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A COCYCLE FORMULA
FOR THE QUATERNIONIC DISCRETE SERIES

ROBERT W. DONLEY, JR.

(Communicated by Rebecca Herb)

Abstract. Schmid’s proof of the Kostant-Langlands conjecture for discrete
series representations of a semisimple Lie group provides a Hilbert space real-
ization of such representations in L2-cohomology. We give an explicit descrip-
tion of these harmonic forms for the quaternionic discrete series.

0. Introduction

Let G be a connected semisimple Lie group with finite center, let K be a maxi-
mally compact subgroup, and suppose rank G = rank K. Then G possesses discrete
series representations [HC]; that is, G has irreducible unitary representations with
square-integrable matrix coefficients.

A realization for such representations was conjectured independently by Kostant
and Langlands using methods of complex analysis. This conjecture was proved by
Schmid in a series of papers ending with [Sc].

Let g0 be the Lie algebra of G, and let g be its complexification. Real Lie algebras
are denoted with a zero subscript; the complexification omits the subscript. Choose
a Cartan subgroup T in K. Let t0 be the Lie algebra of T , and form the set of roots
∆ = ∆(g, t). If one chooses a positive root system ∆+ in ∆, there is an associated
triangular decomposition g = t + n + n′, where n (resp. n′) is the direct sum of root
spaces associated to negative (resp. positive) roots. Let b = t + n.

With this choice, the homogeneous space G/T inherits a G-invariant complex
structure; the antiholomorphic tangent space at eT is identified with n. One may
construct a holomorphic homogeneous holomorphic vector bundle Lλ on G/T and
its associated geometric constructions (i.e. Dolbeault cohomology); see section 1 for
details. To construct representations on these spaces, G acts by left-translation L.

Let ∂̄ be the Cauchy-Riemann operator, and let ∂̄∗ be its formal adjoint with
respect to a certain invariant inner product on n. A form ω is called strongly
harmonic if it lies in both Ker ∂̄ and Ker ∂̄∗; ω is called harmonic if it lies in the
kernel of the associated Laplacian � = ∂̄∂̄∗ + ∂̄∗∂̄. Explicit formulas for ∂̄, ∂̄∗ and
� in terms of a root basis occur in [GS].
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Theorem 0.1 ([Sc]). Suppose λ + δ is analytically integral, s = dimCK/T, and
H0,s

2 (G/T,Lλ) is the space of square-integrable, strongly harmonic (0, s)-forms on
G/T with values in Lλ. If λ + δ lies in the negative Weyl chamber, then(
L,H0,s

2 (G/T,Lλ)
)

gives a unitary realization of the discrete series representation
(π, V ) of G with underlying Harish-Chandra module Ab(λ).

In this case, the conditions of harmonic and strongly harmonic are equivalent.
One wishes to give an explicit description of forms arising in this manner. [Ba]

constructs strongly harmonic cocycles associated to an invariant indefinite form;
the resulting space is sufficient for describing the associated Dolbeault cohomology
classes, but square integrability of such forms remains an open question.

We recall the methods of [Do]. An explicit harmonic representative for the
associated (one-dimensional) n-cohomology group for the K-finite vectors of V ∗

yields an intertwining operator from any other realization of V into H0,s
2 (G/T,Lλ).

Geometric considerations imply that this n-cohomology class may be described
entirely in terms dependent on a fixed nonzero lowest weight vector of the minimal
K-type of V .

In this work, an explicit description of this class is given for the quaternionic
discrete series of [GW] and [Go]. Since the resulting forms are described using
matrix coefficients, they are automatically square-integrable. The main results are
Theorem 3.2 and Corollary 3.3.

We remark that our methods provide an algebraic proof for existence of coho-
mology; see [Do] for the case of discrete series limits.

1. Preliminaries

Let g0 = k0 + p0 be the Cartan decomposition determined by K. A root α is
called compact (resp. noncompact) if the root space gα is contained in k (resp.
p). Let B be the Killing form of g; we also denote it and the induced form on g∗

by parentheses. Results will be phrased in notation determined by the following
proposition.

Proposition 1.1 (cf. [He], Ch. III; [Kn], Theorem 6.6; [GS]). For each α in ∆,
one can choose constants Nα,β and vectors Eα ∈ gα and Hα in it0 such that

(1) B(Eα, Eβ) = δα,−β , [Eα, E−α] = Hα,
(2) B(Hα, H) = α(H) for all H in t,
(3) [Eα, Eβ ] = 0 if α 6= −β or α+ β /∈ ∆,
(4) [Eα, Eβ ] = Nα,β Eα+β if α, β, α + β ∈ ∆. The Nα,β are nonzero real con-

stants such that N−α,−β = −Nα,β; also N−α,−β = N−β,α+β = Nα+β,−α,
(5) Ēα = εαE−α, where εα = −1 (resp. 1) if α is compact (resp. noncompact),

and
(6) N2

α,β = q(1+p)
2 (α, α), where β + nα (−p ≤ n ≤ q) is the root string of α

through β.

In accordance with (2), for λ in t∗, we define Hλ to be the unique element such
that (Hλ, H) = λ(H) for all H in t.

It will be convenient to define sections directly rather than develop the prelim-
inary geometric structures. Let (χλ,Cλ) be a character of T with differential λ.
Then a smooth section of the homogeneous holomorphic line bundle Lλ is defined
as a smooth function f : G → Cλ such that f(gt) = χ−1

λ (t)f(g) for all g in G and
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t in T . Likewise a smooth (0, k)-form with values in Lλ is defined as a smooth
function

ω : G→ Cλ ⊗ ∧k n∗ with ω(gt) = (χλ ⊗Ad)(t−1) (ω(g))

for all g in G and t in T . In addition, assume that

(1.2) (λ+ δ, α) < 0

for all α in ∆+, where δ = 1
2

∑
α>0

α.

In Theorem 0.1 the functional components of a harmonic form may be chosen
to be matrix coefficients. In this way, the square-integrability property follows
immediately from the Schur orthogonality relations for the discrete series.

The choice of such matrix coefficients is determined entirely by n-cohomology of
the K-finite vectors of V . As a (g,K)-module, the K-finite vectors are equivalent
to the cohomologically induced module Ab(λ).

The techniques of this work are purely algebraic and depend crucially on two
properties of Ab(λ) for λ satisfying (1.2):

(1) Ab(λ) has infinitesimal character parameter λ+ δ, and
(2) the lowest weight of the minimal K-type is λ+ 2δc.

If φ is a nonzero lowest weight vector of the minimal K-type of V, then φ′ = 〈·, φ〉
is a highest weight vector of the minimal K-type of V ∗ with weight −λ− 2δc.

Let {Ei} be any basis for g, and let {Ei} be the corresponding dual basis of g

with respect to the Killing form. Then the Casimir operator Ω is defined in U(g),
the universal enveloping algebra of g, by

∑
EiE

i, and this element lies in the center
of U(g). Using the infinitesimal character property,

Ω · v =
(
(λ+ δ, λ+ δ)− (δ, δ)

)
v =

(
(λ, λ) + 2(λ, δ)

)
v

for v in VK−fin.

2. The quaternionic positive ordering

We consider only discrete series representations associated to certain real forms;
these orderings were first used by Wolf [Wo] in the classification of compact sym-
metric spaces with a quaternionic structure. See also [Al]. For finer details for such
representations, see [GW] and [Go].

Assume g is simple, and let β0 be the highest root of ∆+. There exists a real
form g0 of g with

∆c = {β ∈ ∆ | β ⊥ β0} ∪ {±β0}
as the set of compact roots, and

∆n = {β ∈ ∆ | (β, β0) 6= 0}
as the set of noncompact roots. We denote the associated subsets of positive roots
by ∆+

c ,∆
+
n , and define δc, δn to be half the sum of the elements in these sets. The

only positive compact root not in the span of the compact simple roots is β0.
The Vogan diagram ([Kn], Ch. VI) is easily inferred from the extended Dynkin

diagram; see Table 2.5 of [GW]. The Vogan diagram of such an ordering has no
arrows, and one paints the nodes attached to −β0. One sees that the multiplicity
of a noncompact simple root in β0 is 1 or 2. Thus the multiplicity of a noncompact
simple root in a positive noncompact root is 1, except in the case of type A; in
this case, the sum of the multiplicities of the two noncompact simple roots is 1.
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Hence (β0, α) is positive and independent of the positive noncompact root α. Since
[k, p] ⊂ p,

Lemma 2.1. The map α 7→ β0 − α is an involution of ∆+
n without fixed points.

It follows that 2δn = mβ0, where m = 1
2 |∆+

n |, and that (2δc, 2δn) = m(β0, β0).

3. The Laplacian

Let ω−α be the basis for n∗ dual to {E−α}. To each ordered set A = (α1, . . . , αk)
of k distinct positive roots, we define |A| =

∑
αi, and

ω−A = ω−α1 ∧ · · · ∧ ω−αk .

For α ∈ ∆+, define

i(ω−α)ω−A =

{
0 if α /∈ A,
ω−A

′
if ω−A = ω−α ∧ ω−A′ .

Then the explicit formula ([GS], Proposition 5.1) for the Laplacian on a monomial
(0, s)-form is given by

�(fω−A) =
1
2

(|A|, 2δ − |A|)fω−A

+
∑
α

εα
(
Hαf ω

−α ∧ i(ω−α)ω−A − EαE−αfω−A
)

+
∑
α,β

(εβ − εα)Eαf Ad(E−α)ω−β ∧ i(ω−β)ω−A

+
∑
α,β

(εβ + 1)E−αf Ad(Eα)ω−β ∧ i(ω−β)ω−A.(3.1)

If f represents instead an element of V ∗, (3.1) also gives the associated Laplacian
for the n-cohomology of V ∗ in degree s.

Let A be any ordered set of s distinct positive roots containing all compact
positive roots except possibly β0. Then the Laplacian affects ω−A only in the term
not associated to the span of the compact simple roots. Thus, we consider only
ordered sets A where the first element is variable, and the remainder is a fixed
listing of ∆+

c −{β0}. For α in ∆+
n ∪{β0}, denote by ω−α the corresponding exterior

s-form with α as the first element of A.
It is now possible to state the main result:

Theorem 3.2.
(
�2 +

(
(1−m)β0 + 2λ, β0

)
�
)
φ′ ω−β0 = 0, and

ω� =
(
�+

(
(1−m)β0 + 2λ, β0

))
φ′ ω−β0

defines a nonzero harmonic representative for Hs(n, (V ∗)K−fin)−λ.

The proof occupies the next section.
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Corollary 3.3. The map

S : V → H0,s
2 (G/T,Lλ),

(Sv)(g)=(2λ+ β0, β0)〈π(g)−1v, φ〉ω−β0 + 2
∑
α∈∆+

n

Nβ0,−α 〈π(g)−1v,Eαφ〉ω−β0+α

defines a unitary equivalence (up to a scalar).

Proof. This follows immediately from Lemma 4.1 below. �

4. The proof

A general approach to finding explicit harmonic classes for n-cohomology is given
as follows. Suppose that there exists an element ωs in V ∗⊗∧sn∗ such that its cyclic
span under � is finite-dimensional, and let p(x) be the monic polynomial of smallest
degree such that p(�)ωs = 0. If one can write p(x) = xq(x), then ω� = q(�)ωs
is a nonzero harmonic form. Consideration [Do] of the Penrose transform and the
Borel-Weil-Bott theorem suggest that a suitable candidate for ωs is given by φ′ω−A,
where A is the set of positive compact roots.

It is instructive to first consider the holomorphic discrete series. In this case,
the positive ordering is derived from a Vogan diagram with no arrows and a single
painted node; the multiplicity of the corresponding noncompact simple root in the
highest root is 1. This ordering corresponds to a good ordering; that is, every
positive noncompact root is greater than every compact root. In addition, all
compact roots lie in the span of the compact simple roots. Earlier considerations
imply that lines 2 and 3 of (3.1) vanish, and one sees by modifying the proof of
Lemma 4.1 below that ωs is itself harmonic.

Now assume that the assumptions of section 2 hold.

Lemma 4.1. One has

�(φ′ ω−β0) = m(β0, β0) φ′ ω−β0 + 2
∑
α∈∆+

n

Nβ0,−α Eαφ
′ ω−β0+α.

Proof. Note that only the first three lines of (3.1) contribute. The first term of
(3.1) equals 1

2 (2δc, 2δn) = m
2 (β0, β0). Next∑

α∈∆+
c

Hαφ
′ = −(λ+ 2δc, 2δc) φ′.

In U(g), one has

−
∑
α∈∆+

εαEαE−α = 2
∑
α∈∆+

c

EαE−α −
∑
α∈∆+

EαE−α.

For α in ∆+
c , EαE−αφ

′ = E−αEαφ
′ + Hαφ

′ = −(λ + 2δc, α)φ′. In addition, the
second sum equals 1

2Ω + Hδ − 1
2

∑
H2
i , where Ω is the Casimir element and {Hi}

is an orthonormal basis for t. Applied to φ′, we obtain(
1
2
(
(λ, λ) + 2(λ, δ)

)
− (λ+ 2δc, δ)−

1
2

(λ+ 2δc, λ+ 2δc)
)
φ′

=
(
−(2δc, δ)− (λ, 2δc)− (δc, 2δc)

)
φ′.

Combining these terms as indicated, the lemma follows. �



1948 ROBERT W. DONLEY, JR.

Definition 4.2. For α in ∆+
n , define ∆(α) = {γ ∈ ∆+

c | α+ γ ∈ ∆+
n }.

Lemma 4.3. For α in ∆+
n , one has

�(Eαφ′ ω−β0+α) = 2
∑

γ∈∆(α)

Nγ,α E−γEγ+αφ
′ ω−β0+α

+
(

(m− 2)(β − α, β) + (2δc − α, α) − 2(λ, β0)
)
Eαφ

′ ω−β0+α

− 2
∑

γ∈∆(α)

Nβ0−α,γ E−γEαφ
′ ω−β0+α−γ

− 2
∑

γ∈∆(α)

Nβ0−α,−γNγ,α Eγ+αφ
′ ω−β0+α+γ

− 2 Nβ0,−α E−αEαφ
′ ω−β0 .

Proof. The argument is identical to Lemma 4.1. The first line arises from applica-
tion of −2

∑
α∈∆+

c

E−αEα and use of the highest weight property of φ′. To determine

the second line, note the following:
1
2

(|A|, 2δ − |A|) =
1
2

(2δc − α, 2δn + α),

(−H2δc−β0 +Hβ0−α)Eαφ′ = (λ+ 2δc − α, 2δc − 2β0 + α)Eαφ′,

2H2δcEαφ
′ = −2(λ+ 2δc − α, 2δc) Eαφ′,

and(
1
2

Ω +Hδ −
1
2

∑
H2
i

)
Eαφ

′ =
(

1
2

(λ, λ) + (λ, δ) − (λ+ 2δc − α, δ)−
1
2

(λ, λ)

− (λ, 2δc − α)− 1
2

(2δc − α, 2δc − α)
)
Eαφ

′

= −(λ+ δ + δc −
1
2
α, 2δc − α) Eαφ′.

Combining these terms as indicated gives the second term of the equation. �

Lemmas 4.1 and 4.3 yield

�2(φ′ ω−β0) = m2(β0, β0)2 φ′ ω−β0 + 2m(β0, β0)
∑
α∈∆+

n

Nβ0,−α Eαφ
′ ω−β0+α

+ 4
∑

α′∈∆+
n

∑
γ∈∆(α′)

Nβ0,−α′Nγ,α′ E−γEγ+α′φ
′ ω−β0+α′

− 4
∑
α∈∆+

n

∑
γ∈∆(α)

Nβ0,−αNβ0−α,γ E−γEαφ
′ ω−β0+α−γ

− 4
∑
α∈∆+

n

∑
γ∈∆(α)

Nβ0,−αNβ0−α,−γNγ,α Eγ+αφ
′ ω−β0+α+γ

+ 2
∑
α∈∆+

n

Nβ0,−α Cλ,α Eαφ
′ ω−β0+α

− 4
∑
α∈∆+

n

N2
β0,−α E−αEαφ

′ ω−β0,(4.4)
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where
Cλ,α = (2m− 2)(β0 − α, β0) + (2δc − α, α) − 2(λ, β0).

For the remainder of this section, a battery of lemmas will be used to simplify this
sum.

Lemma 4.5. For α in ∆+
n and γ in ∆(α),

Nβ0,γ−αNγ,α−γ = Nβ0,−αNβ0−α,γ .

Proof. Note that

Nβ0,−αNβ0−α,γEβ0−α+γ = [[Eβ0 , E−α], Eγ ]

= −[[E−α, Eγ ], Eβ0 ]
= −N−α,γN−α+γ,β0Eβ0−α+γ .

Since β0 + γ is not a root, the second equality follows from the Jacobi identity.
Using Proposition 1.1(4), N−α,γ = Nγ,α−γ and N−α+γ,β0 = −Nβ0,γ−α, and the
lemma follows. �

Thus the second and third lines of (4.4) sum to zero after aligning indices by
α′ = α− γ.

The next two lemmas simplify the fourth line of (4.4).

Lemma 4.6. For α in ∆+
n ,∑

γ∈∆(α)

Nβ0,γ−αNβ0−α+γ,−γNγ,α−γ = Nβ0,−α
∑

γ∈∆(α)

N2
β0−α,γ .

Proof. Since Nγ,α−γ = N−α,γ , the left-hand side equals∑
γ∈∆(α)

B

(
[[Eβ0 , [E−α, Eγ ]], E−γ ], E−β0+α

)
.

Since β0 + γ is not a root, the Jacobi identity implies that

[[Eβ0 , [E−α, Eγ ]], E−γ ] = −[[Eγ , [Eβ0 , E−α]], E−γ ]
= −Nβ0,−αNγ,β0−αNβ0−α+γ,−γ Eβ0−α.

Since Nβ0−α+γ,−γ = N−γ,α−β0 = Nβ0−α,γ and Nγ,β0−α = −Nβ0−α,γ , the lemma
follows. �

Lemma 4.7. Fix α in ∆+
n . Then

2
∑

γ∈∆(α)

N2
β0−α,γ = (m− 1)(β0, β0) + (2−m)(α, β0) + (2δc − α, α).

Proof. Noting Proposition 1.1(6), we replace (·, ·) by a scalar multiple such that
(β0, β0) = 2.

First consider the simply-laced case. Then (β, β) = 2 for all roots β, and |(β1, β2)|
= 0 or 1 for β1 6= ±β2. In addition, orthogonality implies strong orthogonality; that
is, if (β1, β2) = 0, then ±β1 ± β2 are not roots. By Proposition 1.1(6), for each γ
in ∆(α), N2

β0−α,γ = 1.
We prove the statement by induction on ht(α), the height of α. If ht(α) = 0,

then α is simple. In this case, the left-hand side is zero. The right-hand side equals

(2m− 2) + (2 −m)(α, β0) + (2δ −mβ0, α)− (α, α).
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Since α is simple for ∆+(g), 2(δ,α)
(α,α) = 1. Because (α, β0) = 1 by the choice of positive

ordering, the statement follows.
Suppose that equality holds for all α with height n and that α + γ′ is a root,

where α is a postive noncompact root of height n and γ′ is a compact simple root.
Since 2(δc,γ

′)
(γ′,γ′) = 1, the induction step follows if the equation

|∆(α + γ′)| − |∆(α)| = −(γ′, α)

holds. If α′ + γ = α, then −1 = (γ′, α) = (γ′, α′ + γ), which implies that exactly
one of α′ + γ′ or γ + γ′ is a (noncompact (resp., compact)) root. Thus exactly one
of (α′ + γ′) + (γ) or (α′) + (γ + γ′) is a decomposition of α + γ′ contributing to
∆(α+ γ′). Since (α) + (γ′) is a decomposition of α+ γ′ not arising in this manner,
|∆(α+ γ′)| ≥ |∆(α)|+ 1. A similar argument proves the reverse inequality, and the
induction statement follows.

For the cases of types B and C, the induction proof may be adapted. Short roots
have (β, β) = 1. Again |(β1, β2)| = 0 or 1 for β1 6= ±β2, and N2

β0−α,γ = 1. When
α is a short simple root (type C), the initial induction step still holds. To adapt
the general induction step, assume (α, γ′) = 0 and α+ γ′ is a root. Since there are
only two root lengths, α and γ′ are short roots. Such a sum does not occur in type
C, and the lemma follows for type C.

We assume the usual notation and standard ordering for type Bn, n 6= 2. Then
β0 = e1 + e2 and

∆+
n = {e1, e2, e1 ± ei, e2 ± ei | all i 6= 1, 2}.

Here γ′ = en. Now |∆(e1)| = n − 1 since (e1 − ej) + (ej) are the only desired
decompositions of e1. Similarly (e1−ej)+(ej +en) and (e1)+(en) yield all decom-
positions for e1 + en, and |∆(e1)| = |∆(e1 + en)|. If α = e2, then (e2 − ej) + (ej)
gives all decompositions for e2, and the decompositions for e2 + en are given by
(e2 − ej) + (ej + en) and (e2) + (en). Thus |∆(e2)| = |∆(e2 + en)|. It follows that
the induction step holds in the case of type B.

We omit the proof for types F (m = 7) and G (m = 2). Using Proposition 1.1(6),
these cases are easily verified directly from root tables (cf. [Kn], Appendix C). �
Remark. For the classical cases, direct verification of Lemma 4.7 is rather straight-
forward.

The next two lemmas simplify the final line of (4.4).

Lemma 4.8. For all α in ∆+
n , N2

β0,−α = 1
2 (β0, β0).

Proof. This follows immediately from Proposition 1.1(6). Since −α + β0 is a root
but −α + 2β0 = β0 + (β0 − α) is not, q = 1. Since −α − β0 = −(β0 + α) is not a
root, p = 0. �
Lemma 4.9.

∑
α∈∆+

n

E−αEαφ
′ = (λ+ δc, 2δn) = m(λ, β0) + m

2 (β0, β0).

Proof. Since Eγφ′ = 0 for γ in ∆+
c , the sum may be taken over all positive roots.

In U(g), one has ∑
α∈∆

E−αEα =
1
2

Ω−Hδ −
1
2

∑
H2
i ,

where Hi runs over an orthonormal basis of h0. A computation as in Lemma 4.1
proves the lemma. �
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Proof of Theorem 3.2. Using the above simplifications to recalculate (4.4), one ob-
tains

�2(φ′ ω−β0)

=
(

(m−1)(β0, β0)−2(λ, β0)
)(
m(β0, β0) φ′ ω−β0+2

∑
α∈∆+

n

Nβ0,−α Eαφ
′ω−β0+α

)
.

Hence the theorem follows from Lemma 4.1. �
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