 0.
(3.4)

InH∗(XΣ,Q), (x, y, z) = (u1, u2, u
2
1) obviously solves (3.4). Now assume that x, y, z

with x = αu1 +βu2 and y = γu1 +δu2 is a solution of (3.4) in H∗(XΣ′ ,Q). W.l.o.g.
we can assume that the coefficients α, β, γ, δ are integers with gcd(α, β, γ, δ) = 1.
From xy = 0 and x2 = −y2 we deduce that

βδ = 2αγ,
β2 + δ2 = 2 (α2 + γ2) .

But these conditions imply that 2 is a common divisor of the coefficients, contra-
dicting our assumption. Hence, the system of equations (3.4) has no non-trivial
solution in H∗(XΣ′ ,Q) which shows that the algebras are not isomorphic.

We have thus proven the following:

Theorem 3.9. The rational cohomology algebra of a compact quasi-smooth toric
variety is not a combinatorial invariant, not even in the projective case.

4. Cohomology of quasi-smooth toric varieties

is not combinatorial

We close our investigations with an example showing that already in complex
dimension 3 neither the real nor the complex cohomology algebras of quasi-smooth
toric varieties are combinatorial invariants.

Example 4.1. Consider the regular prism P in R3 spanned by

v1 = ( 1, 0,−1), v2 = (−1, 1,−1), v3 = (−1,−1,−1),
v4 = ( 1, 0, 1), v5 = (−1, 1, 1), v6 = (−1,−1, 1),

and the triangulation of its boundary complex by the simplices

{v1, v2, v3}, {v1, v4, v5}, {v1, v2, v5}, {v2, v5, v6} ,
{v2, v3, v6}, {v3, v4, v6}, {v1, v3, v4}, {v4, v5, v6} .

Let Σ denote the fan spanned by the triangulated boundary complex of P over
0 ∈ int P .
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Define the polytope P ′ as the convex hull of

v′1 = ( 1, 0,−1), v′2 = (−1, 1,−1), v′3 = (−1,−1,−1),
v′4 = ( 1,−1, 1), v′5 = ( 1, 1, 1), v′6 = (−1, 0, 1),

and let Σ′ denote the fan spanned by its boundary complex over 0 ∈ intP ′.
When “rotating” the top facet of P clockwise, the maximal simplices in the

above-mentioned triangulation of the boundary of P are realized as facets of a
convex polytope. The combinatorial type of P , i.e., its face lattice, coincides with
that of P ′: Both fans Σ and Σ′ have the combinatorial type of a fan spanned by
an octahedron in R3. However, Σ′ gives rise to a projective, Σ to a non-projective
toric variety.

We will show that the cohomology algebras of the associated toric varieties XΣ

and XΣ′ are not isomorphic as graded-commutative algebras, neither over Q nor
over R or C.

Setting z1 = z5 + z6, z2 = 1
2z4 − 1

2z5 + 1
2z6, and z3 = 1

2z4 + 1
2z5 − 1

2z6 in the
Danilov presentation for H∗(XΣ,K), and setting z1 = z6, z2 = z4 and z3 = z5 in
the Danilov presentation for H∗(XΣ′ ,K), K = Q,R or C, we obtain the following
algebra presentations:

H∗(XΣ,K) ∼= K [z4, z5, z6]

/〈 z4 z5 + z2
5 + z2

6 ,

z4 z6 + z2
4 + z2

5 + z2
6 ,

z5 z6 + z2
6

〉
,

H∗(XΣ′ ,K) ∼= K [z4, z5, z6] / 〈 z2
4 , z

2
5 , z

2
6 〉 .

We show that all squares of non-zero elements from H2(XΣ,K) are non-zero:
Expanding the square of an arbitrary element λz4 + µz5 + νz6 of H2(XΣ,K),
λ, µ, ν ∈ K , in the linear basis z2

4 , z
2
5 , z

2
6 of H4(XΣ,K), and assuming that the

square is 0, we obtain the following system of equations in the coefficients λ, µ, ν:

0 = λ2 − 2λν,
0 = µ2 − 2λν − 2λµ,
0 = ν2 − 2λµ− 2λν − 2µν .

In neither of the considered coefficient fields this system of equations has a solution
other than the trivial one; hence squares of elements in H2(XΣ,K) are non-zero.

However, the defining relations in the before-mentioned presentation of
H∗(XΣ′ ,K) already show that there are elements in H2(XΣ′ ,K) whose squares
are zero. We conclude that the algebras are non-isomorphic, and have thus proven
the following:

Theorem 4.2. For compact quasi-smooth toric varieties in general, neither the
rational nor the real or complex cohomology algebras are determined by the combi-
natorial data of the defining fans.
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