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ABSTRACT. In this paper, we study the ideals in the Fourier algebra of a lo-
cally compact group G which are complemented by an invariant projection. In
particular we show that when G is discrete, every ideal which is complemented
by a completely bounded projection must be invariantly complemented. Per-
haps surprisingly, this result does not depend of the amenability of the group
or the algebra, but instead relies on the operator biprojectivity of the Fourier
algebra for a discrete group.

1. INTRODUCTION

The history of the problem of classifying the ideals in the Fourier algebra es-
sentially goes back to D.J. Newman’s result [9] in 1961 and more generally, Walter
Rudin’s paper [12] in 1962 where he classified the complemented ideals in the group
algebra L(G), for compact abelian groups. Rudin used an averaging argument to
show that an ideal Z of L'(G) is complemented if and only if there exists a projec-
tion P : L'(G) — Z which commutes with multiplication, i.e. P(f*g) = fxP(g) for
all f,g € LY(G). (We present a proof of this fact for compact non-abelian groups
in Theorem 4.6.)

Using the Fourier transform, we can recognize Rudin’s result in terms of the
Fourier algebra A(G). Recall that the Fourier transform allows us to identify
L!(G) with A(G), where G is the dual group. Thus Rudin’s result becomes: If G
is a discrete abelian group and Z an ideal of A(G), then Z is complemented if and
only if there exists a projection P : A(G) — T such that P(uv) = uP(v) for all
u,v € A(G). The main result of the current paper is to extend this result to the
Fourier algebra of a non-abelian group.

It is easy to see from Rudin’s construction that his result cannot be extended to
non-compact groups. (See the discussion after Theorem 4.4.) However, H. Rosen-
thal [I0] was able to address this problem for all amenable groups in the following
way: If 7 is a complemented ideal of L!(G), then there must exist a projection
Q : L*(G) — I+. Now since G is amenable, we can use averaging arguments in
L>°(G) to show that there must exist a projection P : L®(G) — Z+ such that
P(f *¢) = f* P(¢) for all f € LY(G) and ¢ € L*°(G) (i.e. P commutes with the
L!(G) module action on L*(G)).
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Let us rephrase these results in the following way: Consider the short exact
sequences of L!(G) modules

(£):0 -7 —-LYG) - LYG)/T —0
and its dual sequence
(2*):0 - T+ - L®(G) - I* — 0.

In the language of homological algebra (see §2 for definitions), Rudin’s result
says that if Z is complemented in L'(G) for G compact abelian, then X splits.
Rosenthal’s result now reads: If G is amenable and Z is complemented in L*(G),
then ¥* splits. We now explore this question within this homological framework.

A Banach algebra A is said to be amenable if every bounded derivation into
a dual A module is inner. In his important work [5], B. Johnson showed that
L!(G) is amenable if and only if G is amenable. Using tools of homological algebra,
Khelemskii was able to show in [7] that if the Banach algebra A is amenable, then
the sequence of A modules

E):0-X"-Y—>2Z2-0

splits, where X* is a dual \A module. (See [2] for an alternate proof which avoids
the homological algebra tools.)

Notice that the sequence X* is just a special case of a sequence given in Z=.
Assembling all this we realize that Rosenthal’s results can now be obtained as
follows: Let G be amenable and Z a complemented ideal in L'(G). By Johnson’s
result L'(G) is amenable, and by Khelemskii’s work, the sequence ¥* must split.
Thus there exists a projection P : L*°(G) — Z which commutes with the L!(G)
module action. So it seems that it is the amenability of the algebra L!(G) which is
at the heart of the matter. In essence, it appears that the “averaging properties”
are best captured at the algebra level.

It is the latter observation which drove the study of ideals in Fourier algebra.
The initial hope was to proceed as follows: If G is amenable, perhaps A(G) will
be amenable. Thus whenever 7 is a complemented ideal in A(G), we can apply
Khelemskii’s results to construct a projection P : A(G)* — Z+ which commutes
with the A(G) module action. Unfortunately this approach has failed. Johnson
provided an example of a compact group G for which the Fourier algebra A(G) is
not amenable.

Fortunately, a new path was opened for us when Z-J Ruan introduced the notion
of operator amenability (see §2 for definitions). In [I1], Ruan showed that A(G)
was operator amenable exactly when G is amenable, thus establishing the natural
analogue of Johnson’s theorem for the group algebra. Exploiting this fact, the
current author in [T3] established analogous results to Khelemskii’s to conclude: If
G is amenable and 7 is an ideal which is complemented by a completely bounded
projection, then there exists a completely bounded projection P : A(G)* — I+
which commutes with the A(G) module action. (See [14] for a more “homological”
proof of this fact.) Thus we have established the analogue of Rosenthal’s result for
A(G) in the category of operator spaces.

Reconsidering Rudin’s original result for compact abelian G, he showed that
there is a projection P : L'(G) — Z which commutes with the module action. This
appears to be a stronger result than Rosenthal’s where the invariant projection
acts on the dual space. This leads us to the analogous question in A(G): If G is
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discrete and 7 is complemented, does there exist a projection P : A(G) — Z which
commutes with the A(G) module action? In this paper, we answer this question in
the affirmative in the category of operator spaces. Perhaps most surprisingly, this
fact is unrelated to the amenability of the group G or the algebra A(G). Instead,
the result depends on the projectivity of the Fourier algebra for discrete groups.

2. DEFINITION AND NOTATION

Let G be a locally compact group, and let L!(G) denote the group algebra.
We let A(G) denote the Fourier algebra of G. If G is abelian, then A(G) is
simply the Fourier transform of the group algebra of G. A(G) was introduced for
non-commutative groups by Eymard in [4]. In any case, A(G) is a subspace of
Co(G), the space of continuous functions vanishing at infinity. We highlight the
very important fact that if G is not abelian, then G is not a group and thus there
is no way for us to have an isomorphism between A(G) and the group algebra of
G. For each closed set E C G we define the subspace Z (E) as follows:

I(E) ={u e A(Q) :u(z) =0for allz € E}.

It is easy to see that Z(F) is a closed ideal in A(G). In addition, given any ideal
Z C A(G), we define the hull of Z, denoted by h(Z), as follows:

hMZ)={r e G:u(x)=0forall u € T}.

It is easy to see that h(Z(FE)) = E. If Z(E) is the only ideal whose hull is F, we
call F an S-set. It is well known that if G is discrete, then every subset is an S-set.
Let VIN(G) denote the closure of L'(G), considered as an algebra of convolution
operators on L?(G), with respect to the weak operator topology on B(L?(G)). The
von Neumann algebra VN(G) can be identified with the Banach space dual of
A(G) [4]. An operator space is a vector space V together with a family || ||, of
Banach space norms (called operator space norms) on M,,(V'), the space of n xn
matrices with entries in V' such that

: A 0
ol 5]
for each A € M,,(V), B € M,,,(V), and

(ii) I(las; ) ACbi Dlln < [l[ais]IIIAlln][i]]

for each [a;;], [bij] € M,(C) and A € M,(V). Let X and Y be operator spaces and
let T: X — Y. For each n € N define

= max {||Alln , [|Bllm}

n+m

T M, (X) — M, (Y)
by
T [zi;] = [Tij).
The map T is said to be completely bounded (or simply c.b. for short) if
sup{||T™||} < oo. We say that T is a complete isometry if each T is an
isometry and that T is a complete contraction if each T(is a contraction. We

say that two operator spaces X and Y are c.b. isomorphic if there exists a c.b.
map T : X — Y such that T~! is also completely bounded. Furthermore we shall
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say that X and Y are ¢.b. isometrically isomorphic if the map T can be chosen
to be a complete isometry. For the Hilbert space H, we let

HY=Hg --oH.
—_————

n

Since there is a canonical identification between M, (B(H)) and B(H™), it is easy
to show that B(H) (and hence any closed subspace) is an operator space. A funda-
mental result in the theory is that every operator space is completely isometrically
isomorphic to a norm closed subspace S of B(H ), the algebra of bounded operators
on the Hilbert space H, where the operator space structure on S is the structure
inherited from B(H) ([3]). If X is an operator space, then we can recognize X* as
an operator space called the standard dual of X (see [I]). For operator spaces
X,Y and Z, we call a bilinear map T : X XY — Z jointly completely bounded,
if for [z;;] € M, (X) and [yw] € M,,,(Y) we have that

1T [|jeb = sup{[[[T'(ij, ysi)llmn = [[[zi5)ln < 1, [[{ymalllm < 1}

is finite. There is an operator space analogue of the projective tensor product which
we denote X®Y such that

JOB(X,Y;Z) = CB(X®Y, Z).

That is to say, each jointly completely bounded map extends to a unique map on
this operator space projective tensor product.

An associative algebra A which is also an operator space and is such that the
multiplication

m: ARA— A

is completely contractive is called a completely contractive Banach algebra.
The Fourier algebra can be given a natural operator structure by virtue of it being
the predual of a von Neumann algebra. In this case, this operator space structure
results in a completely contractive Banach algebra (see [11] and [1]). A left Banach
A-module is a left A-module X that is itself a Banach space and for which

laz|lx < [la]lallz|lx

for each a € A and each x € X. A right and two-sided Banach A module is
defined analogously. We call a two-sided module a bimodule. If X is a left Banach
A-module, then X* becomes a right Banach .4-module with respect to the action

(¢a)(z) = ¢(ax).

We call X* a dual right Banach A-module. Naturally we can define dual left
and bimodules analogously. In the category of operator spaces there are two ways
to define an operator module. In this paper we shall call an operator space X which
is a left Banach A-module, a left operator A-module (or simply left A-module
if no confusion arises) if the module map is completely contractive with respect to
the operator projective tensor product, that is to say, the module map

7x  ARX — X

is completely contractive. Clearly we may define operator right and bimodules
analogously. Furthermore if X is an operator module, then X* becomes a dual
operator module with the dual actions defined above. Suppose X is a left operator
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A-module and Y an operator space. Then we may consider X®Y as a left operator
A module by

0 (2@y) —ar@y
forae A,x € X and y € Y. It is clear that if Y is a right operator module, then
X®Y becomes a right operator module in the analogous way.

A bounded (resp. ¢.b.) map T : X — Y, where X and Y are left Banach (resp.
operator) A-modules is called a left module map if T(a-z) = a-T(z) foralla € A
and z € X. Right and bimodule maps are defined analogously.

The sequence of left Banach (resp. operator) modules

) 0-XxLvLzo2z-0

is called exact if f is one-to-one, g is onto and im f = ker g for bounded (resp.
c.b.) module maps f and g. The sequence is called admissible if there exist
bounded (resp. c.b.) maps F : Y — X and G : Z — Y such that Ff = idx and
gG = idyz. We call F a left inverse for f and G a right inverse for g. We say the
sequence Y splits if the maps F' and G can be chosen to be module maps. We
handle sequences of right and bimodules analogously. In general a bounded (resp.
c.b.) module map ¢ : X — Y between Banach (resp. operator) modules is called
admissible if there exists a bounded (resp. c¢.b.) linear map 6 : Y — X such that
¢°0 =idimy ¢. Note that § need not be a module map.

Let A be a Banach (resp. completely contractive Banach) algebra, and X an
Banach (resp. operator) bimodule. A bounded (resp. c¢.b.) map D : A — X is
called a derivation if D(ab) = aD(b) + D(a)b for all a,b € A. If z € X, then the
map D, : A — X defined by D,(a) = ax — xa is easily seen to be a derivation.
Such derivations are called inner. We say A is amenable as a Banach alge-
bra (resp. amenable as a completely contractive Banach algebra) if every
bounded (resp. c.b.) derivation into a dual Banach (resp. operator) module is in-
ner. Johnson’s famous theorem asserts that the Banach algebra L'(G) is amenable
as a Banach algebra if and only if G is an amenable group. Ruan’s Theorem says
that A(G) is amenable as a completely contractive Banach algebra if and only if G
is amenable.

3. PROJECTIVITY AND IDEALS

The following definition is the operator space category analogue of the definition
of projectivity. (See [§] for the Banach space category.) Unless otherwise noted, in
this section A will denote a completely contractive Banach algebra, and X,Y and
Z will denote operator A-modules.

Definition 3.1. Let X be a left operator A module. X is called left projective if
given any c.b. admissible surjection ¢ : Y — Z and any c.b. module map 0 : X —
Z, there exists a c.b. module map ¢ : X — Y such that the following diagram
commutes:

X
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Clearly we can define right and biprojective in the analogous way. We say
that the algebra A is operator biprojective if it is projective as an operator
A bimodule.

The following is a standard property of projectivity which is easy to verify in
the category of operator spaces.

Proposition 3.2. Let Z be a projective A-module and suppose
M:0-X—-Y—>2-0
is an admissible sequence of operator A modules. Then I splits.

Definition 3.3. Let Z be a two-sided ideal in A. We say Z is complemented by a
completely bounded projection (or simply complemented) if there exists a c.b.
projection P : A — Z. Furthermore we shall say 7 is invariantly complemented
if there exists a c.b. projection P : A — Z such that P(ab) = aP(b) = P(a)b for all
a,b € A (i.e. P commutes with the module action).

We now have the following easy consequence of Proposition 3.2.

Theorem 3.4. Let T be a complemented two-sided ideal. Then T is invariantly
complemented if AJZ is biprojective.

Proof. Consider the sequence
(8):05T5 A% A4/T—0

where 4 is the inclusion map and ¢ is the canonical quotient map. Let P : A — T
be a c.b. projection. So P is a left inverse for i. First we show that ¥ is admissible.
We define Q : A/Z — Aby Q(a+Z) =a— P(a). Note that Q is well defined since
ifa+Z=0b+Zwehavea—be€ZsoQ(a—b+7I)=a—b—P(a—>)=0. Also note
that @ is completely bounded and is a right inverse for g. Thus ¥ is admissible.
Hence by Proposition 3.2, 3 splits. Thus there exists a ¢.b. module map T : A — T
which is a left inverse for i. Hence Z is invariantly complemented. O

We now must determine under what conditions .4/Z is biprojective. We begin
with some definitions.

Let A, denote the algebra A4 with a unit attached. We denote this unit by e.
A4 can be given a natural operator space structure for which it is a completely
contractive Banach algebra, and such that the natural inclusion 4 — A, is a
complete isometry. (See [15].) Suppose we are given two operator A-bimodules X
and Y. We define the tensor product X®4Y as follows: Consider the operator
subspace N of X®Y given by the closed linear span of elements of the form

rTaRQY — T ay.
Now define X® 4Y by
X®aY = X®Y/N.

We have the following facts which are generalizations of corresponding results in
the category of Banach spaces. (See [15] for proofs.)

Proposition 3.5. Let X be any operator A module, and let P be a biprojective A
bimodule. Then the modules AL ©X®A, and PR X®4P are both biprojective.
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As an immediate consequence we have:

Theorem 3.6. Assume A is operator biprojective, and I is a complemented two-
sided ideal. If A® A(A/T)4A is c.b. isomorphic to A/T as A bimodules, then T
is invariantly complemented.

Proof. By Proposition 3.5, the module A® 4(A/Z)®4.A and hence A/Z is bipro-
jective. Thus by Theorem 3.4, 7 is invariantly complemented. O

Now we shall investigate when the following holds: A®4A/Z@4A is c.b. iso-
morphic to A/Z.

Definition 3.7. The algebra A will be called semi-neounital if the multiplication
map M : ARA — A is onto.

Proposition 3.8. If A is semi-neounital, and T is any two sided ideal of A, then
there exists a c.b. isomorphism

T: AD4(A/T)@4A — AJT.

Proof. The proof of this fact is somewhat more complicated than it may appear at
first glance. Consider the following diagram:

1®q

ABA ABRA/T
M M
A AT

where M is the usual multiplication map, M is the obvious module map, and ¢ the
canonical quotient map. It is easy to see that the diagram commutes. Since A is
semi-neounital, M is onto. Since ¢ is onto, it follows that M must also be onto.
Now consider the induced map M : A®4A/T — A/Z. This map is clearly c.b. and
onto as well. We must show that it is one-to-one and has a completely bounded
inverse.

Let M, : A ,®4A — A be the multiplication map. It is easy to show that
A4 ®4A/T is completely isometrically isomorphic to A/Z via M., and that the
inclusion map AQ4A/T — A,®4A/T is an isometry. (See [15].) Hence it
follows that M is one-to-one. Since the map M, is a c.b. isomorphism and
M = M+|A®A.A/I is bijective, it follows that M is also a c.b. isomorphism. Also
note that it is easy to see that M is a left module map. Hence we conclude that
A4 A/T and A/T are c.b. isomorphic as left .A-modules.

Repeating these arguments, it follows that A/Z®4A and A/Z are c.b. iso-
morphic via the “right” map Mp. Combining these results, we see that the map
Mpgo(M&41) is a bimodule isomorphism of A 4(A/Z)&4A onto A/Z. O

The following technical lemma is a direct generalization of the analogous result
in the Banach space category, so we omit the proof. (See [8, Proposition IV.5.4].)

Lemma 3.9. If A is biprojective, then A? is dense in A.
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Lemma 3.9 can be strengthened to the following:
Theorem 3.10. If A is biprojective, then A is semi-neounital.

Proof. Consider the following diagram:

N
L
ABA——— A

where M us the multiplication map and id the identity map. Note that the map
a — e ® a is a completely bounded right inverse for M. (See [I4].) Thus My is
admissible.
Since A is biprojective we can find 6 to make the diagram commute. We claim
that Imf C AQA. Since 0 is a bimodule map, we have
OA-A) CA-0A CA- (AL0A) C ADA.

Since A2 = A it follows by continuity that §(A) C A®A. This generates the new
commutative diagram:

S R ——
ARA T T A
Since id is obviously onto, so is M. Hence A is semi-neounital. O
Combining Proposition 3.8 and Theorem 3.10 with Theorem 3.6 we conclude:
Theorem 3.11. If A is biprojective, then every complemented two-sided ideal is
invariantly complemented.
4. BIPROJECTIVITY IN FOURIER AND GROUP ALGEBRAS

It is now a simple matter for us to apply the results of the last section to the
Fourier algebra. We rely on the following results (see [15]):

Theorem 4.1. The Fourier algebra A(G) of a locally compact group G is operator
biprojective if and only if G is discrete.

Combining Theorems 3.11 and 4.1 immediately gives the following:

Theorem 4.2. Let G be a discrete group. An ideal T in A(G) is complemented if
and only if it is invariantly complemented.

Definition 4.3. A function f € C(G) is called a multiplier of A(G) if f-u € A(G)
for all u € A(G). Furthermore, we call f a completely bounded multiplier if
the map Ty : A(G) — A(G) given by Ty(u) = f - u is completely bounded. We let

A(G)) = {f € C(G) | Ty is completely bounded}.



INVARIANT COMPLEMENTATION IN A(G) 1889

We now reach the following result:

Theorem 4.4. Let G be discrete. Then the closed ideal T of A(G) is complemented
by a completely bounded projection if and only if the function 1) € A(G)D),

Proof. If G is discrete, by Theorem 4.2 we have that 7 is invariantly complemented
by a completely bounded projection, say P : A(G) — Z. Then we have P(uv) =
u - P(v). Hence there must exist a continuous function f such that P(u) = f - u.
Since P is a projection, f is idempotent. Since G is discrete, every subset of G is
an S-set, thus 7 = Z(h(Z)). The fact that f = 1g\p(z) is now clear. Since P is
completely bounded, f € A(G)().

The converse is obvious. O

It not difficult to show that discreteness is essential in the above theorem. Sup-
pose that every complemented ideal in A(G) is invariantly complemented. It is
easy to see that the ideal Z({e}) is a complemented ideal, hence is invariantly com-
plemented (where e denotes the identity element of the group G). Thus there exists
a continuous function f = 1g\ (.. Hence G' must be discrete.

Rudin’s result for L(G) dealt with ideals which were complemented by a bounded
projection, not a completely bounded one. As a result, our Theorem 4.4 appears
to be weaker than Rudin’s theorem. However, as we shall see, this is in fact not
the case.

Given any Banach space X, there exists a maximal operator space structure,
denoted M AX(X), such that if Y is any operator space, and T': X — Y then
T: MAX(X) — Y is automatically completely bounded. In particular, we get a
functor F from Banach algebras to completely contractive Banach algebras. It is
not hard to confirm that X is biprojective as a Banach algebra if and only if F(X)
is operator biprojective.

Now when G is abelian, A(G) is the predual of a commutative operator algebra,
and hence A(G) has the M AX structure. Now since all bounded maps from A(G)
to any operator space are automatically completely bounded, it follows that any
ideal complemented by a bounded projection must be complemented by a com-
pletely bounded one. Thus we see that Theorem 4.4 is indeed a generalization of
Rudin’s result.

We wish to point out that our projectivity results can be applied to the group
algebra L!(G) as well. Note that for all groups G, L'(G) is the predual of a
commutative operator space, and hence it follows that the natural structure on
L'(G) is the MAX structure. Thus we can realize Khelemskii’s theorem on the
biprojectivity of L!(G) as follows:

Theorem 4.5 ([8] Theorem 1V.5.3]). LY(G) is operator biprojective if and only if
G is compact.

The author suspects that the following result is well known (and indeed can be
shown by more “classical” means); however he knows of no specific reference.

Theorem 4.6. Let G be compact. The closed two-sided ideal T of L'(G) is com-
plemented if and only if there exists a central idempotent measure p € M(G) and
a projection P : LY (G) — I given by P(f) = f * p.

Proof. Since G is compact, L!(G) is operator biprojective. Thus Z is invariantly
complemented. Thus there exists P : L'(G) — T where P(f * g) = f * P(g9) =
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P(f) * g for all f,g € LY(G). Hence there exists a central measure p such that
P(f) = f % p. Since P is a projection, p is idempotent.
The converse is clear. (]
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