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DEFORMATIONS OF MINIMAL LAGRANGIAN
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Abstract. Let L be a special Lagrangian submanifold of a compact Calabi-
Yau manifold M with boundary lying on the symplectic, codimension 2 sub-
manifold W . It is shown how deformations of L which keep the boundary
of L confined to W can be described by an elliptic boundary value problem,
and two results about minimal Lagrangian submanifolds with boundary are
derived using this fact. The first is that the space of minimal Lagrangian sub-
manifolds near L with boundary on W is found to be finite dimensional and
is parametrized over the space of harmonic 1-forms of L satisfying Neumann
boundary conditions. The second is that if W ′ is a symplectic, codimension 2
submanifold sufficiently near W , then, under suitable conditions, there exists
a minimal Lagrangian submanifold L′ near L with boundary on W ′.

1. Introduction and statement of results

A minimal Lagrangian submanifold of a symplectic manifold M is at once mini-
mal with respect to the metric of M and Lagrangian with respect to the symplectic
structure of M . Furthermore, when M is a Calabi-Yau manifold, Harvey and
Lawson showed in their seminal paper [3, Section III] that minimal Lagrangian
submanifolds are also calibrated. A consequence of this property is that minimal
Lagrangian submanifolds satisfy a relatively simple geometric PDE: L ⊂ M is
minimal Lagrangian if and only if

(1)
Im
(
eiθΩ

)∣∣
L

= 0,

ω|L = 0 ,

for some real number θ. Here, ω is the symplectic form of M and Ω is the canonical,
non-vanishing, holomorphic (n, 0)-form of M , whose existence is guaranteed by the
Calabi-Yau structure of M .

The calibration form defined onM is in this case Re
(
eiθΩ

)
and thus Re

(
eiθΩ

) ∣∣
L

= VolL. The submanifold L is also referred to as special Lagrangian with phase angle
θ in the literature, and if L is minimal Lagrangian with phase angle θ = 0, then L
is simply called special Lagrangian.

Harvey and Lawson have exploited the geometric structure implicit in the cal-
ibration condition in order to tackle questions related to the existence of minimal
Lagrangian submanifolds. Harvey and Lawson themselves produce several exam-
ples of minimal Lagrangian submanifolds and give certain general constructions
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of such objects. More recently, Schoen and Wolfson [16] have presented another
construction based on variational methods and are investigating the singularities
that can arise there, while Haskins [4] has constructed new examples of special La-
grangian submanifolds and cones. Many further advances have been made recently
by Joyce, for example in [6], [7], [8], [9], [10], [11], [12].

Another approach for producing minimal Lagrangian submanifolds involves
studying the deformations of a given minimal Lagrangian candidate L and se-
lecting those deformations of L which preserve the minimal Lagrangian condition.
A deformation of a submanifold L ⊂ M is a continuous family of embeddings
ft : L → M of L, where f0 is the canonical embedding. The goal of this analysis
is to characterize the space of submanifolds near L which are still minimal and
Lagrangian. This will be carried out by applying perturbative techniques to the
equations satisfied by minimal Lagrangian submanifolds.

The first results in this area were obtained by McLean [14, Section 3] and ex-
tended by Hitchin [5]. Using (1), McLean identified the first order deformations of a
special Lagrangian submanifold in a Calabi-Yau manifold and developed a method
for integrating them. He used this to characterize the space of special Lagrangian
submanifolds near L according to the following theorem.

Theorem (McLean, 1996). Let M be a compact, Calabi-Yau manifold. The space
of special Lagrangian submanifolds sufficiently near a given candidate L ⊂ M is
finite dimensional and is parametrized over the set H1(L) of harmonic one-forms
of L.

McLean’s work has been extended to the case where M is symplectic by Salur
[15]. The work presented in this paper extends McLean’s result in another direction
— this time to minimal Lagrangian submanifolds with non-empty boundary in a
Calabi-Yau manifold M . This will be done by first creating a framework for incor-
porating boundary conditions into the minimal Lagrangian differential equations.
More precisely, the boundary conditions will arise through geometric restrictions
on the deformations of the special Lagrangian submanifolds. An object that will
be called a scaffold will be used for this purpose.

Definition 1. Let L be a submanifold of M with boundary ∂L and inward unit
normal vector field N ∈ Γ

(
T∂LL

)
. A scaffold for L is a smooth submanifold W of

M with the following properties:
(1) ∂L ⊂W ;
(2) N ∈ Γ

(
T∂LW

)ω (here, Sω denotes the symplectic orthogonal complement
of a subspace S of a symplectic vector space V , defined as Sω ≡ {v ∈ V :
ω(v, s) = 0 ∀ s ∈ S});

(3) the bundle (TW )ω is trivial.

Remarks. Condition (2) is a transversality condition that ensures that JN is per-
pendicular to W , where J is the complex structure of M . It seems reasonable to
expect the Main Theorem to hold with condition (2) replaced by an unconstrained
transversality condition, but this weaker assumption leads to technical problems
later on. In particular, the boundary value problem appearing in the analysis of
the linearized operator in Section 3.2 is the Hodge system with oblique bound-
ary conditions rather than the Hodge system with Neumann boundary conditions.
Since this BVP is more difficult to deal with and leads to geometrically less natural
results, the author has avoided it here. Furthermore, it is possible that the most
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geometrically natural type of scaffold is when W is a complex submanifold of M
(i.e. the tangent spaces of W are invariant under J) and this automatically satisfies
the transversality condition (2).

Further remarks. Condition (3) will be used in the sequel in order to make certain
constructions on W possible; also, the above definition of a scaffold has already
been used in [2].

The boundary condition on the deformation is imposed in the following way.
Suppose that, under deformation, ∂L is confined to move only along the scaffold
W . In other words, if ft : L −→M is a deformation, then suppose that ft(∂L) ⊂W
for all t. Consequently, the deformation field V = d

dtft
∣∣
t=0

cannot be arbitrary: it
must be tangent to W at ∂L. These considerations lead to the statement of the
Main Theorem to be proved in this paper.

Main Theorem (Boundary Deformation Theorem). Let L be a special Lagrangian
submanifold of a compact Calabi-Yau manifold M with non-empty boundary ∂L and
let W be a symplectic, codimension two scaffold for L. Then the space of minimal
Lagrangian submanifolds sufficiently near L (in a suitable C1,β sense to be defined
later on) but with boundary on W is finite dimensional and is parametrized over
the harmonic 1-forms of L satisfying Neumann boundary conditions.

The remainder of this paper will be organized in the following manner. In Section
2, the boundary value problem describing minimal Lagrangian submanifolds with
boundary on a scaffold is formulated, and in Section 3, the proof of the main theo-
rem is undertaken by solving this boundary value problem. The Implicit Function
Theorem is to be used for this purpose, so the linearized operator corresponding
to the BVP must be calculated and shown to be surjective with finite dimensional
kernel isomorphic in a suitable sense to the harmonic 1-forms of L. At the end of
this paper, the Boundary Deformation Theorem will be used to prove a corollary,
which is an existence result for minimal Lagrangian submanifolds with boundary
in M .

2. Formulating the boundary value problem

2.1. Introduction. For the remainder of this paper, assume that L is a given,
fixed special Lagrangian submanifold with boundary that is contained in an ambi-
ent 2n-real-dimensional Calabi-Yau manifold M , and that M possesses a metric g,
a symplectic form ω, and compatible complex structure J . Denote by Ω the canon-
ical, holomorophic, non-vanishing (n, 0)-form of M . Furthermore, assume that L
is connected; the results for non-connected L follow simply by considering each
component of L separately. The equations (1) satisfied by minimal Lagrangian
submanifolds suggest the definition of a map whose zero set corresponds to the
minimal Lagrangian submanifolds near L. Let Emb(L,M) denote the set of em-
beddings of L into M (we will worry about regularity later) and denote by Λk(L)
the k-forms of L. Now define Φ : Emb(L,M)×R→ Λ1(L)× Λn(L) by

(2) Φ(f, θ) =
(
f∗ω, f∗Im(eiθΩ)

)
.

Since L itself is special Lagrangian, Φ(iL, 0) = (0, 0), where iL is the canonical
embedding of L. Another minimal Lagrangian embedding of L, with calibration
angle θ, is an embedding f satisfying Φ(f, θ) = (0, 0).
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The Main Theorem of this paper consists of finding those embeddings of L
near iL which satisfy Φ(f, θ) = (0, 0) for some θ by means of the Implicit Function
Theorem. The precise version of this theorem that will be employed is the following.

Theorem 2 (Implicit Function Theorem). Let F : B → Z be a smooth map of
Banach spaces with F (0) = 0. Suppose that there exist closed Banach subspaces X
and Y of B so that B = X⊕Y . If DXF (0) is bijective, then there is a neighbourhood
U of 0 in Y and a C1 map φ : U → X so that φ(0) = 0 and F

(
y + φ(y)

)
= 0 for

all y ∈ U .

See [1, Section 2.5] for an excellent discussion of this theorem as well as its
proof. The Implicit Function Theorem thus provides families of solutions of the
equation F (b) = 0, parametrized over the Banach subspace which complements the
subspace on which the linearization of F at 0 is bijective. Note that in the case
where DF (0) is surjective with finite dimensional kernel K, the Implicit Function
Theorem holds with Y = K and X equal to any Banach subspace, necessarily
closed, that complements K. The Main Theorem will be proved using this special
case, while the corollary will be proved using the more general statement.

The map Φ, as defined earlier, does not yet involve Banach spaces. Thus in
order to apply the Implicit Function Theorem to Φ, a sufficiently large class of
embeddings of L near iL must be parametrized over a Banach space, and the
equation Φ(f, θ) = (0, 0) must be solved in this Banach space.

2.2. Imposing boundary conditions with a scaffold. In order to understand
why boundary conditions must be imposed on the deformations of L, one must
consider the linearization of the operator Φ at the point (iL, 0).

Proposition 3. Let Φ : Emb(L,M)×R→ Λ1(L)×Λn(L) be the operator defined
in (2). The linearization of Φ at the point (iL, 0) is given by

(3) DΦ(iL, 0)(V, a) =
(
dη, d ? η + aVolL

)
,

where V is a vector field defined on L, a is a real number and η = i∗L(V cω).

Proof. Let ft : L→ M be a family of embeddings with f0 = iL and d
dtft

∣∣
t=0

= V ,
and let at be a family of real numbers with a0 = 0 and d

dtat
∣∣
t=0

= a. Now,

DΦ(iL, 0)(V, a) =
d
dt

Φ(ft, at)
∣∣∣∣
t=0

.

The calculation of the derivative of Φ in the ft direction has already been carried out
by McLean in [14]. It remains only to perform the calculation in the at direction.
This can be done by differentiating

d
dt

Φ(0, ta)
∣∣∣∣
t=0

=
(

0,− d
dt

Im
(
e−itaΩ

))∣∣∣∣
t=0

=
(
0, a i∗L

(
Re(Ω)

))
=
(
0, aVolL

)
by definition of a calibration form. This calculation, in combination with McLean’s
result, completes the proof of the proposition. �

Boundary conditions are necessary because the Hodge operator η 7→ (dη, d ? η)
is not elliptic unless it acts upon a space of differential 1-forms satisfying certain



DEFORMATIONS OF MINIMAL LAGRANGIAN SUBMANIFOLDS 1957

boundary conditions. From the Hodge theory on manifolds with boundary [18], it
is known that one such boundary condition is the Neumann boundary condition,
which is when forms η satisfy η(N) = 0 along ∂L, where N is the unit normal
vector field of ∂L in L. In the case under consideration here, η arises as the 1-form
associated to a deformation of a special Lagrangian submanifold, and is thus of the
form η = V cω, where V = d

dtft
∣∣
t=0

is the corresponding deformation vector field.
The Neumann boundary condition thus translates into the condition ω(V,N) = 0.
The following proposition shows that this boundary condition arises naturally if
the deformations of L force the boundary of L to remain on a scaffold as in the
statement of the Main Theorem.

Proposition 4. Let L be a special Lagrangian submanifold of M and let W be a
symplectic, codimension two scaffold for L. Let ft : L −→M be any deformation of
L satisfying ft(∂L) ∈ W for all t. Then the deformation vector field V = d

dtft
∣∣
t=0

corresponding to ft satisfies the Neumann boundary condition.

Proof. The vector field V must be parallel to W along ∂L as indicated in the
Introduction. But according to the transversality component of the definition of a
scaffold, N ∈ (TxW )ω for every x ∈ ∂L. Therefore ω(N,V ) = 0. �
2.3. Constructing scaffold preserving deformations. In the proof of McLean’s
Theorem, deformations of L are parametrized over the Banach space of C1,β sec-
tions of the normal bundle of L using the exponential map. That is, for every
section V of the normal bundle of L, the exponential map defines an embedding of
L via exp(V ) : L → M . Exponential deformations are, however, not suitable for
the present purpose, because in general exp(V )(∂L) will not lie on W because W is
in general not totally geodesic. Another means of deforming L is thus necessary if
∂L is to remain confined to the scaffold under deformation. One way to avoid the
difficulty described above is to consider the exponential map of a different metric
ĝ — one in which W is totally geodesic.

Before the metric ĝ can be constructed, a lemma concerning the local structure of
W near ∂L is needed. This is essentially a version of the Lagrangian Neighbourhood
Theorem [13, page 99] that is valid for Lagrangian submanifolds with boundary.

Lemma 5. Let W be a symplectic submanifold of codimension 2 in M and suppose
that L is a Lagrangian submanifold with boundary ∂L ⊂ W . Then there exists a
tubular neighbourhood U of the boundary and a symplectomorphism ψ : U −→
T ∗(∂L×R) = T ∗(∂L)×R2 with the following properties:

(1) ψ
(
W ∩ U

)
⊂ T ∗(∂L)× {0, 0};

(2) ψ(∂L) = ∂L× {0, 0};
(3) ψ

(
L ∩ U

)
⊂ ∂L×R+ × {0}; and

(4) let E be any non-zero section of (TW )ω and denote by (s1, s2) the coordi-
nates of the R2 factor. Then ψ can be constructed so that ψ∗(E) = ∂

∂s1 .

Proof. Because W is symplectic, the symplectic form ω
∣∣
W

makes W a symplectic
manifold in its own right. Since ∂L is an isotropic submanifold of M with respect
to ω, it is a compact Lagrangian submanifold of W with respect to ω

∣∣
W

. Conse-
quently, the usual Lagrangian Neighbourhood Theorem can be applied to ∂L as
a submanifold of W to produce a neighbourhood U0 and a symplectomorphism
ψ0 : U0 −→ T ∗(∂L). The desired symplectomorphism ψ will be found by extending
ψ0 off W in a suitable way.
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The Symplectic Neighbourhood Theorem [13, page 98] will be used to com-
plete the extension. The theorem applies to two symplectic manifolds (M1, ω1)
and (M2, ω2) containing symplectic submanifolds W1 and W2, respectively. It
states that if there exists a symplectic vector bundle isomorphism Ψ : (TW1)ω −→
(TW2)ω that covers a symplectomorphism ψ : W1 −→ W2, then there exist neigh-
bourhoods U1 and U2 of W1 and W2 respectively, along with a symplectomorphism
ψe : U1 −→ U2 that extends ψ (that is, ψe|W1

= ψ).
Let M1 = M , W1 = W , M2 = T ∗(∂L)×R2 and W2 = T ∗(∂L)× {0, 0}. Let s1

and s2 be the coordinate functions in the R2 factor. One of the defining conditions
for a scaffold implies that its sympectic normal bundle (TW )ω is trivial. Hence
it is possible to choose two vector fields E and F which span (TW )ω and satisfy
ω(E,F ) = 1. Extend this basis to the neighbourhood U0 and continue to denote
the extended vector fields by E and F . Define an isomorphism Ψ : (TW )ω −→ R2

of symplectic vector bundles by

(4) Ψ(Ex) =
∂

∂s1 (ψ0(x),0,0)
and Ψ(Fx) =

∂

∂s2 (ψ0(x),0,0)

at any x ∈ U0. This clearly covers the symplectomorphism ψ0 and is a symplectic
map.

The Symplectic Neighbourhood Theorem can now be invoked to yield a sym-
plectomorphism ψ1 extending ψ0 between some tubular neighbourhood of ∂L and
a neighbourhood of ∂L×{0, 0} in T ∗(∂L)×R2. Only the third requirement on the
symplectomorphism is not met by ψ1. However, by composing with a suitable sym-
plectomorphism that acts as a translation in the transverse Lagrangian directions
to L, this condition can also be achieved. �

The adapted coordinates for a neighbourhood of ∂L of the preceding lemma,
with E = N , can now be used to construct the metric ĝ. This is done in three
separate steps.
Step 1. Let U be the tubular neighbourhood of ∂L provided by Lemma 5 and
ψ : U −→ T ∗(∂L) ×R2 the symplectomorphism, with ψ∗

(
∂
∂s1

)
= N . Now define

the metric g1 at the point (x, y, s1, s2) ∈ T ∗(∂L)×R2 as follows:

(5a) g1(x, y, s1, s2) = (ψ−1)∗
(
g|W (ψ(x, y, 0, 0))

)
+ ds1 ⊗ ds1 + ds2 ⊗ ds2 .

Step 2. Without loss of generality, the form (5a) can be taken for an entire tubular
neighbourhood U1 of W . This is because the topological assumption made on W
— that W has trivial normal bundle — is enough to guarantee the extension of the
coordinates s1 and s2 to the entire tubular neighbourhood.
Step 3. Let η : M −→ R be a positive, C∞ cut-off function which equals 1 inside
a tubular neighbourhood U ′1 of ∂L contained in U1, and equals 0 outside U1. Now
define the metric ĝ by

(5b) ĝ = ηg1 + (1 − η)g .

It remains to verify that the metric ĝ brings about the desired properties. These
are confirmed by the following two propositions.

Proposition 6. The submanifold W is totally geodesic with respect to the metric
ĝ constructed in (5).
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Proof. Let ∂
∂z1 , . . . ,

∂
∂z2n−2 be a set of local coordinate vector fields for the relatively

open neighbourhoodW∩U ′1. Then ∂
∂z1 , . . . ,

∂
∂z2n−2 ,

∂
∂s1 ,

∂
∂s2 determines a set of local

coordinate vector fields for the neighbourhood U ′1. In these coordinates,

ĝ =
((

g|W (z)
)
ij

0
0 δij

)
.

Now,
〈
∇ ∂

∂zi

∂
∂zj ,

∂
∂sk

〉
= 1

2

(
ĝzisk,zj + ĝzjsk,zi − ĝzizj ,sk

)
= 0. This implies that

the second fundamental form of W with respect to ĝ vanishes; thus W is totally
geodesic. �

Proposition 7. Let L be a special Lagrangian submanifold with boundary on the
symplectic, codimension two scaffold W and let N be the unit normal vector field
of ∂L in L. Construct the metric ĝ according to (5). Suppose V is a section of N̂L
that satisfies the boundary condition ω(V,N) = 0. Then V is tangent to W over
∂L.

Proof. Choose a point x in ∂L and coordinates at x as in the constructions above.
Furthermore, assume that Tx∂L is spanned by ∂

∂z1 , . . . ,
∂

∂zn−1 and that ∂
∂zn , . . . ,

∂
∂z2n−2 are orthogonal to these vectors. Since N equals ∂

∂s1 in these coordinates, it
is now easy to see that the ĝ-normal bundle of L at x is spanned by the vectors

∂

∂zn
, . . . ,

∂

∂z2n−2
and

∂

∂s2
+ λ

∂

∂s1
,

for some λ ∈ R. So, if V ∈ N̂xL and
(∑

dzi∧dzn−1+i+ds1∧ds2
)
(V,N) = 0, then

clearly the ∂
∂s2 + λ ∂

∂s1 component of V must vanish and as a result, V ∈ TxW . �

From elementary metric geometry, it is known that êxp is a local diffeomorphism
on N̂L. Thus the conclusion to be drawn from Proposition 6 and Proposition 7 is
that sufficiently small ĝ-exponential deformations of sections of N̂L satisfying the
boundary condition imposed by the scaffold W are in one-to-one correspondence
with submanifolds near L with boundary on W that project onto L via ĝ-nearest
point projection.

3. Proof of the Main Theorem

3.1. Defining the differential operator. The apparatus created in the previous
section for deforming the special Lagrangian submanifold L ⊂ M such that its
boundary remains confined to the scaffoldW can now be used to set up a differential
equation whose solutions correspond to minimal Lagrangian submanifolds near L
with boundary on W . Construct the metric ĝ and the ĝ-normal bundle N̂L of L as
in the previous section, let N denote the unit normal vector field of ∂L, and define
the Banach space

X =
{
V ∈ C1,β

(
Γ(N̂L)

)
: ω(V,N) = 0

}
of vector fields satisfying the Neumann boundary condition imposed by W . The
notation used here is the following. If B denotes any bundle over L, then Γ(B)
denotes the sections of B, and Ck,β

(
Γ(B)

)
denotes the set of sections whose k

covariant derivatives exist and are bounded in the Ck,β norm, which is given by
|u|Ck,β =

∑k
i=0 ‖∇iu‖0 + [∇ku]β for any section u ∈ Γ(B), where ‖X‖0 is the

supremum norm of a section X over L and [X ]β is its Hölder coefficient.
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Next, denote by dΛk(L) the set of exact (k+1)-forms of L and define the operator

Φ : X ×R→ C0,β
(
d Λ1(L)

)
× C0,β

(
d Λn−1(L)

)
by

(6) Φ(V, θ) =
(
êxp(V )

)∗(
ω,−Im(e−iθΩ)

)
,

where êxp is the ĝ-exponential map as defined in the previous section. Note that el-
ements of C0,β

(
d Λk(L)

)
are necessarily of the form dη for some η ∈ C1,β

(
Λk−1(L)

)
by the Poincaré Lemma and the basic properties of Hölder spaces.

Note. The range of Φ is indeed the set of exact 1- and n-forms. This is because any
element of the range is homotopic to the zero 1- and n-forms, which is obviously
exact, and exactness is preserved under homotopy.

3.2. Analysis of the linearized operator. In order to apply the Implicit Func-
tion Theorem to the map Φ in the vicinity of the point (0, 0), it is necessary to
show that Φ is a smooth map of Banach spaces and the linearization DΦ(0, 0) is
bounded and surjective, and whose kernel is isomorphic to the finite dimensional
set of harmonic 1-forms of L that satisfy Neumann boundary conditions.

The smoothness of Φ as a Banach space map is straightforward. Recall now the
expression of the linearization of the minimal Lagrangian equations from Proposi-
tion 3; since d

dt êxp(tV )
∣∣
t=0

= V ,

DΦ(0, 0)(V, a) =
(

dη, d ? η + aVolL
)
,

where η = i∗L(V cω) as before. This is clearly a bounded operator. Surjectivity is
verified in the following theorem.

Proposition 8. The operator DΦ(0, 0): X×R→ C0,β
(
d Λ1(L)

)
×C0,β

(
d Λn−1(L)

)
is surjective.

Proof. Let N be the unit normal vector field of ∂L and let α ∈ C1,β
(
Λ1(L)

)
and

β ∈ C1,β
(
Λn−1(L)

)
. Consider the system of equations DΦ(0, 0)(V, a) =

(
dα, dβ

)
in the space X ×R; or in other words, consider

(7)

dη = dα,
d ? η = dβ + aVolL,

η(N) = 0 .

Hodge theory for a manifold L with boundary shows that a k-form satisfying the
equations

dη = σ,

d ? η = τ,

η(N) = 0,
and possessing a given degree of Hölder regularity can be found if and only if the
following conditions are met:

(1) dσ = 0 and dτ = 0;
(2) τ(E1, . . . , Ek+1)

∣∣
∂L

= 0 for any collection of vectors Ei tangent to ∂L;
(3)

∫
L σ ∧ ?λ = 0 for every harmonic (k + 1)-form λ of L satisfying Neumann

boundary conditions;
(4)

∫
L ?τ ∧ ?κ = 0 for every harmonic (k − 1)-form κ of L satisfying Neumann

boundary conditions.
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This list of conditions is given in [18, page 123]. Note that these results are actually
only stated for k-forms with Sobolev regularity. But they extend fairly easily to
Hölder regularity by standard techniques of elliptic theory (as explained in [17], for
example).

Because of form of the (7), only condition (4) above imposes any restriction
on the solvability of these equations. Thus a 1-form η that solves this system of
equations can be found if and only if the integrability condition∫

L

dβ + a

∫
L

VolL = 0

can be made to hold. But since
∫
L VolL = Vol(L) 6= 0, one can choose a = −

∫
L

dβ

Vol(L)

to meet the integrability condition. �

It remains to find the kernel of the linearized operator in order to complete the
proof of the Main Theorem. Suppose that the equations

(8)

dη = 0,
d ? η + aVolL = 0,

η(N) = 0,

are satisfied by a 1-form η on L and a real number a. Integrating the second
equation over L yields:

aVol(L) = −
∫
L

d ? η

= −
∫
∂L

?
(
η(N)

)
= 0

where i∂L is the standard embedding of ∂L in M . The calculations above hold
by Stokes’ Theorem as well as by the properties of the Hodge star operator at the
boundary of L (these properties are derived in [18, Sections 1.2 and 2.1]). Hence
a = 0 and η satisfies the Hodge system dη = δη = 0 with the boundary condition
η(N) = 0. The solutions of these equations are the harmonic 1-forms with Neumann
boundary conditions. This is a finite dimensional space of dimension equal to b1(L),
as found in [18, Section 2.6].

All of the hypotheses required by the Implicit Function Theorem are thus satis-
fied by the map Φ : X ×R→ C0,β

(
d Λ1(L)

)
× C0,β

(
d Λn−1(L)

)
. Thus if

K =
{
V ∈ X : DΦ(0, 0)(V, 0) = (0, 0)

}
is the finite dimensional kernel of DΦ(0, 0), there is a C1 map f : U → X × R,
where U ⊂ K is a neighbourhood of 0, that satisfies Φ(f(k)) = 0 for every k ∈ U .
This completes the proof of the Main Theorem. �

4. Deformations of the scaffold

The main theorem answers the question of the existence of minimal Lagrangian
submanifolds with boundary on the scaffold W which are near the given candidate
L. A relatively simple extension of the theory that has been developed so far can be
used to answer the question of the existence of minimal Lagrangian submanifolds on
neighbouring scaffolds. If W ′ is a symplectic scaffold near W and there is a special
Lagrangian submanifold L with boundary ∂L ⊂ W , one asks whether there is a
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special (or minimal) Lagrangian submanifold L′ near L with boundary ∂L′ ⊂ W ′.
There is an affirmative answer to this question.

Corollary 9. Let L be a special Lagrangian submanifold of a Calabi-Yau manifold
M whose boundary lies on a symplectic, codimension two scaffold W . Furthermore,
suppose that the topology of L forces its first Betti number b1(L) to vanish. Then if
W ′ is any symplectic, codimension two submanifold of M that is sufficiently near
W in the sense that W ′ can be written as φX(W ) for some X ∈ C1,β

(
Γ
(
(TW )ω

))
which is sufficiently small, then there is a minimal Lagrangian submanifold L′ near
L and with boundary on W ′.

To prove this result, it is necessary first to parametrize nearby scaffolds over
a Banach space in some way. The symplectic structure preserving Hamiltonian
deformations of W will be used for this purpose: a procedure will be developed
which associates a time-one Hamiltonian flow to each element of the set of C2,β

sections of the two-dimensional bundle (TW )ω.
Let X be a C2,β section in Γ

(
(TW )ω

)
and suppose U is a tubular neighbour-

hood of W which is symplectomorphic to W ×R2. Furthermore, suppose that the
coordinate vector fields ∂

∂s1 and ∂
∂s2 (guaranteed by Lemma 5) coincide with the

unit normal vector field N and the vector field JN , respectively, over the boundary
∂L ⊂W . Write X in these coordinates as

X(q) = a1(q)
∂

∂s1
+ a2(q)

∂

∂s2

where q ∈ W and the ai are functions of W . Now let η : M −→ R be a positive, C∞

cut-off function equal to zero outside U and equal to one inside a smaller tubular
neighbourhood of W , and define the function HX : M −→ R by

HX(q, s) = η(q, s)
(
− a2(q)s1 + a1(q)s2

)
for (q, s) ∈ U and make HX equal to zero elsewhere. Because the symplectic form
of W × R2 is equal to ω|W + ds1 ∧ ds2, it is easy to see that the Hamiltonian
vector field associated to HX is equal to X when s1 = s2 = 0; that is, on the
submanifold W itself. Finally, let φX : M −→M denote the time-one Hamiltonian
flow associated to the function HX . By elementary properties of the flow, it is clear
that

(9)
d
dt
φtX

∣∣∣∣
t=0

= J∇HX ,

and if this quantity is restricted to W , then it equals X .
The map Xq 7→ φX(q) for Xq ∈ (TqW )ω is a local diffeomorphism because (9)

implies that its linearization at the zero section is the identity. Without loss of
generality, one can assume that it is the tubular neighbourhood U that is diffeo-
morphic to a neighbourhood of the zero section in (TqW )ω. Hence, any scaffold
W ′ sufficiently near W and sufficiently C1-regular (to ensure that W ′ projects onto
W ) is a Hamiltonian deformation of the form W ′ = φX(W ) for some vector field
X ∈ Γ

(
(TW )ω

)
that is sufficiently close to the zero section. The C1,β sections of

the bundle (TW )ω can thus be used to parametrize scaffolds sufficiently close to
W .

This parametrization of nearby scaffolds leads to the following deformation op-
erator. Define the map Φ1 : C1,β

(
Γ
(
(TW )ω

))
× X × R −→ C0,β

(
d Λ1(L)

)
×
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C0,β
(
d Λn−1(L)

)
by

(10) Φ1(X,V, θ) =
(
φX◦ êxp(V )

)∗(
ω,−Im

(
e−iθΩ

))
.

If Φ1(X,V, θ) = (0, 0), then the submanifold L′ = φX◦ êxp(V )(L) is minimal
Lagrangian with calibration form Re(e−iθΩ). Furthermore, ∂L′ is contained in
W ′ = φX(W ) because the deformation êxp(V ) preserves W . The parametrization
and deformation operator constructed here now lead to the proof of the corollary.

Proof of Corollary 9. The linearization of Φ1 in the X ×R directions remains the
operator from equation (3), and is thus an isomorphism because the triviality
condition b1(L) = 0 has been assumed. Therefore, the Implicit Function The-
orem implies that there is an open set U of 0 in C1,β

(
Γ
(
(TW )ω

))
and a map

G : U → X ×R satisfying Φ1(X,G(X)) = (0, 0). Suppose G(X) =
(
V (X), θ(X)

)
.

Then the submanifold φX◦ êxp(V (X))(L) is minimal and Lagrangian, calibrated
by the differential form Re

(
e−iθ(X)Ω

)
and has boundary on the scaffold φX(W )

(this is symplectic because φX is a symplectomorphism). Consequently, if W ′ is
any codimension 2, symplectic submanifold of the form φX(W ) with X ∈ U , then
the minimal submanifold with boundary on W ′ required to prove the corollary is
simply φX◦ êxp(V )(L). �
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