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ABSTRACT. Let f =377 ; a¢(n)q" be a cusp form with integer weight k > 2
that is not a linear combination of forms with complex multiplication. For
n > 1, let
if(n) :=max{i:ap(n+j)=0 forall0<j<i}.

Improving on work of Balog, Ono, and Serre we show that iy(n) <y 4 ¢(n) for
almost all n, where ¢(z) is any good function (e.g. such as loglog(z)) mono-
tonically tending to infinity with . Using a result of Fouvry and Iwaniec, if f
is a weight 2 cusp form for an elliptic curve without complex multiplication,
then we show for all n that if(n) <y n%"'s. We also obtain conditional re-
sults depending on the Generalized Riemann Hypothesis and the Lang-Trotter
Conjecture.

1. INTRODUCTION AND STATEMENT OF RESULTS

Estimating the size of possible gaps in the Fourier expansion of modular forms
of various types has been an interesting subject for a long time. Perhaps the
most famous open problem in the subject is a conjecture of Lehmer which says that
7(n) # 0 for every positive integer n, where 7(n) is the Ramanujan function defined

by (¢ = €*™%)
Alz) =Y ()" =q ] (1 -qm)*.

In recent years, there has been substantial progress on these questions. To
investigate these gaps, Serre introduced the quantity

(1) if(n) :=max{i:af(n+j)=0 forall0<j<i},
and he proved [S] that
if(n) < n
whenever f(z) =37, as(n)q™ is a cusp form with integer weight k& > 2, which is
not a linear combination of forms with complex multiplication. In the same paper

he asks for improvements of this estimate. In recent work, Balog and Ono [B-O]
improved Serre’s estimate with the following result.
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Theorem. Suppose that f(z) = > - ar(n)q™ € Sk(Lo(N),x) is a nonzero mod-
ular form with integer weight k > 2 that is not a linear combination of forms with
complex multiplication. For every € > 0 and pite < y we have

#Hr<n<z+y:arn)#0} > y.
In particular, we have if(n) < .. nitte,

Here we will pursue these questions and obtain the following results. Before
stating our results, we require a simple definition. We shall call a function ¢(x)
good if

$(27) < ()
for all large x. Observe that functions like log(x), loglog(z) and
functions.

1/100 are all good

Theorem 1. Let f(z) = > 0" ar(n)g" € Sp(Lo(N),x) be a nonzero cusp form
with integer weight k > 2 that is not a linear combination of forms with complex
multiplication. If ¢(x) is a good function which tends monotonically to infinity with
x, then for almost all n we have

#{n<m <n+o(n):ar(m) #0} >54 d(n).
In particular, we have if(n) <54 ¢(n) for almost all n.

Thanks to a celebrated theorem of Elkies and the modularity of elliptic curves
over Q, we obtain the following result which holds for all n.

Theorem 2. Let E/Q be an elliptic curve without complex multiplication, and let
L(E,s) = Z ag(n)n™°
n=1

be its Hasse-Weil L-function. If Fg(z) = .~ ap(n)q™ is the associated weight 2
newform, then for any € > 0 and pieote < y we have
#Hr<n<z4+y:ragn)#0} >p.v.
In particular, we have ip,(n) <g.. nies e for every e > 0.
We also have the following conditional results.

Theorem 3. Assuming the hypotheses of Theorem[d and the Generalized Riemann
Hypothesis for Dedekind Zeta functions, for every e > 0 we have

#Hr<n<z+y:arn)#0} >y,
where 165t < y. In particular i;(n) <. nieste.

Let B = {p prime : as(p) = 0}, where f(z) = > >~ as(n)g" is a nonzero cusp
form on I'o(N) with integer weight k& > 2 and without complex multiplication.
Then the Lang-Trotter conjecture (LT) says that

1

T2
: B —
#{p<z:peB} <y gz
Theorem 4. Assuming LT, and the hypotheses of Theorem[D if € > 0, then
#lr<n<z+y:arn)#0} >y

where x5 < y. In particular, we have is(n) <. nite.



NONVANISHING OF FOURIER COEFFICIENTS OF MODULAR FORMS 1675

2. RESULTS IN MULTIPLICATIVE NUMBER THEORY

By a B-free integer we mean an integer not divisible by any integer in the set
B. We have the following result about B-free and square-free integers.

Theorem 2.1. Let S be a set of primes for which Zpes % converges, and let ¢(x)
be a good function monotonically tending to infinity with x. Then the number of
S-free square-free integers in the interval (n,n + ¢(n)) is > ¢(n) for almost all
positive integers n.

Proof. For simplicity, we will let y = ¢(n) and let A be the set of primes in S
together with squares of primes not in S. Clearly,

o1z > 1— > 1

n<m<n-+y n<m<n+y n<m<n+y
m is A-free m#Z0 (mod by) for all s<k by <bs<y
m=0 (modby) for some s>k

_ Z 1,

n<m<n-+y
y<bs<n+y
m=0 (mod bs) for some s>k
where by, ba, ... are the elements of A in increasing order. Now,
i 1
_ 1 k
5 1=y [T (1-5 ) +oe.
n<m<n+y s=1

m#0 (mod bs) for all s<k

where B = [[;2,(1 - ¢-) > 0. Also

=1
> iswey 4
n<m<n+y s=k+1

b <bs<y
m=0 (modby) for some s>k

so that if k is large enough, then we have B — 2 - Ezikﬂ % = C > 0. Note that
once k is fixed then clearly O(2%) = o(y), and the inequality in () becomes

(3) Z 1>Cy—+o(y) — Z 1.

n<m<n+y n<m<n+y
m is A-free y<bs<n+y
m=0 (mod bs) for some s>k

Next assume N < n < 2N and consider

> > 1.

N<n<2N n<m<n+¢(2N)
¢(N)<bs<n+¢(2N)
m=0 (mod by) for some s>k
By changing the order of summation, this double sum is easily seen to be <«
d(2N)N - st>¢(N) -, and so using monotonicity of ¢ and the fact that ¢(2N) <

¢(n) =y for N <n < 2N, we get

@) ) 1< > 1<%y,

n<m<n+y n<m<n+¢(2N)
y<bs<nty P(N)<bs<n+¢(2N)
m=0 (mod b, ) for some s>k m=0 (mod bs) for some s>k
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except for a subset of (N, 2N) of cardinality O(N-3_,, - 4 L). Taking &, &, &, ...
successively, we get that the cardinality of exceptions in (1, N) is
N 1
<X T
J2lbs>e(2)

To see that this sum is o(N) consider

11 11 11
)IED D D DD IS b D B 5

i1 b, >( ) j< %1085 (N) by>¢( ) 325 1ogy(N) bs>o(ZF)

In the first double sum we just observe that (%) > $(Nz) when j < 1 - logy(N)
and Zb So(N ) i tends to zero with N. The second double sum is majorized by a

tail of a geometric series, hence both double sums are o(1). Therefore ([B) and (@)
imply the theorem. O

Theorem will be used to prove Theorem [[. The remaining results in this
paper will follow from the next two theorems.

Theorem 2.2. Let B be a subset of primes, and let B(x) be the number of primes
in B less than z. If B(x) < z for some % < p < 1, then the number of B-free

square-free integers in (x,x +y) is >y, where y = x° with € > max(1—79, ?)E)Qp%).
Proof. Again let A be the set consisting of primes in B together with squares of
primes not in B, and let by, b2, ... be elements of A in increasing order. Consider
Py = Py(x,01, p) := {2° < p < 2 : p is prime},
Py := Py(x, 09, ) := {2% < ¢ < 2°2** : ¢ is prime},

and assume that d; + p < d2 < d2 + 1 < € and p is as small as we want. For n < x

let
w(n) = Z Z Z 1.

pEP1 g€ P2 n=0 (mod pq)

Clearly w(n) < C(d1,02), a constant independent of 2. Moreover, we have

Z w(n) > Z w(n) — Z w(n)

rz<n<z+y rz<n<z+y z<n<z+y
n is A-free n#0 (mod b,) for all s<k bp<bs<y
n=0 (mod b) for some s>k

z<n<z+y
y<bs<z+y
n=0 (mod bs) for some s>k

(5)

Next we estimate these sums:

g w(n) = E 1
r<n<z+y r<n<z+y
n#Z0 (mod by) for all s<k n#Z0 (mod by) for all s<k

n=0 (mod pq) p€P1,qEP>

DICIEED SR S

pEP1,qEP; x<n<nty
n=0 (mod pq)
n=0 (mod d,,)
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where w runs through all subsets of 1,2,...,k and d,, =[], bs (do = 1 if w is
empty). Note that once k is fixed and z is large enough then we have ged(d,,, pq) = 1
for all subsets w. We define the remainder terms r4(x,y) as

ra(z,y) + % = # of multiples of d in (z,z + y),

so that
Y

pady,

Z 1 =7pga, (z,y) +

z<n<z+y
n=0 (mod pqd.,)

We now have, by (@),

> =y Y - Y

r<n<n+y 201 <p<aditu p 202 <g<xd2th

1
1)
s<k bs
n#0 (mod by) for all s<k N

(7) + Z(_l)‘w‘ Z Tpqd., (T,Y)

w pPEP ,qEP2

>Cy Y 1 > LiR,

201 <p<aditr p z02 <q<adatm

PEP1,qEP;
and C' =[[2,(1 — i) > 0. Note that

1 1
> Soe(1+ 2 ) +0 >,
01 log x

01 <p<aditr

|~

where

and similarly
1
Y. -26
z%2 <g<zl2tn q
when z is large enough and C4, Cs are constants independent of x. To estimate R
we recall the following result from [F-I]:

11

=, If0 >0, then
RM,N)= Y Y ameormn(z,y) <y’

1<m<M 1<n<N

Theorem. Let 275 < y<zx

provided M < yx~"7 and N < y%x*%’”, where n = K60, K > 0 is independent of
0, and all a,,c, are complex numbers with modulus at most 1.

We apply the theorem with a,, =1 if m € P; and 0 otherwise, similarly ¢, = 1
if n € P, and 0 otherwise. We choose 41, d2 such that do + pu < e —mnand §; + p <
% — 1. As @ > 0 can be arbitrarily small, n > 0 is also arbitrarily small. Also
recall that by assumption g > 0 is arbitrarily small. Hence these inequalities are
clearly equivalent to dy < € and 41 < 19156 T Replacing = and y by % and %

respectively in the above theorem gives

R

pEP1 ,qEP2
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Hence R = o(y), and so () implies that

(8) > w(n) > CCLCay + o(y).

rz<n<z+y
nZ0 (mod bs) for all s<k

We also have

=1

E ( ) < 20 51,(52 b_

z<n<z+y s= s
br<bs<y

n=0 (mod bs) for some s>k

and

D wmy= >, 3 > > 1

r<n<z+y y<vi<z+ypeEP1 qgeEP> z<n<z+y
y<bs<z+y n=0 (mod v?)
n=0 (mod b,) for some s>k n=0 (mod pq)

D IED DD DEED DS

y<r<z+ypeP; qePy z<n<z+y
n=0 (modr)
n=0 (mod pq)

where in the above summations v denotes a prime not in B and r denotes a prime in
B. Note that there is at most one n with # < n < z+y such that n = 0 (mod v?) or
n = 0 (mod r). Moreover for such n, there are at most finitely many (independent
of x) pairs (p,q), p € P1,q € Py, satisfying n = 0 (mod pg). Hence

S 3D S SRR

pEP; qeP> xz<n<z+Y
n=0 (mod v?)
n=0 (mod pq)

and

Yy ¥ i-owm

pEP gePy z<n<lz+y
n=0 (mod r)
n=0 (mod pq)

where the implied constants are independent of v, r and z. It follows that

> w(n)

rz<n<z+y
y<bs<z+y
n=0 (mod by) for some s>k

< the number of v? such that y < v?> < 2 +% and V > 0 + the number of r such
that y <7 <z +yand R > 0. Let us now assume that §; + d2 + % > 1. Note that
this also implies 6; + 63 +2¢ > 1. If y2 < v2 < x4+ y and V > 0, then v is not in
Py or P, and n = 0 (mod pqu?) for some n with z < n < z +y, but pqv? >z +y
when z is large enough, and this is a contradiction. Hence the number of v? such
that y <v? <2 +y and V > 0is < the number of v? such that y < v? < 32, which

is o(y). Similarly if (x) <r<z+yand R >0, then we get a contradiction and
the number of r such that y < r <x+y and R > 0 is < the number of r such that
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€

y<r< %, which is again o(y). Finally (&) and (8) imply that

=1
o1 Y wn)=CCiC -y —2C(61,8) -y Y b—s—i—o(y),
r<n<z+y r<n<z+y s=k+1

n is A-free n is A-free
and when z is large enough we get

Z 1>y=2z".

z<n<z+y
n is A-free

The compatibility of the conditions we have imposed gives the condition on ¢ as
stated. This completes the proof of Theorem 2.2} O

Theorem 2.3. Let B be a subset of primes such that B(z) < x%, and let € > %
Then the number of B-free square-free integers in (x,x +1y) is >y, where y = x¢.

Proof. The proof is very similar to the proof of Theorem so we will mention
only the slight changes that have to be made. Let

P =P(x,6,p) = {2° < p< 2’ pis prime}.

w(n) = Z Z 1.

pEP n=0 (mod p)

For n < z consider

We assume § + u < € and as before w(n) is bounded independently of x and

z<n<z+y z<n<z+y z<n<z+y
n is A-free nZ0 (mod bs) for some s<k b <bs<y
n=0 (mod bs) for some s>k

rz<n<z+y
y<bs<z+y
n=0 (mod bs) for some s>k
We have
1
E w(n) > Cy - E -+ R,
r<n<z+y zd<p<adtn p
nZ0 (mod by) for all s<k
where

R=Y 04 o (1) =0 () - o)

= log(z)

The other summations can be estimated as before with the only change in the last
summation where we can impose 2¢ + § > 1 this time because of our assumption
B(z) < z=. This gives ¢ > % and Theorem EZ3] follows. O

3. Proors or THEOREMS [ 2], B, []

Without loss of generality we may prove Theorems [I], [B] and @l for newforms

fz2) =7 as(n)g"
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The general case for forms of weight k& > 2 without CM follows from the newform
case by applying the argument appearing at the beginning of the proof of [B-Ol
Th. 1].

Proof of Theorem [1l Serre has proved [S| unconditionally for every € > 0 that
#{p < x : prime and af(p) = 0} <y

x

log(z) %<

Now let S be the set of primes p for which either p divides N or as(p) = 0.
If n is square-free, then

ar(n) =[] ar@),
pln

by multiplicativity of the Fourier coefficients of a newform. Hence a¢(n) is nonzero
when n is S-free and square-free. Clearly, Zpe S% is finite, and so Theorem 211
implies that the number of S-free square-free integers in (n,n+ @(n)) is > ¢(n) for

almost all n. This completes the proof of Theorem [l O

Proof of Theorem [A If E/Q is an elliptic curve without complex multiplication and
mo(x) is the number of supersingular primes for E/Q up to z, then Elkies [E] proved
that m(z) < xi. To complete the proof it is enough to take p = 3 in Theorem
22 Also note that p is a supersingular prime for F/Q if and only if the number of
F, points p+ 1 — ag(p) on E/Q modulo p is exactly p+ 1 (i.e. ag(p) = 0). O

Proof of Theorem [ Under GRH for Dedekind Zeta functions, Serre has proved [S]
that ,

#{p < x : prime and as(p) = 0} < z1.
Let S be defined as in the proof of Theorem[l Hence we can take p = % in Theorem
to complete the proof of Theorem Bl similarly. O

Proof of Theorem [} Let S be as above. By LT we have
1
x2 1

#{p < z : prime and as(p) =0} €« —— K z2.

log(z)

Theorem completes the proof. O
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