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Abstract. Let f =
∑∞
n=1 af (n)qn be a cusp form with integer weight k ≥ 2

that is not a linear combination of forms with complex multiplication. For
n ≥ 1, let

if (n) := max{i : af (n+ j) = 0 for all 0 ≤ j ≤ i}.
Improving on work of Balog, Ono, and Serre we show that if (n)�f,φ φ(n) for
almost all n, where φ(x) is any good function (e.g. such as log log(x)) mono-
tonically tending to infinity with x. Using a result of Fouvry and Iwaniec, if f
is a weight 2 cusp form for an elliptic curve without complex multiplication,

then we show for all n that if (n)�f,ε n
69
169 +ε. We also obtain conditional re-

sults depending on the Generalized Riemann Hypothesis and the Lang-Trotter
Conjecture.

1. Introduction and statement of results

Estimating the size of possible gaps in the Fourier expansion of modular forms
of various types has been an interesting subject for a long time. Perhaps the
most famous open problem in the subject is a conjecture of Lehmer which says that
τ(n) 6= 0 for every positive integer n, where τ(n) is the Ramanujan function defined
by (q = e2πiz)

∆(z) =
∞∑
n=1

τ(n)qn = q

∞∏
n=1

(1− qn)24.

In recent years, there has been substantial progress on these questions. To
investigate these gaps, Serre introduced the quantity

(1) if (n) := max{i : af (n+ j) = 0 for all 0 ≤ j ≤ i},

and he proved [S] that
if (n)� n

whenever f(z) =
∑∞

n=1 af (n)qn is a cusp form with integer weight k ≥ 2, which is
not a linear combination of forms with complex multiplication. In the same paper
he asks for improvements of this estimate. In recent work, Balog and Ono [B-O]
improved Serre’s estimate with the following result.
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Theorem. Suppose that f(z) =
∑∞
n=1 af (n)qn ∈ Sk(Γ0(N), χ) is a nonzero mod-

ular form with integer weight k ≥ 2 that is not a linear combination of forms with
complex multiplication. For every ε > 0 and x

17
41 +ε ≤ y we have

#{x < n < x+ y : af (n) 6= 0} �f,ε y.

In particular, we have if (n)�f,ε n
17
41 +ε.

Here we will pursue these questions and obtain the following results. Before
stating our results, we require a simple definition. We shall call a function φ(x)
good if

φ(2x)� φ(x)
for all large x. Observe that functions like log(x), log log(x) and x1/100 are all good
functions.

Theorem 1. Let f(z) =
∑∞
n=1 af(n)qn ∈ Sk(Γ0(N), χ) be a nonzero cusp form

with integer weight k ≥ 2 that is not a linear combination of forms with complex
multiplication. If φ(x) is a good function which tends monotonically to infinity with
x, then for almost all n we have

#{n < m < n+ φ(n) : af (m) 6= 0} �f,φ φ(n).

In particular, we have if (n)�f,φ φ(n) for almost all n.

Thanks to a celebrated theorem of Elkies and the modularity of elliptic curves
over Q, we obtain the following result which holds for all n.

Theorem 2. Let E/Q be an elliptic curve without complex multiplication, and let

L(E, s) =
∞∑
n=1

aE(n)n−s

be its Hasse-Weil L-function. If FE(z) =
∑∞
n=1 aE(n)qn is the associated weight 2

newform, then for any ε > 0 and x
69
169 +ε ≤ y we have

#{x < n < x+ y : aE(n) 6= 0} �E,ε y.

In particular, we have iFE (n)�E,ε n
69
169 +ε for every ε > 0.

We also have the following conditional results.

Theorem 3. Assuming the hypotheses of Theorem 1 and the Generalized Riemann
Hypothesis for Dedekind Zeta functions, for every ε > 0 we have

#{x < n < x+ y : af (n) 6= 0} �f,ε y,

where x
69
169 +ε ≤ y. In particular if(n)�f,ε n

69
169 +ε.

Let B = {p prime : af (p) = 0}, where f(z) =
∑∞

n=1 af (n)qn is a nonzero cusp
form on Γ0(N) with integer weight k ≥ 2 and without complex multiplication.
Then the Lang-Trotter conjecture (LT) says that

#{p < x : p ∈ B} �f
x

1
2

log x
.

Theorem 4. Assuming LT , and the hypotheses of Theorem 1, if ε > 0, then

#{x < n < x+ y : af (n) 6= 0} �f,ε y

where x
1
3 +ε ≤ y. In particular, we have if(n)�f,ε n

1
3 +ε.
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2. Results in multiplicative number theory

By a B-free integer we mean an integer not divisible by any integer in the set
B. We have the following result about B-free and square-free integers.

Theorem 2.1. Let S be a set of primes for which
∑
p∈S

1
p converges, and let φ(x)

be a good function monotonically tending to infinity with x. Then the number of
S-free square-free integers in the interval (n, n + φ(n)) is � φ(n) for almost all
positive integers n.

Proof. For simplicity, we will let y = φ(n) and let A be the set of primes in S
together with squares of primes not in S. Clearly,∑

n<m<n+y
m is A-free

1 ≥
∑

n<m<n+y
m 6≡0 (mod bs) for all s≤k

1−
∑

n<m<n+y
bk<bs≤y

m≡0 (mod bs) for some s>k

1

−
∑

n<m<n+y
y<bs<n+y

m≡0 (mod bs) for some s>k

1,
(2)

where b1, b2, . . . are the elements of A in increasing order. Now,∑
n<m<n+y

m 6≡0 (mod bs) for all s≤k

1 = y

k∏
s=1

(
1− 1

bs

)
+O(2k),

where B =
∏∞
s=1(1 − 1

bs
) > 0. Also∑

n<m<n+y
bk<bs≤y

m≡0 (mod bs) for some s>k

1 ≤ 2y ·
∞∑

s=k+1

1
bs
,

so that if k is large enough, then we have B − 2 ·
∑∞

s=k+1
1
bs

= C > 0. Note that
once k is fixed then clearly O(2k) = o(y), and the inequality in (2) becomes

(3)
∑

n<m<n+y
m is A-free

1 ≥ Cy + o(y)−
∑

n<m<n+y
y<bs<n+y

m≡0 (mod bs) for some s>k

1.

Next assume N < n < 2N and consider∑
N<n<2N

∑
n<m<n+φ(2N)

φ(N)<bs<n+φ(2N)
m≡0 (mod bs) for some s>k

1.

By changing the order of summation, this double sum is easily seen to be �
φ(2N)N ·

∑
bs>φ(N)

1
bs

, and so using monotonicity of φ and the fact that φ(2N)�
φ(n) = y for N < n < 2N , we get

(4)
∑

n<m<n+y
y<bs<n+y

m≡0 (mod bs) for some s>k

1 ≤
∑

n<m<n+φ(2N)
φ(N)<bs<n+φ(2N)

m≡0 (mod bs) for some s>k

1 ≤ C

2
y,
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except for a subset of (N, 2N) of cardinalityO(N ·
∑

bs>φ(N)
1
bs

). Taking N
2 ,

N
22 ,

N
23 , . . .

successively, we get that the cardinality of exceptions in (1, N) is

�
∑
j≥1

∑
bs>φ( N

2j
)

N

2j
1
bs
.

To see that this sum is o(N) consider∑
j≥1

∑
bs>φ( N

2j
)

1
2j

1
bs

=
∑

j< 1
2 ·log2(N)

∑
bs>φ( N

2j
)

1
2j

1
bs

+
∑

j≥ 1
2 ·log2(N)

∑
bs>φ( N

2j
)

1
2j

1
bs
.

In the first double sum we just observe that φ(N2j ) ≥ φ(N
1
2 ) when j < 1

2 · log2(N)
and

∑
bs>φ(N

1
2 )

1
bs

tends to zero with N . The second double sum is majorized by a

tail of a geometric series, hence both double sums are o(1). Therefore (3) and (4)
imply the theorem. �

Theorem 2.1 will be used to prove Theorem 1. The remaining results in this
paper will follow from the next two theorems.

Theorem 2.2. Let B be a subset of primes, and let B(x) be the number of primes
in B less than x. If B(x) � xρ for some 1

2 ≤ ρ < 1, then the number of B-free
square-free integers in (x, x + y) is � y, where y = xε with ε > max( 7

19 ,
23ρ

35ρ+16 ).

Proof. Again let A be the set consisting of primes in B together with squares of
primes not in B, and let b1, b2, . . . be elements of A in increasing order. Consider

P1 := P1(x, δ1, µ) := {xδ1 < p < xδ1+µ : p is prime},
P2 := P2(x, δ2, µ) := {xδ2 < q < xδ2+µ : q is prime},

and assume that δ1 + µ < δ2 < δ2 + µ < ε and µ is as small as we want. For n ≤ x
let

w(n) =
∑
p∈P1

∑
q∈P2

∑
n≡0 (mod pq)

1.

Clearly w(n) ≤ C(δ1, δ2), a constant independent of x. Moreover, we have∑
x<n<x+y
n is A-free

w(n) ≥
∑

x<n<x+y
n6≡0 (mod bs) for all s≤k

w(n) −
∑

x<n<x+y
bk<bs≤y

n≡0 (mod bs) for some s>k

w(n)

−
∑

x<n<x+y
y<bs<x+y

n≡0 (mod bs) for some s>k

w(n).
(5)

Next we estimate these sums:∑
x<n<x+y

n6≡0 (mod bs) for all s≤k

w(n) =
∑

x<n<x+y
n6≡0 (mod bs) for all s≤k
n≡0 (mod pq) p∈P1,q∈P2

1

=
∑
ω

(−1)|ω|
∑

p∈P1,q∈P2

∑
x<n<n+y
n≡0 (mod pq)
n≡0 (mod dω)

1,
(6)
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where ω runs through all subsets of 1, 2, . . . , k and dω =
∏
s∈ω bs (dω = 1 if ω is

empty). Note that once k is fixed and x is large enough then we have gcd(dω, pq) = 1
for all subsets ω. We define the remainder terms rd(x, y) as

rd(x, y) +
y

d
= # of multiples of d in (x, x+ y),

so that ∑
x<n<x+y

n≡0 (mod pqdω)

1 = rpqdω (x, y) +
y

pqdω
.

We now have, by (6),∑
x<n<n+y

n6≡0 (mod bs) for all s≤k

w(n) = y
∑

xδ1<p<xδ1+µ

1
p

∑
xδ2<q<xδ2+µ

1
q
·
∏
s≤k

(
1− 1

bs

)

+
∑
ω

(−1)|ω|
∑

p∈P1,q∈P2

rpqdω (x, y)

≥ Cy
∑

xδ1<p<xδ1+µ

1
p

∑
xδ2<q<xδ2+µ

1
q

+R,

(7)

where

R =
∑
ω

(−1)|ω|
∑

p∈P1,q∈P2

rpq

(
x

dω
,
y

dω

)
and C =

∏∞
s=1(1− 1

bs
) > 0. Note that∑

xδ1<p<xδ1+µ

1
p

= log
(

1 +
µ

δ1

)
+O

(
1

log x

)
≥ C1

and similarly ∑
xδ2<q<xδ2+µ

1
q
≥ C2

when x is large enough and C1, C2 are constants independent of x. To estimate R
we recall the following result from [F-I]:

Theorem. Let x
7
19 < y < x

11
23 . If θ > 0, then

R(M,N) =
∑

1≤m<M

∑
1≤n<N

amcnrmn(x, y)� yx−θ,

provided M < yx−η and N < y
19
16 x−

7
16−η, where η = Kθ, K > 0 is independent of

θ, and all am, cn are complex numbers with modulus at most 1.

We apply the theorem with am = 1 if m ∈ P1 and 0 otherwise, similarly cn = 1
if n ∈ P2 and 0 otherwise. We choose δ1, δ2 such that δ2 + µ < ε− η and δ1 + µ <
19ε−7

16 − η. As θ > 0 can be arbitrarily small, η > 0 is also arbitrarily small. Also
recall that by assumption µ > 0 is arbitrarily small. Hence these inequalities are
clearly equivalent to δ2 < ε and δ1 < 19ε−7

16 . Replacing x and y by x
dω

and y
dω

respectively in the above theorem gives∑
p∈P1,q∈P2

rpq

(
x

dω
,
y

dω

)
= o(y).



1678 EMRE ALKAN

Hence R = o(y), and so (7) implies that

(8)
∑

x<n<x+y
n6≡0 (mod bs) for all s≤k

w(n) ≥ CC1C2y + o(y).

We also have ∑
x<n<x+y
bk<bs≤y

n≡0 (mod bs) for some s>k

w(n) ≤ 2C(δ1, δ2)y ·
∞∑

s=k+1

1
bs

and ∑
x<n<x+y
y<bs<x+y

n≡0 (mod bs) for some s>k

w(n) =
∑

y<v2<x+y

∑
p∈P1

∑
q∈P2

∑
x<n<x+y

n≡0 (mod v2)
n≡0 (mod pq)

1

+
∑

y<r<x+y

∑
p∈P1

∑
q∈P2

∑
x<n<x+y
n≡0 (mod r)
n≡0 (mod pq)

1,

where in the above summations v denotes a prime not in B and r denotes a prime in
B. Note that there is at most one n with x < n < x+y such that n ≡ 0 (mod v2) or
n ≡ 0 (mod r). Moreover for such n, there are at most finitely many (independent
of x) pairs (p, q), p ∈ P1, q ∈ P2, satisfying n ≡ 0 (mod pq). Hence

V :=
∑
p∈P1

∑
q∈P2

∑
x<n<x+y

n≡0 (mod v2)
n≡0 (mod pq)

1 = O(1)

and

R :=
∑
p∈P1

∑
q∈P2

∑
x<n<x+y
n≡0 (mod r)
n≡0 (mod pq)

1 = O(1),

where the implied constants are independent of v, r and x. It follows that∑
x<n<x+y
y<bs<x+y

n≡0 (mod bs) for some s>k

w(n)

� the number of v2 such that y < v2 < x + y and V > 0 + the number of r such
that y < r < x+ y and R > 0. Let us now assume that δ1 + δ2 + ε

ρ > 1. Note that
this also implies δ1 + δ2 + 2ε > 1. If y2 ≤ v2 < x + y and V > 0, then v is not in
P1 or P2 and n ≡ 0 (mod pqv2) for some n with x < n < x + y, but pqv2 ≥ x + y
when x is large enough, and this is a contradiction. Hence the number of v2 such
that y < v2 < x+ y and V > 0 is ≤ the number of v2 such that y < v2 < y2, which

is o(y). Similarly if x
ε
ρ

log(x) ≤ r < x+ y and R > 0, then we get a contradiction and
the number of r such that y < r < x+ y and R > 0 is ≤ the number of r such that
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y < r < x
ε
ρ

log(x) , which is again o(y). Finally (5) and (8) imply that

∑
x<n<x+y
n is A-free

1�
∑

x<n<x+y
n is A-free

w(n) ≥ CC1C2 · y − 2C(δ1, δ2) · y
∞∑

s=k+1

1
bs

+ o(y),

and when x is large enough we get∑
x<n<x+y
n is A-free

1� y = xε.

The compatibility of the conditions we have imposed gives the condition on ε as
stated. This completes the proof of Theorem 2.2. �

Theorem 2.3. Let B be a subset of primes such that B(x) � x
1
2 , and let ε > 1

3 .
Then the number of B-free square-free integers in (x, x+ y) is � y, where y = xε.

Proof. The proof is very similar to the proof of Theorem 2.2 so we will mention
only the slight changes that have to be made. Let

P = P (x, δ, µ) =: {xδ < p < xδ+µ : p is prime}.

For n ≤ x consider
w(n) =

∑
p∈P

∑
n≡0 (mod p)

1.

We assume δ + µ < ε and as before w(n) is bounded independently of x and∑
x<n<x+y
n is A-free

w(n) ≥
∑

x<n<x+y
n6≡0 (mod bs) for some s≤k

w(n)−
∑

x<n<x+y
bk<bs≤y

n≡0 (mod bs) for some s>k

w(n)

−
∑

x<n<x+y
y<bs<x+y

n≡0 (mod bs) for some s>k

w(n).

We have ∑
x<n<x+y

n6≡0 (mod bs) for all s≤k

w(n) ≥ Cy ·
∑

xδ<p<xδ+µ

1
p

+R,

where

R =
∑
ω

(−1)|ω|
∑
p∈P

rp

(
x

dω
,
y

dω

)
= O

(
xδ+µ

log(x)

)
= o(y).

The other summations can be estimated as before with the only change in the last
summation where we can impose 2ε + δ > 1 this time because of our assumption
B(x)� x

1
2 . This gives ε > 1

3 and Theorem 2.3 follows. �

3. Proofs of Theorems 1, 2, 3, 4

Without loss of generality we may prove Theorems 1, 3 and 4 for newforms

f(z) =
∞∑
n=1

af (n)qn.
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The general case for forms of weight k ≥ 2 without CM follows from the newform
case by applying the argument appearing at the beginning of the proof of [B-O,
Th. 1].

Proof of Theorem 1. Serre has proved [S] unconditionally for every ε > 0 that

#{p < x : prime and af (p) = 0} �f,ε
x

log(x)
3
2−ε

.

Now let S be the set of primes p for which either p divides N or af (p) = 0.
If n is square-free, then

af (n) =
∏
p|n

af (p),

by multiplicativity of the Fourier coefficients of a newform. Hence af (n) is nonzero
when n is S-free and square-free. Clearly,

∑
p∈S

1
p is finite, and so Theorem 2.1

implies that the number of S-free square-free integers in (n, n+φ(n)) is� φ(n) for
almost all n. This completes the proof of Theorem 1. �
Proof of Theorem 2. If E/Q is an elliptic curve without complex multiplication and
π0(x) is the number of supersingular primes for E/Q up to x, then Elkies [E] proved
that π0(x) � x

3
4 . To complete the proof it is enough to take ρ = 3

4 in Theorem
2.2. Also note that p is a supersingular prime for E/Q if and only if the number of
Fp points p+ 1− aE(p) on E/Q modulo p is exactly p+ 1 (i.e. aE(p) = 0). �
Proof of Theorem 3. Under GRH for Dedekind Zeta functions, Serre has proved [S]
that

#{p < x : prime and af (p) = 0} �f x
3
4 .

Let S be defined as in the proof of Theorem 1. Hence we can take ρ = 3
4 in Theorem

2.2 to complete the proof of Theorem 3 similarly. �
Proof of Theorem 4. Let S be as above. By LT we have

#{p < x : prime and af (p) = 0} � x
1
2

log(x)
� x

1
2 .

Theorem 2.3 completes the proof. �
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