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ANDRÉ-QUILLEN HOMOLOGY VIA FUNCTOR HOMOLOGY

TEIMURAZ PIRASHVILI

(Communicated by Paul Goerss)

Abstract. We obtain André-Quillen homology for commutative algebras us-
ing relative homological algebra in the category of functors on finite pointed
sets.

1. Introduction

Let Γ be the small category of finite pointed sets. For any n ≥ 0, let [n] be the
set {0, 1, ..., n} with basepoint 0. We assume that the objects of Γ are the sets [n].
A left Γ-module is a covariant functor Γ → Vect to the category of vector spaces
over a field K. For a left Γ-module F we put

π0(F ) := Coker(d0 − d1 + d2 : F ([2])→ F ([1])),

where d1 is induced by the folding map [2] → [1], 1, 2 7→ 1 while d0 and d2 are
induced by the projection maps [2] → [1] given respectively by 1 7→ 1, 2 7→ 0 and
1 7→ 0, 2 7→ 1. The category Γ-mod of left Γ-modules is an abelian category with
enough projective and injective objects. Therefore one can form the left derived
functors of the functor π0 : Γ-mod → Vect, which we will denote by π∗. Thanks
to [5] and [6] we know that π∗F is isomorphic to the homotopy of the spectrum
corresponding to the Γ-space F according to Segal (see [9] and [1]).

Let A be a commutative algebra over a ground field K and let M be an A-
module. There exists a functor L(A,M) : Γ → Vect, which assigns M ⊗ A⊗n to
[n] (see [3] or section 3). Here all tensor products are taken over K. It was proved
in [7] that π∗(L(A,M)) is isomorphic to a brave new algebra version of André-
Quillen homology HΓ

∗ (A,M) constructed by Alan Robinson and Sarah Whitehouse
[10]. The main result of this paper shows that a similar isomorphism also exists for
André-Quillen homology if one takes an appropriate relative derived functor of the
same functor π0 : Γ-mod→ Vect.

2. A class of proper exact sequences

Thanks to the Yoneda lemma, Γn, n ≥ 0, are projective generators of the cate-
gory Γ-mod. Here

Γn : = K[HomΓ([n],−)],
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and K[S] denotes the free vector space spanned by a set S. For left Γ-modules
F and T one defines the pointwise tensor product F ⊗ T to be the left Γ-module
given by (F ⊗ T )([n]) = F ([n]) ⊗ T ([n]). Since Γn ⊗ Γm ∼= Γn+m one sees that
the tensor product of two projective left Γ-modules is still projective. We also have
Γn ∼= (Γ1)⊗n.

A partition λ = (λ1, · · · , λk) is a sequence of natural numbers λ1 ≥ · · · ≥ λk ≥ 1.
The sum of partition is given by s(λ) := λ1 + · · · + λk, while the group Σ(λ) is a
product of the corresponding symmetric groups

Σ(λ) := Σλ1 × · · · × Σλk ,

which is identified with the Young subgroup of Σs(λ). Let us observe that Σn =
AutΓ([n]) and therefore Σn acts on Γn ∼= (Γ1)⊗n. For a partition λ with s(λ) = n
we let Γ(λ) be the coinvariants of Γn under the action of Σ(λ) ⊂ Σn.

For a vector space V we let S∗(V ), Λ∗(V ) and D∗(V ) be respectively the sym-
metric, exterior and divided power algebra generated by V . Let us recall that
Sn(V ) = (V ⊗n)/Σn is the space of coinvariants of V ⊗n under the action of the
symmetric group Σn, while Dn(V ) = (V ⊗n)Σn is the space of invariants. Moreover
for a partition λ = (λ1, · · · , λk) we put

Sλ := Sλ1 ⊗ · · · ⊗ Sλk .
We similarly define Λλ and Dλ. It follows from the definition that

Γ(λ) ∼= Sλ ◦ Γ1.

In particular Γ(1, · · · , 1) ∼= Γn and Γ(n) ∼= Sn ◦ Γ1.
Let

0→ T1 → T → T2 → 0
be an exact sequence of left Γ-modules. It is called a Y-exact sequence if for any
partition λ with s(λ) = n the induced map

T ([n])Σ(λ) → T2([n])Σ(λ)

is surjective. Here and elsewhere, MG denotes the subspace of G-fixed elements of
a G-module M . For a Y-exact sequence 0→ T1 → T → T2 → 0 the sequence

0→ T1([n])Σ(λ) → T ([n])Σ(λ) → T2([n])Σ(λ) → 0

is also exact. Following to Section XII.4 of [4] we introduce the relative notions.
An epimorphism f : F → T is called a Y-epimorphism if

0→ Ker(f)→ F → T → 0

is a Y-exact sequence. Similarly, a monomorphism f : F → T is called a Y-
monomorphism if

0→ F → T → Coker(f)→ 0
is a Y-exact sequence. A morphism f : F → T is called a Y-morphism if F → Im(f)
is a Y-epimorphism and Im(f) → T is a Y-monomorphism. A left Γ-module Z
is called Y-projective if for any Y-epimorphism f : F → T and any morphism
g : Z → T there exists a morphism h : Z → F such that g = fh.

Lemma 2.1. i) If a short exact sequence is isomorphic to a Y-exact sequence,
then it is also a Y-exact sequence.

ii) A split short exact sequence is Y-exact.
iii) A composition of two Y-epimorphisms is still a Y-epimorphism.
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iv) If f and g are two composable epimorphisms and fg is a Y-epimorphism,
then f is also a Y-epimorphism.

v) A composition of two Y-monomorphisms is still a Y-monomorphism.
vi) If f and g are two composable monomorphisms and fg is a Y-monomor-

phism, then g is also a Y-monomorphism.

Proof. The properties i)- iv) are clear. Let f : B → C and g : A→ B be monomor-
phisms. One can form the following diagram:

0

��

0

��
0 // A

g //

1A

��

B //

f

��

X //

��

0

0 // A
fg // C //

��

Z //

��

0

Y
1Y //

��

Y

��
0 0

Assume f and g are are Y-monomorphisms; then for any partition λ with s(λ) = n
one has a commutative diagram:

0

��

0

��
0 // A([n])Σ(λ) //

1A

��

B([n])Σ(λ) //

��

X([n])Σ(λ) //

��

0

0 // A([n])Σ(λ) // C([n])Σ(λ) h //

��

Z([n])Σ(λ)

��
Y ([n])Σ(λ)

1Y //

��

Y ([n])Σ(λ)

0

The diagram chasing shows that h is an epimorphism and therefore fg is a Y-
monomorphism and v) is proved. Assume now that fg is a Y-monomorphism.
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Then we have the following commutative diagram:

0

��

0

��
0 // A([n])Σ(λ) //

1A

��

B([n])Σ(λ) l //

��

X([n])Σ(λ)

��
0 // A([n])Σ(λ) // C([n])Σ(λ) //

��

Z([n])Σ(λ)

��

// 0

Y ([n])Σ(λ) 1Y // Y ([n])Σ(λ)

The diagram chasing shows that l is an epimorphism and therefore f is a Y-
monomorphism and therefore we get vi). �

As an immediate corollary we obtain that the class of all Y-exact sequences
is proper in the sense of Mac Lane [4]. We now show that there are enough Y-
projective objects.

Lemma 2.2. i) For any partition λ the left Γ-module Γ(λ) is a Y-projective
object.

ii) A morphism f : F → T of left Γ-modules is a Y-epimorphism iff for any
partition λ the induced morphism

HomΓ−mod(Γ(λ), F )→ HomΓ−mod(Γ(λ), T )

is an epimorphism.
iii) For any left Γ-module F there is a Y-projective object Z and a Y-epimor-

phism f : Z → F .
iv) Any projective Y-module is a direct summand of the sum of objects of the

form Γ(λ).
v) The tensor product of two Y-projective left Γ-modules is still Y-projective.

Proof. Let λ be a partition with s(λ) = n. By definition Γ(λ) = H0(Σ(λ),Γn).
Hence for any left Γ-module F one has

HomΓ−mod(Γ(λ), F ) ∼= H0(Σ(λ),HomΓ−mod(Γ
n, F ) ∼= F (n)Σ(λ).

The assertions i) and ii) are immediate consequences of this isomorphism. To prove
iii) we set

X(λ) := HomΓ−mod(Γ(λ), F ).
Moreover, for each x ∈ X(λ) we let fx : Γ(λ)→ F be the corresponding morphism.
Take Z =

⊕
λ

⊕
x∈X(λ) Γ(λ). Then the collection fx, x ∈ X(λ), yields the mor-

phism f : Z → F . We have to show that it is a Y-epimorphism. Let g : Γ(λ)→ F
be a morphism of left Γ-modules. By ii) we need to lift g to Z. By our construction
g ∈ X(λ) and therefore the inclusion Γ(λ) → Z corresponding to the summand
g ∈ X(λ) is an expected lifting and iii) is proved. The proof of iii) shows that one
can assume P to be a sum of Γλ and iv) follows. To prove the last statement one
observes that, for any partitions λ and µ, one has

Γ(λ) ⊗ Γ(µ) ∼= (Γs(λ) ⊗ Γs(µ))Σ(λ)×Σ(µ) = (Γs(λ)+s(µ))Σ(λ)×Σ(µ)

and therefore Γ(λ)⊗ Γ(µ) is Y-projective. �
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3. Definition of André-Quillen homology and the functor L

The definition of André-Quillen homology is based on the framework of homo-
topical algebra [8] and it is given as follows. We let C∗(V∗) be the chain complex
associated to a simplicial vector space V∗. Let A be a commutative algebra over a
ground field K and let M be an A-module. A simplicial resolution of A is an aug-
mented simplicial object P∗ → A in the category of commutative algebras, which
is a weak equivalence (in other words C∗(P∗) → A is a weak equivalence). A sim-
plicial resolution is called free if Pn is a polynomial algebra over K for all n ≥ 0.
Any commutative algebra possesses a free simplicial resolution which is unique up
to homotopy. Then the André-Quillen homology is defined by

D∗(A,M) := H∗(C∗(Ω1
P∗ ⊗P∗ M)),

where Ω1 is the Kähler 1-differential and P∗ → A is a free simplicial resolution. In
dimension 0 we have D0(A,M) ∼= Ω1

A ⊗AM.
As we mentioned above the functor L(A,M) : Γ → Vect is given on objects by

[n] 7→ M ⊗ A⊗n. For a pointed map f : [n] → [m], the action of f on L(A,M) is
given by

f∗(a0 ⊗ · · · ⊗ an) : = b0 ⊗ · · · ⊗ bm,
where bj =

∏
f(i)=j ai, j = 0, · · · , n.

Example 3.1. Let M = A = K[t]. In this case one has an isomorphism

L(K[t],K[t]) ∼= S∗ ◦ Γ1.

To see this isomorphism, one observes that Γ1 assigns the free vector space on a
set [n] to [n] and therefore both functors in question assign the ring K[t0, · · · , tn]
to [n]. An important consequence of this isomorphism is the fact that the functor
L(K[t],K[t]) is Y-projective.

Lemma 3.2. For any commutative algebra A and any A-module M , one has a
natural isomorphism π0(L(A,M)) ∼= Ω1

A ⊗AM.

Proof. By the definition we have π0(L(A,M)) = Coker(b : M ⊗ A⊗2 → M ⊗ A),
where b(m⊗ a⊗ b) = ma⊗ b−m⊗ ab+mb⊗ a. Since

adb⊗m 7→ (ma⊗ b)mod Im(b)

yields the isomorphism Ω1
A ⊗AM → Coker(b), the result follows. �

Lemma 3.3. i) Let A be a commutative algebra and let

0→M1 →M →M2 → 0

be a short exact sequence of A-modules. Then

0→ L(A,M1)→ L(A,M)→ L(A,M2)→ 0

is a Y-exact sequence.
ii) Let f : B → A be a surjective homomorphism of commutative algebras.

Then for any A-module M the induced morphism of left Γ-modules

L(B,M)→ L(A,M)

is a Y-epimorphism.
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Proof. One observes that for any partition λ with s(λ) = n one has

(L(A,M)([n]))Σ(λ) = (M ⊗A⊗n)Σ(λ) ∼= M ⊗Dλ(A).

Since we are over a field the tensor product is exact and we obtain i). By the same
reason f has a linear section, which also yields a linear section of Dλ(B)→ Dλ(A),
because Dλ is a functor defined on the category of vector spaces. �

4. Relative derived functors

By Lemma 2.2 the class of Y-exact sequences has enough projective objects.
Thanks to [4] this allows us to construct the relative derived functors. Let us recall
that an augmented chain complex X∗ → F is called a Y-resolution of F if it is
exact (that is, Hi(X∗) = 0 for i > 0 and H0(X∗) ∼= F ) and all boundary maps
Xn+1 → Xn are Y-morphisms, n ≥ 0. It follows from Lemma 2.2 that X∗ → F is
a Y-resolution iff for any partition λ the augmented complex

HomΓ−mod(Γ(λ), X∗)→ HomΓ−mod(Γ(λ), F )

is exact. A Y-resolution Z∗ → F is called a Y-projective resolution if for all n ≥ 0
the left Γ-module Zn is a Y-projective object. We define πY∗ (F ) using relative
derived functors of the functor π0 : Γ-mod→ Vect. In other words we put

πYn (F ) := Hn(π0(Z∗)), n ≥ 0,

where Z∗ → F is a Y-projective resolution. By [4] this gives the well-defined
functors πYn : Γ-mod→ Vect, n ≥ 0.

Lemma 4.1. If K is a field of characteristic zero, then π∗(F ) ∼= πY∗ (F ).

Proof. In this case all exact sequences are Y-exact, because for any finite group G,
the functor M 7→MG is exact. �
Lemma 4.2. For left Γ-modules F, T one has an isomorphism

πY∗ (F ⊗ T ) ∼= πY∗ (F )⊗ T ([0])⊕ F ([0])⊗ πY∗ (T ).

Proof. The result in dimension 0 is known (see Lemma 4.2 of [5]). Let Z∗ → F and
R∗ → T be Y-projective resolutions. By Lemma 2.2 Z∗ ⊗ R∗ → F ⊗ T is also a
Y-projective resolution. Thus

πY∗ (F ⊗ T ) = H∗(π0(Z∗ ⊗R∗))
∼= H∗(πY0 (Z∗)⊗R∗([0])⊕ Z∗([0])⊗ πY0 (R∗))
∼= πY∗ (F )⊗ T ([0])⊕ F ([0])⊗ πY∗ (T ),

where the last isomorphism follows from the Eilenberg-Zilber theorem and Künneth
theorem. �
Lemma 4.3. Let ε : X∗ → A be a simplicial resolution in the category of commu-
tative algebras and let M be an A-module. Then the associated chain complex of
the simplicial Γ-module C∗(L(X∗,M))→ L(A,M) is a Y −resolution.

Proof. Since ε is a weak equivalence of simplicial algebras it is a homotopy equiva-
lence in the category of simplicial vector spaces. Thus M⊗Dλ(X∗)→M⊗Dλ(A∗)
is also a homotopy equivalence, for any partition λ. It follows that

L(X∗,M)([n])Σ(λ) → L(A,M)([n])Σ(λ)

is also a homotopy equivalence of simplicial vector spaces. �
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The following is our main result.

Theorem 4.4. For any commutative ring A and any A-module M , there is a
canonical isomorphism

Di(A,M) ∼= πYi (L(A,M)), i ≥ 0,

between the André-Quillen homology and relative derived functors of π0 applied on
the functor L(A,M).

Proof. Thanks to Lemma 3.2 the result is true for i = 0. First consider the case
when M = A = K[t]. In this case the André-Quillen homology vanishes in positive
dimensions by definition. On the other hand L(K[t],K[t]) is Y-projective thanks to
Example 3.1 and therefore πYi (L(A,M)) vanishes for all i > 0. One can use Lemma
4.2 to conclude that πYi (L(A,A)) vanishes for all i > 0 provided A is a polynomial
algebra. For the next step, we prove that the result is true if A is a polynomial
algebra and M is any A-module. We have to prove that πYi (L(A,M)) also vanishes
for i > 0. We already proved this fact if M = A. By additivity the functor
πYi (L(A,−)) vanishes on free A-modules. By Lemma 3.3 the functor πY∗ (L(A,−))
assigns the long exact sequence to a short exact sequence of A-modules. Therefore
we can consider such an exact sequence associated to a short exact sequence of
A-modules

0→ N → F →M → 0

with free F . Since the result is true if i = 0, one obtains by induction on i that
πYi (L(A,M)) = 0 provided i > 0. Now consider the general case. Let P∗ → A be
a free simplicial resolution in the category of commutative algebras. Then we have

Ω1
P∗ ⊗P∗ M ∼= πY0 (L(P∗,M)).

Thanks to Lemma 4.3 C∗(L(P∗,M)) → L(A,M) is a Y-resolution consisting of
πY∗ -acyclic objects and the result follows. �

The main theorem together with the main result of [7] yields:

Corollary 4.5. If Char(K) = 0, then for any commutative algebra A and any
A-module M one has a natural isomorphism

D∗(A,M) ∼= HΓ
∗ (A,M).

This fact was also proved in [10] based on the combinatorical and homotopical
analysis of the space of fully grown trees.

Remarks. i) We let t : Γop → Vect be the functor which assigns the vector space of
all maps f : [n] → K, f(0) = 0 to [n]. Then t ⊗Γ F ∼= π0(F ) (see Proposition 2.2
of [5]). Hence πY∗ can also be defined as the relative derived functors of the functor
t⊗Γ (−) : Γ-mod→ Vect. More generally one can take any functor T : Γop → Vect
and define TorY∗ (T, F ) as the value of the relative derived functors (with respect
to Y-exact sequences) of the functor T ⊗Γ (−) : Γ-mod → Vect. Then our result
claims that

D∗(A,M) ∼= TorY∗ (t,L(A,M)).

Based on Proposition 1.15 of [5] the argument given above shows that

D
{n}
∗ (A,M) ∼= TorY∗ (Λn ◦ t,L(A,M)),
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where D
{n}
∗ (A,M) are defined using Kähler n-differentials:

D
{n}
∗ (A,M) := H∗(C∗(ΩnP∗ ⊗P∗ M))

and for n = 1 one recovers the main theorem.
ii) All results remains true if K is any commutative ring and A and M are

projective as K-modules.
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