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ABSTRACT. We obtain André-Quillen homology for commutative algebras us-
ing relative homological algebra in the category of functors on finite pointed
sets.

1. INTRODUCTION

Let I' be the small category of finite pointed sets. For any n > 0, let [n] be the
set {0,1,...,n} with basepoint 0. We assume that the objects of I' are the sets [n].
A left T-module is a covariant functor I' — Vect to the category of vector spaces
over a field K. For a left '-module F' we put

70(F) = Coker(d — dy + do : F([2]) — F([1])),

where d; is induced by the folding map [2] — [1], 1,2 — 1 while dy and d» are
induced by the projection maps [2] — [1] given respectively by 1 — 1,2 — 0 and
1+ 0,2 — 1. The category I'-mod of left I'-modules is an abelian category with
enough projective and injective objects. Therefore one can form the left derived
functors of the functor 7y : I'-mod — Vect, which we will denote by .. Thanks
to [B] and [6] we know that 7, F' is isomorphic to the homotopy of the spectrum
corresponding to the I'-space F' according to Segal (see [9] and [1]).

Let A be a commutative algebra over a ground field K and let M be an A-
module. There exists a functor £(A, M) : I' — Vect, which assigns M ® A®™ to
[n] (see [3] or section 3). Here all tensor products are taken over K. It was proved
in [7] that m.(L(A, M)) is isomorphic to a brave new algebra version of André-
Quillen homology HE (A, M) constructed by Alan Robinson and Sarah Whitehouse
[10]. The main result of this paper shows that a similar isomorphism also exists for
André-Quillen homology if one takes an appropriate relative derived functor of the
same functor m : I'-mod — Vect.

2. A CLASS OF PROPER EXACT SEQUENCES

Thanks to the Yoneda lemma, I'™, n > 0, are projective generators of the cate-
gory I'-mod. Here
I'": = K[Homp([n], —)],
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and K[S] denotes the free vector space spanned by a set S. For left I'-modules
F and T one defines the pointwise tensor product F' ® T to be the left I'-module
given by (F ® T)([n]) = F([n]) ® T([n]). Since I @ T = I"™*™ one sees that
the tens?r product of two projective left I'-modules is still projective. We also have
"= ()%,

A partition A = (A1, - -+, \k) is a sequence of natural numbers Ay > -+ > A\ > 1.
The sum of partition is given by s(\) := A1 + - -+ + Ag, while the group X(A) is a
product of the corresponding symmetric groups

E(A) =25 X X By,
which is identified with the Young subgroup of ¥,(,). Let us observe that ¥, =
Autr([n]) and therefore 3, acts on T™ 2 (T1)®", For a partition A with s(\) = n
we let T'(\) be the coinvariants of I'"" under the action of Z(\) C X,,.

For a vector space V we let S*(V'), A*(V) and D*(V') be respectively the sym-
metric, exterior and divided power algebra generated by V. Let us recall that
S™(V) = (V®")/3,, is the space of coinvariants of V®" under the action of the
symmetric group ¥,,, while D"(V) = (V") is the space of invariants. Moreover
for a partition A = (A1, , \;) we put

Sri=5M @@ 8.
We similarly define A* and D*. It follows from the definition that
T(\) =Sl

In particular I'(1,--- ,1) 2 T" and T'(n) = S o T'.
Let
0—-Ty —-T—T,—0
be an exact sequence of left I'-modules. It is called a Y-exact sequence if for any
partition A with s(\) = n the induced map

T([n])*™ — Ta([n]) >

is surjective. Here and elsewhere, M“ denotes the subspace of G-fixed elements of
a G-module M. For a Y-exact sequence 0 — 77 — T — T — 0 the sequence

0 = Ti([n]) ™ — T([n) ™ = Tu(n) ™ — 0

is also exact. Following to Section XII.4 of [4] we introduce the relative notions.
An epimorphism f : F' — T is called a Y-epimorphism if

0—Ker(f) = F—=T—0

is a Y-exact sequence. Similarly, a monomorphism f : ' — T is called a Y-
monomorphism if

0— F — T — Coker(f) —0
is a Y-exact sequence. A morphism f : F' — T is called a Y-morphism if F' — Im(f)
is a Y-epimorphism and Im(f) — T is a Y-monomorphism. A left I'-module Z
is called Y-projective if for any Y-epimorphism f : F — T and any morphism
g : Z — T there exists a morphism h : Z — F such that g = fh.

Lemma 2.1. i) If a short exact sequence is isomorphic to a Y-ezxact sequence,
then it is also a Y-exact sequence.
ii) A split short exact sequence is Y-exact.
iii) A composition of two Y-epimorphisms is still a Y-epimorphism.
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iv) If f and g are two composable epimorphisms and fg is a Y-epimorphism,
then f is also a Y-epimorphism.

v) A composition of two Y-monomorphisms is still a Y-monomorphism.

vi) If f and g are two composable monomorphisms and fg is a Y-monomor-
phism, then g is also a Y-monomorphism.

Proof. The properties i)- iv) are clear. Let f : B — C and g : A — B be monomor-
phisms. One can form the following diagram:

0 0
g
0 A B X 0
llA f
0 A1 7z 0
1y
y oy
0 0

Assume f and g are are Y-monomorphisms; then for any partition A with s(A) =n
one has a commutative diagram:

00— A([n))=® — B([n])*® — X([n])*® —0

0 — A([n]) >N — C([n])>M — Z([n])>V

Y ([n]) 20— ¥ (]2

The diagram chasing shows that h is an epimorphism and therefore fg is a Y-
monomorphism and v) is proved. Assume now that fg is a Y-monomorphism.
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Then we have the following commutative diagram:

0 0

0 ——= A([n])*® ——= B([n)) " —= X ([n])>®

1a

0—— A([n])E(A) — C([n])z()‘) - - Z([n])Z(A) —

Y ([n]) > —"> Y (]} =

The diagram chasing shows that [ is an epimorphism and therefore f is a Y-
monomorphism and therefore we get vi). O

As an immediate corollary we obtain that the class of all Y-exact sequences
is proper in the sense of Mac Lane [4]. We now show that there are enough Y-
projective objects.

Lemma 2.2. i) For any partition X the left I'-module I'(\) is a Y-projective
object.
ii) A morphism [ : F — T of left I'-modules is a Y-epimorphism iff for any
partition A the induced morphism
Homp —moa(T'(N), F) — Homp _poa(T(N), T)

is an epimorphism.

iii) For any left I'-module F there is a Y-projective object Z and a Y-epimor-
phism f:Z — F.

iv) Any projective Y-module is a direct summand of the sum of objects of the
form T'(X).

v) The tensor product of two Y-projective left I'-modules is still Y-projective.
Proof. Let X\ be a partition with s(A\) = n. By definition I'(A) = Hy(X(N),I'™).
Hence for any left I'-module F' one has

Homp —moa(T(A), F) = HY(Z(X), Homp _pmoa(T™, F) = F(n)™,
The assertions i) and ii) are immediate consequences of this isomorphism. To prove
iii) we set
X (A) := Homp _poa (T (A), F).

Moreover, for each z € X(\) we let f, : I'(A) — F be the corresponding morphism.
Take Z = @, @,cx I'(A). Then the collection f, z € X(A), yields the mor-
phism f: Z — F. We have to show that it is a Y-epimorphism. Let g : '(\) — F
be a morphism of left I'-modules. By ii) we need to lift g to Z. By our construction
g € X()\) and therefore the inclusion I'(A) — Z corresponding to the summand
g € X(X) is an expected lifting and iii) is proved. The proof of iii) shows that one
can assume P to be a sum of T and iv) follows. To prove the last statement one
observes that, for any partitions A and u, one has

T(\) @ D(p) = (FS(/\) ® FS(M))E(/\)XE(M) — (I‘S()\)+5(H))E()\)XE(H)
and therefore I'(\) ® I'(i1) is Y-projective. d
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3. DEFINITION OF ANDRE-QUILLEN HOMOLOGY AND THE FUNCTOR L

The definition of André-Quillen homology is based on the framework of homo-
topical algebra [8] and it is given as follows. We let C,(V.) be the chain complex
associated to a simplicial vector space V. Let A be a commutative algebra over a
ground field K and let M be an A-module. A simplicial resolution of A is an aug-
mented simplicial object P, — A in the category of commutative algebras, which
is a weak equivalence (in other words C,(P.) — A is a weak equivalence). A sim-
plicial resolution is called free if P, is a polynomial algebra over K for all n > 0.
Any commutative algebra possesses a free simplicial resolution which is unique up
to homotopy. Then the André-Quillen homology is defined by

D*(Aa M) = H*(C*(Q}D* P, M))a
where Q! is the Kahler 1-differential and P, — A is a free simplicial resolution. In
dimension 0 we have Do(A, M) = QY @4 M.

As we mentioned above the functor £(A, M) : I' — Vect is given on objects by
[n] — M ® A®"™. For a pointed map f : [n] — [m], the action of f on L(A, M) is
given by

f*(a()@...@an) i=bg® - by,
where b] = Hf(z):_] a;, ] — 07 cee M.
Example 3.1. Let M = A = K[t]. In this case one has an isomorphism
L(K[t],K[t]) = S* ol

To see this isomorphism, one observes that I'* assigns the free vector space on a
set [n] to [n] and therefore both functors in question assign the ring K[to, - ,ty]
to [n]. An important consequence of this isomorphism is the fact that the functor
L(K[t], K[t]) is Y-projective.

Lemma 3.2. For any commutative algebra A and any A-module M, one has a
natural isomorphism mo(L(A, M)) 2 QY @4 M.

Proof. By the definition we have 7o(L(A, M)) = Coker(b : M @ A®? — M @ A),
where b(m ® a®b) =ma ®b—m @ ab+ mb® a. Since

adb ® m — (ma ® b) mod Im(b)
yields the isomorphism QY ®4 M — Coker(b), the result follows. O

Lemma 3.3. i) Let A be a commutative algebra and let
0—->M —M— M, —0
be a short exact sequence of A-modules. Then
0— L(A,M;) — LA, M) — L(A,M2) — 0

15 a Y-exact sequence.
ii) Let f : B — A be a surjective homomorphism of commutative algebras.
Then for any A-module M the induced morphism of left I'-modules

L(B, M) — L(A, M)

is a Y-epimorphism.
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Proof. One observes that for any partition A with s(\) = n one has
(LA, M)([]))EY) = (M © 452D = 1 © D(A).

Since we are over a field the tensor product is exact and we obtain i). By the same
reason f has a linear section, which also yields a linear section of D*(B) — D*(A),
because D? is a functor defined on the category of vector spaces. O

4. RELATIVE DERIVED FUNCTORS

By Lemma the class of Y-exact sequences has enough projective objects.
Thanks to [4] this allows us to construct the relative derived functors. Let us recall
that an augmented chain complex X, — F is called a Y-resolution of F' if it is
exact (that is, H;(X,) = 0 for ¢ > 0 and Ho(X,) = F) and all boundary maps
Xn11 — X, are Y-morphisms, n > 0. It follows from Lemma[22 that X, — F is
a Y-resolution iff for any partition A the augmented complex

HomF 7mod(].—‘(>\)7 X*) - HomF 7mod(].—‘(>\)7 F)

is exact. A Y-resolution Z, — F'is called a Y-projective resolution if for all n > 0
the left I-module Z,, is a Y-projective object. We define 7Y (F) using relative

derived functors of the functor 7y : I'-mod — Vect. In other words we put
™ (F) == Hy(mo(Z.)), n >0,

n

where Z, — F is a Y-projective resolution. By [4] this gives the well-defined
functors mY : I'-mod — Vect, n > 0.

Lemma 4.1. If K is a field of characteristic zero, then m,(F) = 7Y (F).

Proof. In this case all exact sequences are Y-exact, because for any finite group G,
the functor M — M is exact. O

Lemma 4.2. For left I'-modules F, T one has an isomorphism
Y (FeT)=r)(F)oT([0]) @ F([0) © ) (T).
Proof. The result in dimension 0 is known (see Lemma 4.2 of [5]). Let Z, — F and

R, — T be Y-projective resolutions. By Lemma Z, ® R, — F®T is also a
Y-projective resolution. Thus

Y (F@T) = Hi(m(Z. ® R.))
= H.(n} (Z.) @ R([0]) © Z.([0]) © 7§ (R.))
=Y (F) @ T([0]) ® F([0]) @ ) (T),

where the last isomorphism follows from the Eilenberg-Zilber theorem and Kiinneth
theorem. 0

Lemma 4.3. Let €: X, — A be a simplicial resolution in the category of commu-
tative algebras and let M be an A-module. Then the associated chain complex of
the simplicial I'-module C.(L(X., M)) — L(A, M) is a Y —resolution.

Proof. Since € is a weak equivalence of simplicial algebras it is a homotopy equiva-
lence in the category of simplicial vector spaces. Thus M @ D*(X,) — M ® D*(A,)
is also a homotopy equivalence, for any partition A. It follows that

L(X., M)([n]))™™ — £(A, M)([n))*

is also a homotopy equivalence of simplicial vector spaces. O
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The following is our main result.

Theorem 4.4. For any commutative ring A and any A-module M, there is a
canonical isomorphism

Dl(AvM) = ﬂ—zy(’C(AaM))v 1> Oa

between the André-Quillen homology and relative derived functors of mo applied on
the functor L(A, M).

Proof. Thanks to Lemma [3.2] the result is true for ¢ = 0. First consider the case
when M = A = K]Jt]. In this case the André-Quillen homology vanishes in positive
dimensions by definition. On the other hand L(Kt], K[t]) is Y-projective thanks to
Example[3 and therefore 7 (£(A, M)) vanishes for all i > 0. One can use Lemma
A2 to conclude that 7 (£(A, A)) vanishes for all i > 0 provided A is a polynomial
algebra. For the next step, we prove that the result is true if A is a polynomial
algebra and M is any A-module. We have to prove that 7 (£(A, M)) also vanishes
for ¢ > 0. We already proved this fact if M = A. By additivity the functor
7Y (L(A, —)) vanishes on free A-modules. By Lemma the functor mY(L(4, —))
assigns the long exact sequence to a short exact sequence of A-modules. Therefore
we can consider such an exact sequence associated to a short exact sequence of
A-modules

0O—=N—-F—-M-—0
with free F'. Since the result is true if ¢ = 0, one obtains by induction on ¢ that

7Y (L(A, M)) = 0 provided i > 0. Now consider the general case. Let P, — A be
a free simplicial resolution in the category of commutative algebras. Then we have

Qp. ®@p, M =2 7 (L(Py, M)).

Thanks to Lemma C.(L(P.,M)) — L(A,M) is a Y-resolution consisting of
mY-acyclic objects and the result follows. O

The main theorem together with the main result of [7] yields:

Corollary 4.5. If Char(K) = 0, then for any commutative algebra A and any
A-module M one has a natural isomorphism

D.(A, M) = HT (A, M).

This fact was also proved in [10] based on the combinatorical and homotopical
analysis of the space of fully grown trees.

Remarks. i) We let ¢ : I’ — Vect be the functor which assigns the vector space of
all maps f : [n] — K, f(0) =0 to [n]. Then ¢t ®p F = mo(F) (see Proposition 2.2
of [B]). Hence 7Y can also be defined as the relative derived functors of the functor
t ®p (=) : -mod — Vect. More generally one can take any functor T': ' — Vect
and define TorY (T, F) as the value of the relative derived functors (with respect
to Y-exact sequences) of the functor T ®p (=) : I'-mod — Vect. Then our result
claims that
D.(A, M) = TorY (t, L(A, M)).

Based on Proposition 1.15 of [5] the argument given above shows that

DI} (4, M) = o (A" 01, £(4, M),
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where Din}(A7 M) are defined using Kéahler n-differentials:
DI (A, M) = H.(C.(2}, ©p, M)

and for n = 1 one recovers the main theorem.
ii) All results remains true if K is any commutative ring and A and M are
projective as K-modules.
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