RESCALINGS OF FREE PRODUCTS OF II_{1}-FACTORS

KEN DYKEMA AND FLORIN RĂDULESCU

(Communicated by David R. Larson)

Abstract

We introduce the notation $\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)$ for von Neumann algebra II_{1}-factors where r is allowed to be negative. This notation is defined by rescalings of free products of II_{1}-factors, and is proved to be consistent with known results and natural operations. We also give two statements which we prove are equivalent to isomorphism of free group factors.

Introduction

The rescaling \mathcal{M}_{t} of a II_{1}-factor \mathcal{M} by a positive number t was introduced by Murray and von Neumann [5]. In [4, we showed that if $\mathcal{Q}(1), \ldots, \mathcal{Q}(n)$ are II_{1}-factors $(n \in\{2,3, \ldots\})$ and if $0<t<\sqrt{1-1 / n}$, then

$$
\begin{equation*}
(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n))_{t} \cong \mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{r}\right) \tag{1}
\end{equation*}
$$

where $r=(n-1)\left(t^{-2}-1\right)$. Here $L\left(\mathbf{F}_{r}\right), r>1$, is an interpolated free group factor ([2], [6]). For $\sqrt{1-1 / n} \leq t<1$, we proved a similar formula, where $L\left(\mathbf{F}_{r}\right)$ was replaced by a hyperfinite von Neumann algebra with specified tracial state having free dimension $\left([1)\right.$ equal to $r=(n-1)\left(t^{-2}-1\right) \leq 1$. If one tries to use the formula (1) when $t>1$, one obtains $L\left(\mathbf{F}_{r}\right)$ with $r<0$.

In this note we introduce the notation

$$
\begin{equation*}
\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right) \quad(n \in \mathbf{N}, 1-n<r \leq \infty) \tag{2}
\end{equation*}
$$

If $r>1$, then $L\left(\mathbf{F}_{r}\right)$ in (2) is an interpolated free group factor, while if $r \leq 1$, then (2) defines a II_{1} factor which is the rescaling by t of $\mathcal{Q}(1)_{1 / t} * \cdots * \mathcal{Q}(n)_{1 / t}$ if $n=2$ or of $\mathcal{Q}(1)_{1 / t} * L\left(\mathbf{F}_{2}\right)$ if $n=1$ for an appropriate $t>1$. We will prove that this notation is consistent with known results and natural operations involving free products. The notation (2) provides an elegent means of describing rescalings of free products of II_{1}-factors, and is used in [3].

Finally, we show that if the free group factors are isomorphic to each other, then $\mathcal{Q}(1) * \mathcal{Q}(2) \cong \mathcal{Q}(1) * \mathcal{Q}(2) * L\left(\mathbf{F}_{\infty}\right)$ for all II_{1}-factors $\mathcal{Q}(1)$ and $\mathcal{Q}(2)$ and we give one additional equivalent condition. It is conceivable that these conditions may be used to prove nonisomorphism of free group factors.

[^0]
Rescalings

Recall that the interpolated free group factors rescale as follows:

$$
\begin{equation*}
L\left(\mathbf{F}_{r}\right)_{t} \cong L\left(\mathbf{F}_{1+t^{-2}(r-1)}\right) \quad(1<r \leq \infty, 0<t<\infty) \tag{3}
\end{equation*}
$$

(see [2], 6]).
Lemma 1. Let $n \in \mathbf{N}$, let $\mathcal{Q}(1), \ldots, \mathcal{Q}(n)$ be I_{1}-factors, let $1<r \leq \infty$, and let

$$
\mathcal{M}=\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)
$$

Then for every $0<t<\sqrt{1+(r-1) / n}$,

$$
\mathcal{M}_{t} \cong \mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{t^{-2} r+(n-1)\left(t^{-2}-1\right)}\right)
$$

Proof. If $t \leq 1$, then this follows from [4] see (11) and (3) above. Suppose $t>1$. Note that t is taken so that $t^{-2} r+(n-1)\left(t^{-2}-1\right)>1$. Applying (1) and (3), we have

$$
\left(\mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{t^{-2} r+(n-1)\left(t^{-2}-1\right)}\right)\right)_{\frac{1}{t}} \cong \mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)
$$

Proposition 2. Let $n \in \mathbf{N}$, let $\mathcal{Q}(1), \ldots, \mathcal{Q}(n)$ be $I I_{1}-$ factors, and let

$$
1-n<r \leq 1
$$

Then there is a I_{1}-factor \mathcal{M}, unique up to isomorphism, such that

$$
\mathcal{M}_{t} \cong \mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{t^{-2} r+(n-1)\left(t^{-2}-1\right)}\right)
$$

whenever $0<t<\sqrt{1+(r-1) / n}$.
Proof. Let $0<s<t<\sqrt{1+(r-1) / n}$ and let \mathcal{M} and $\widetilde{\mathcal{M}}$ be II_{1}-factors such that

$$
\begin{aligned}
\mathcal{M}_{s} & \cong \mathcal{Q}(1)_{s} * \cdots * \mathcal{Q}(n)_{s} * L\left(\mathbf{F}_{s^{-2} r+(n-1)\left(s^{-2}-1\right)}\right) \\
\widetilde{\mathcal{M}}_{t} & \cong \mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{t^{-2} r+(n-1)\left(t^{-2}-1\right)}\right)
\end{aligned}
$$

Then using Lemma 1 we have

$$
\widetilde{\mathcal{M}}_{s}=\left(\widetilde{\mathcal{M}}_{t}\right)_{\frac{s}{t}} \cong \mathcal{Q}(1)_{s} * \cdots * \mathcal{Q}(n)_{s} * L\left(\mathbf{F}_{s^{-2} r+(n-1)\left(s^{-2}-1\right)}\right) \cong \mathcal{M}_{s}
$$

Definition 3. We denote the unique factor \mathcal{M} in Proposition 2 by

$$
\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)
$$

Proposition 4. Let $n \in \mathbf{N}$, let $\mathcal{Q}(1), \mathcal{Q}(2), \ldots, \mathcal{Q}(n)$ be I_{1}-factors, and let $1-n<$ $r \leq \infty$.
(i) If $0<t<\infty$, then
$\left(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right)_{t} \cong \mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{t^{-2} r+(n-1)\left(t^{-2}-1\right)}\right)$.
(ii) If σ is a permutation of $\{1,2, \ldots, n\}$, then

$$
\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right) \cong \mathcal{Q}(\sigma(1)) * \cdots * \mathcal{Q}(\sigma(n)) * L\left(\mathbf{F}_{r}\right)
$$

(iii) If $\mathcal{Q}(1)=L\left(\mathbf{F}_{s}\right)$ with $1<s \leq \infty$, then

$$
\mathcal{Q}(1) * \cdots \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right) \cong \begin{cases}\mathcal{Q}(2) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r+s}\right) & \text { if } n \geq 2 \\ L\left(\mathbf{F}_{r+s}\right) & \text { if } n=1\end{cases}
$$

(iv) If $n \geq 2$ and if $r>2-n$, then

$$
\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right) \cong \mathcal{Q}(1) *\left(\mathcal{Q}(2) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right)
$$

(v) If $\mathcal{Q}(1)=\mathcal{N}(1) * \mathcal{N}(2)$ where $\mathcal{N}(1)$ and $\mathcal{N}(2)$ are II 1 -factors, then

$$
\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right) \cong \mathcal{N}(1) * \mathcal{N}(2) * \mathcal{Q}(2) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)
$$

(vi) If $0<\tilde{r} \leq \infty$, then

$$
\left(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right) * L\left(\mathbf{F}_{\tilde{r}}\right) \cong \mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r+\tilde{r}}\right)
$$

(vii) If $\tilde{n} \in \mathbf{N}$, if $\widetilde{\mathcal{Q}}(1), \ldots, \widetilde{\mathcal{Q}}(\tilde{n})$ are $I I_{1}$-factors, and if $1-\tilde{n}<\tilde{r} \leq \infty$, then

$$
\begin{aligned}
& \left(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right) *\left(\widetilde{\mathcal{Q}}(1) * \cdots * \widetilde{\mathcal{Q}}(\tilde{n}) * L\left(\mathbf{F}_{\tilde{r}}\right)\right) \\
& \quad \cong \mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * \widetilde{\mathcal{Q}}(1) * \cdots * \widetilde{\mathcal{Q}}(\tilde{n}) * L\left(\mathbf{F}_{r+\tilde{r}}\right)
\end{aligned}
$$

(viii) If $n \geq 2$, then

$$
\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{0}\right) \cong \mathcal{Q}(1) * \cdots * \mathcal{Q}(n)
$$

(ix) If \mathcal{N} is a $I I_{1}$-factor and if \mathcal{A} is a von Neumann algebra with specified normal faithful tracial state, where $\mathcal{A} \neq \mathbf{C}$ and \mathcal{A} is either finite dimensional, hyperfinite, an interpolated free group factor or a (possibly countably infinite) direct sum of these, then

$$
\mathcal{N} * \mathcal{A} \cong \mathcal{N} * L\left(\mathbf{F}_{r}\right)
$$

where r is the quantity computed in [1] and (perhaps misleadingly) called the free dimension of \mathcal{A}; (in the revised notation of [3, §1], r is such that \mathcal{A} has a generating set of free dimension r).
Proof. For (i), if $r>1$, then this is Lemma If If $r \leq 1$ but $0<t<\sqrt{1+(r-1) / n}$, then this is Definition 3, Suppose $r \leq 1$ and $\sqrt{1+(r-1) / n} \leq t<\infty$. Let $\lambda>0$ be such that $\lambda t<\sqrt{1+(r-1) / n}$. Then applying Definition 3 twice gives

$$
\begin{aligned}
(\mathcal{Q}(1) & \left.* \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right)_{\lambda t} \\
& \cong \mathcal{Q}(1)_{\lambda t} * \cdots * \mathcal{Q}(n)_{\lambda t} * L\left(\mathbf{F}_{\lambda^{-2} t^{-2} r+(n-1)\left(\lambda^{-2} t^{-2}-1\right)}\right) \\
& \cong\left(\mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{t^{-2} r+(n-1)\left(t^{-2}-1\right)}\right)\right)_{\lambda}
\end{aligned}
$$

Now the proofs of (ii)-(viii) are obtained by rescaling both sides of the desired isomorphisms by the same $t>0$ which is small enough and applying (i) and perhaps equation (1). For example, to prove (vii) let

$$
0<t<\min \left(\frac{1}{\sqrt{2}}, \sqrt{1+\frac{r-1}{n}}, \sqrt{1+\frac{\tilde{r}-1}{\tilde{n}}}, \sqrt{1+\frac{r+\tilde{r}-1}{n+\tilde{n}}}\right)
$$

and use (i) three times to get

$$
\begin{aligned}
& \left(\left(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right) *\left(\widetilde{\mathcal{Q}}(1) * \cdots * \widetilde{\mathcal{Q}}(\tilde{n}) * L\left(\mathbf{F}_{\tilde{r}}\right)\right)\right)_{t} \\
& \quad \cong\left(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * L\left(\mathbf{F}_{r}\right)\right)_{t} *\left(\widetilde{\mathcal{Q}}(1) * \cdots * \widetilde{\mathcal{Q}}(\tilde{n}) * L\left(\mathbf{F}_{\tilde{r}}\right)\right)_{t} * L\left(\mathbf{F}_{t^{-2}-1}\right) \\
& \quad \cong \mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * \widetilde{\mathcal{Q}}(1)_{t} * \cdots * \widetilde{\mathcal{Q}}(\tilde{n})_{t} * L\left(\mathbf{F}_{t^{-2}(r+\tilde{r})+(n+\tilde{n}-1)\left(t^{-2}-1\right)}\right) \\
& \quad \cong\left(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n) * \widetilde{\mathcal{Q}}(1) * \cdots * \widetilde{\mathcal{Q}}(\tilde{n}) * L\left(\mathbf{F}_{r+\tilde{r}}\right)\right)_{t}
\end{aligned}
$$

For (ix), if $k \in \mathbf{N}$ is large enough, then by [1], $M_{k}(\mathbf{C}) * \mathcal{A}$ is the interpolated free group factor $L\left(F_{r+1-k^{-2}}\right)$. By [1, Thm. 1.2],

$$
\begin{aligned}
(\mathcal{N} * \mathcal{A})_{\frac{1}{k}} & \cong\left(\left(\mathcal{N}_{\frac{1}{k}} \otimes M_{k}(\mathbf{C})\right) * \mathcal{A}\right)_{\frac{1}{k}} \cong \mathcal{N}_{\frac{1}{k}} *\left(M_{k}(\mathbf{C}) * \mathcal{A}\right)_{\frac{1}{k}} \\
& \cong \mathcal{N}_{\frac{1}{k}} * L\left(\mathbf{F}_{r+1-k^{-2}}\right)_{\frac{1}{k}} \cong \mathcal{N}_{\frac{1}{k}} * L\left(\mathbf{F}_{k^{2} r}\right) \cong\left(\mathcal{N} * L\left(\mathbf{F}_{r}\right)\right)_{\frac{1}{k}}
\end{aligned}
$$

Formula (1) can now be extended to all values of t.
Theorem 5. Let $n \in\{2,3, \ldots\}$, let $\mathcal{Q}(1), \ldots, \mathcal{Q}(n)$ be I_{1}-factors, and let $0<t<$ ∞. Then

$$
(\mathcal{Q}(1) * \cdots * \mathcal{Q}(n))_{t}=\mathcal{Q}(1)_{t} * \cdots * \mathcal{Q}(n)_{t} * L\left(\mathbf{F}_{(n-1)\left(t^{-2}-1\right)}\right)
$$

Proof. Use part (viii) followed by part (i) of Proposition 4.
We know from [6] (see also [2]) that the interpolated free group factors $\left(L\left(\mathbf{F}_{t}\right)\right)_{1<t \leq \infty}$ are either all isomorphic to each other or all mutually nonisomorphic.
Theorem 6. The following are equivalent:
(a) $L\left(F_{s}\right) \cong L\left(F_{t}\right)$ for some, and then for all, $1<s<t \leq \infty$;
(b) for every $I I_{1}$-factor \mathcal{Q} and every $r>0$,

$$
\mathcal{Q} * L\left(\mathbf{F}_{r}\right) \cong \mathcal{Q} * L\left(\mathbf{F}_{\infty}\right)
$$

(c) for all $I I_{1}$-factors $\mathcal{Q}(1)$ and $\mathcal{Q}(2)$,

$$
\mathcal{Q}(1) * \mathcal{Q}(2) \cong \mathcal{Q}(1) * \mathcal{Q}(2) * L\left(\mathbf{F}_{\infty}\right)
$$

Proof. For $(\mathrm{a}) \Longrightarrow(\mathrm{b})$, if $0<t<\sqrt{r}$, then by part (i) of Proposition 4

$$
\left(\mathcal{Q} * L\left(\mathbf{F}_{r}\right)\right)_{t} \cong \mathcal{Q}_{t} * L\left(\mathbf{F}_{t^{-2} r}\right) \cong \mathcal{Q}_{t} * L\left(\mathbf{F}_{\infty}\right) \cong\left(\mathcal{Q} * L\left(\mathbf{F}_{\infty}\right)\right)_{t}
$$

while $(\mathrm{b}) \Longrightarrow(\mathrm{a})$ can be seen by choosing $\mathcal{Q}=L\left(\mathbf{F}_{2}\right)$. For $(\mathrm{a}) \Longrightarrow(\mathrm{c})$, if $0<t<$ $1 / \sqrt{2}$, then using Lemma 1 ,

$$
\begin{aligned}
(\mathcal{Q}(1) * \mathcal{Q}(2))_{t} & \cong \mathcal{Q}(1)_{t} * \mathcal{Q}(2)_{t} * L\left(\mathbf{F}_{t^{-2}-1}\right) \\
& \cong \mathcal{Q}(1)_{t} * \mathcal{Q}(2)_{t} * L\left(\mathbf{F}_{\infty}\right) \cong\left(\mathcal{Q}(1) * \mathcal{Q}(2) * L\left(\mathbf{F}_{\infty}\right)\right)_{t}
\end{aligned}
$$

Taking $\mathcal{Q}(1) \cong \mathcal{Q}(2) \cong L\left(\mathbf{F}_{2}\right)$ shows $(\mathrm{c}) \Longrightarrow(\mathrm{a})$.

References

[1] K. Dykema, Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97-119. MR 93m:46071
[2] ——, Interpolated free group factors, Pacific J. Math. 163 (1994), 123-135. MR 95c:46103
[3] _, Free subproducts and free scaled products of $I I_{1}$-factors, J. Funct. Anal. (to appear).
[4] K. Dykema, F. Rădulescu, Compressions of free products of von Neumann algebras, Math. Ann. 316 (2000), 61-82. MR 2001f: 46100
[5] F.J. Murray and J. von Neumann, Rings of operators. IV, Ann. of Math. 44 (1943), 716-808. MR 5:101a
[6] F. Rădulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), 347-389. MR 95c:46102

Department of Mathematics, Texas A\&M University, College Station, Texas 778433368

E-mail address: Ken.Dykema@math.tamu.edu
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242-1466
E-mail address: radulesc@math.uiowa.edu

[^0]: Received by the editors April 3, 2001 and, in revised form, January 18, 2002.
 2000 Mathematics Subject Classification. Primary 46L09.
 The first author was partially supported by NSF grant DMS-0070558.
 The second author was partially supported by NSF grant DMS-9970486. Both authors also thank the Mathematical Sciences Research Institute, where they were engaged in this work. Research at MSRI is supported in part by NSF grant DMS-9701755.

