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cosπλ AGAIN

P. C. FENTON

(Communicated by Juha M. Heinonen)

Abstract. It is shown that if, for an entire function,

lim inf
r→∞

logM(r)/rλ = 0

where 0 < λ < 1, then

lim sup
r→∞

(logm(r)− cos πλ logM(r))/ log r =∞.

In the proof, the zeros of the function are redistributed to minimize the large
values of logm(r) − cos πλ logM(r).

1. Introduction

For an entire function f(z), let M(r) and m(r) be the maximum and minimum
modulus:

M(r) = M(r, f) = max
|z|=r

|f(z)|, m(r) = m(r, f) = min
|z|=r

|f(z)|.

This note contains a proof of the cosπλ theorem [5, Theorem II] in the following
form:

Theorem 1. If

lim inf
r→∞

logM(r)
rλ

= 0,(1)

where 0 < λ < 1, then

lim sup
r→∞

logm(r) − cosπλ logM(r)
log r

=∞.(2)

This result has been overtaken by later work of Kjellberg [6], Baernstein [1] and
others, but the proof given here is new and elementary and throws light on the
way in which the growth of the maximum modulus is smoothed when the minimum
modulus is pressed down. A key part is played by the following lemma:

Lemma 2 ([4]). Suppose that K : [−1, 0) ∪ (0, 1] → R is twice differentiable and
concave, decreasing on [−1, 0) and increasing on (0, 1], and such that limt→0 |K ′(t)|
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= ∞ and limt→0K(t) exists (possibly −∞). Also suppose that J : [−1, 1] → R is
concave, and, given a partition T of [0, 1] : 0 = t1 ≤ t2 ≤ . . . ≤ tN = 1, define

φ(t) = J(t) +
N∑
m=1

K(t− tm).

Let φm = maxtm≤t≤tm+1 φ(t), 1 ≤ m ≤ N − 1, and let

Φ = max
1≤m≤N−1

φm, Ψ = min
1≤m≤N−1

φm.

The problems of minimizing Φ or maximizing Ψ have the same solution. In the
extremal configuration, which is unique, 0 = t1 < t2 < . . . < tN = 1 and φ1 = φ2 =
. . . = φN−1.

The graph of φ consists of concave fingers between distinct successive points of
T , each one having a single maximum or ‘peak’. The upshot of the lemma is that
the largest peak is minimised in the same configuration in which the smallest peak
is maximised.

We also need an estimate of cosπλ type for a particular function.

Lemma 3. Given positive numbers σ, λ and ε, with σ a non-negative integer and
0 < λ < 1, let

G(z) = zσ
∞∏
m=1

(
1− z

ρm

)
,

where ρm = (m/ε)1/λ, m = 1, 2, . . . . If r = (ρm + ρm+1)/2, m = 1, 2, . . . , then

log |G(r)| − cosπλ logG(−r) ≥ (σ(1 − cosπλ)− 4) log r + 4λ−1 log(1/ε) + C,

where C depends only on λ.

According to a preliminary result of Kjellberg [5, p. 192], a function f(z) sat-
isfying (1) is uniformly approximated on any compact set by a sequence of partial
products formed from its zeros:

fk(z) = A0z
σ
Nk∏
m=1

(
1− z

zm

)
.(3)

Here A0 and σ are constants, σ being a non-negative integer, and z1, z2, ... are
the non-zero zeros of f arranged in order of increasing modulus. For our purposes,
there is no loss of generality in assuming that A0 = 1. Evidently Theorem 1 will
be proved if we can show the following:

Lemma 4. Given any positive number κ, there are arbitrarily large numbers R1

and R2 such that R2 > R1 and, for some r = r(k) ∈ [R1, R2],

logm(r, fk)− cosπλ logM(r, fk) ≥ κ log r,(4)

for all large k.

To prove Lemma 4, it may be assumed, using a standard argument [2, p. 40], that
z1, z2 . . . are real and positive, with 0 < z1 ≤ z2 ≤ . . . , and then M(r, fk) = fk(−r)
and m(r, fk) = |fk(r)|. Writing nk(t) for the counting function of the non-zero
zeros of fk, we have

log |fk(z)| = σ log r +
∫ ∞

0

log
∣∣∣∣1− z

t

∣∣∣∣dnk(t) = σ log r +
∫ ∞

0

znk(t)
t(z − t)dt.(5)
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In the context of Lemma 4, the distribution of the first few zeros of f is imma-
terial. The contribution of any factor in the representation (3) to log |fk(r)| −
cosπλ log fk(−r) is, asymptotically as r → ∞, (1 − cosπλ) log r, which does not
change if the zero is moved slightly. Some of the initial zeros may thus be pushed
to 0 if it is convenient to do so (as it turns out to be). Notice too that to prove
Lemma 4 it is enough to establish

log |fk(r)| − cosπλ log fk(−r) ≥ 0,(6)

rather than (4). Suppose we could do that, and we are given an entire function f
satisfying (1). Since, for any positive integer q, g(z) = f(z)/

∏q
m=1(1− z/zm) also

satisfies (1), (6) would hold for gk at r = r(k), and so

log |fk(r)| − cosπλ log fk(−r) ≥ (q(1− cosπλ) + o(1)) log r.

Since q is arbitrary, Lemma 4 would follow.

2. Proof of Lemma 4

If f(z) satisfies (1) and A0 = 1 in (3), then from Jensen’s theorem,∫ r

0

n(t)
t
dt =

1
2π

∫ 2π

0

log |f(reiθ)|dθ − σ log r ≤ logM(r), r ≥ 1,

where n(t) is the counting function of the non-zero zeros of f . Since∫ 2r

0

n(t)
t
dt ≥

∫ 2r

r

n(t)
t
dt ≥ n(r) log 2,

we deduce that

lim inf
r→∞

n(r)
rλ

= 0.(7)

It is thus possible to find R1 arbitrarily large such that

n(t)
tλ
≥ n(R1)

R1
λ
≡ ε, z1 < t ≤ R1.(8)

Notice that, since n(R1) is an integer, so is εR1
λ. With ε as in (8) and ε′ a positive

number satisfying

0 < ε′ < cε,(9)

where c = c(λ) is a constant to be determined by later constraints, we choose
R2 arbitrarily large such that R2 > R1, log f(−4R2) < ε′Rλ2 , which is possible
from (1), and εRλ2 is an integer. (This last condition can be ensured since, if
log f(−4R2) < 2−λε′Rλ2 for some R2, then log f(−4R′2) < ε′R′λ2 for any R′2 such
that R2/2 ≤ R′2 ≤ R2, and some such R′2 may be chosen for which εR′λ2 is an
integer.) For all large k then, log fk(−4R2) < ε′Rλ2 , and thus, from (5),∫ ∞

2R2

4R2nk(t)
t(t+ 4R2)

dt < ε′Rλ2 ,

from which it follows that ∫ ∞
2R2

nk(t)
t2

dt <
3
4
ε′Rλ−1

2 .(10)
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Moreover, from Jensen’s theorem,

nk(2R2) log 2 ≤
∫ 4R2

2R2

nk(t)
t

dt ≤ log fk(−4R2) < ε′Rλ2 ,

so that, with c suitably chosen in (9),

nk(2R2) < εRλ2 .(11)

From (8) and the fact that, for all large k, nk(t) = n(t) for 0 < t ≤ R1,

[εtλ] ≤ nk(t), z1 < t ≤ R1,(12)

and thus, taking account of (11),

νk(t) =


[εtλ], t < R1,
nk(t), R1 ≤ t < R2,
[εtλ], t ≥ R2

(13)

is the counting function of the non-zero zeros of an entire function Fk(z) which has,
apart from σ zeros at 0 (as for f), real positive zeros (which we label s1, s2, . . . ).
From (8), (11) and the fact that εRλ2 is an integer, Fk has zeros at R1 and R2.

For r ∈ [R1, R2] we have, from (5),

log |fk(r)| − cosπλ log fk(−r) −
{

log |Fk(r)| − cosπλ logFk(−r)
}

=
∫ ∞

0

r(At +Br)
t(r2 − t2)

(nk(t)− νk(t))dt,(14)

where

A = (1 + cosπλ) and B = (1− cosπλ).(15)

Moreover, from (13), (12), (11) and (10),∫ ∞
0

r(At +Br)
t(r2 − t2)

(nk(t)− νk(t))dt ≥
∫ ∞

2R2

r(At +Br)
t(r2 − t2)

(nk(t)− [εtλ])dt

≥ −8
3
r

∫ ∞
2R2

nk(t)
t2

dt+
2λ−2A

1− λ εrR
λ−1
2

> 0,

with a suitable choice of c in (9). It follows that, for all r ∈ [R1, R2],

log |fk(r)| − cosπλ log fk(−r) > log |Fk(r)| − cosπλ logFk(−r).(16)

The plan is to arrange the zeros of Fk in [R1, R2] to make

max
r∈[R1,R2]

(log |Fk(r)| − cosπλ logFk(−r))

as small as possible, the only restriction being that, in any arrangement, zeros are
retained at R1 and R2.

With Lemma 2 in view, write r = eat+b , where a = log(R2/R1) and b = logR1,
and sn = eatn+b, n = 1, 2, . . . . Let

K(t) = log |1− eat| − cosπλ log(1 + eat),

and, supposing that R1 = sp (p being the smallest such integer) and R2 = sq (q
being the largest such integer), let

J(t) = σ(1 − cosπλ)(at+ b) +
∑

m<p,m>q

K(t− tm),
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so that

log |Fk(r)| − cosπλ logFk(−r) = J(t) +
∑

p≤m≤q
K(t− tm).

Direct differentiation shows that K and J satisfy the hypotheses of Lemma 2, and
we conclude that the smallest value of the largest peak of

log |Fk(r)| − cosπλ logFk(−r)
in [R1, R2] is the same as the largest value of the smallest peak. To prove Theorem
1 we need only produce an arrangement of the zeros of Fk that makes all peaks in
[R1, R2] positive. According to Lemma 3, this occurs when ν(t) ≡ [εtλ], provided
σ is sufficiently large, which, as we have noticed, can always be ensured.

3. Proof of Lemma 3

As in (14),

log |G(r)| − cosπλ logG(−r) = σ(1 − cosπλ) log r +
∫ ∞

0

r(At +Br)
t(r2 − t2)

ν(t)dt,

where ν(t) = [εtλ]. Also, for r = (ρm + ρm+1)/2,∫ ∞
0

r(At +Br)
t(r2 − t2)

[εtλ]dt ≥ I1 − I2 − I3 − I4,(17)

where

I1 =
∫ ∞

0

r(At+Br)
t(r2 − t2)

εtλdt = 0,(18)

a standard result from contour integration [3, pp. 140-141],

I2 =
∫ ρ1

0

r(At +Br)
t(r2 − t2)

εtλdt,(19)

I3 =
∫ ρm

ρ1

r(At +Br)
t(r2 − t2)

dt,(20)

I4 =
∫ ρm+1

ρm

r(At +Br)
t(r2 − t2)

(εtλ − [εtλ])dt.(21)

We estimate these in turn. For I2: since (At + Br)/(r + t) ≤ A + B = 2 and
r/(r − t) ≤ (ρ2 + ρ1)/(ρ2 − ρ1), we have I2 ≤ 2λ−1(21/λ + 1)/(21/λ − 1).

For I3: again (At+Br)/(r + t) ≤ 2, so

I3 ≤ 2
∫ ρm

ρ1

r

t(r − t)dt = 2 log
(

ρm
r − ρm

r − ρ1

ρ1

)
.

Also
ρm

r − ρm
=

2
(1 + 1/m)1/λ − 1

≤ 2mλ < 2m

and
r − ρ1

ρ1
≤ r/ρ1 ≤ ρm+1/ρ1 = (m+ 1)1/λ ≤ (2m)1/λ,

and m < εrλ, so I3 ≤ 4λ−1 log(2εrλ).
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For I4: write α(t) = r(At +Br)/t(r + t) and β(t) = εtλ − [εtλ].

I4 =
∫ ρm+1

ρm

α(t) − 1
r − t β(t)dt +

∫ ρm+1

ρm

β(t)
r − tdt

=
∫ ρm+1

ρm

r(1 − cosπλ) + t

t(r + t)
β(t)dt+

∫ ρm+1

ρm

εtλ

r − tdt

≤
∫ ρm+1

ρm

r(1 − cosπλ) + t

t(r + t)
β(t)dt

≤ 2
∫ ρm+1

ρm

t−1dt ≤ 2λ−1 log 2.(22)

Lemma 3 follows by combining the estimates for I2, I3 and I4.
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