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VOLUME PRESERVING EMBEDDINGS
OF OPEN SUBSETS OF Rn INTO MANIFOLDS

FELIX SCHLENK

(Communicated by Jozef Dodziuk)

Abstract. We consider a connected smooth n-dimensional manifold M en-

dowed with a volume form Ω, and we show that an open subset U of Rn of
Lebesgue measure Vol (U) embeds into M by a smooth volume preserving
embedding whenever the volume condition Vol(U) ≤ Vol(M,Ω) is met.

1. Introduction

Consider a connected smooth n-dimensional manifold M with or without bound-
ary. A volume form on M is a smooth nowhere vanishing differential n-form Ω. It
follows that M is orientable. We orient M such that

∫
M

Ω is positive, and we write
Vol (M,Ω) =

∫
M Ω. We endow each open (not necessarily connected) subset U of

Rn with the Euclidean volume form

Ω0 = dx1 ∧ · · · ∧ dxn.

A smooth embedding ϕ : U ↪→M is called volume preserving if

ϕ∗Ω = Ω0.

Then Vol (U,Ω0) ≤ Vol (M,Ω). In this note we prove that this obvious condition
for the existence of a volume preserving embedding is the only one.

Theorem 1. Consider an open subset U of Rn and a smooth connected n-dimen-
sional manifold M endowed with a volume form Ω. Then there exists a volume
preserving embedding ϕ : U ↪→M if and only if Vol(U,Ω0) ≤ Vol(M,Ω).

If U is a bounded subset whose boundary has zero measure and if Vol (U,Ω0) <
Vol (M,Ω), Theorem 1 is an easy consequence of Moser’s deformation method.
Moreover, if U is a ball and M is compact, Theorem 1 has been proved in [K].
The main point of this note therefore is to show that Theorem 1 holds true for an
arbitrary open subset of Rn and an arbitrary connected manifold even in the case
that the volumes are equal.
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2. Proof of Theorem 1

Assume first that ϕ : U ↪→M is a smooth embedding such that ϕ∗Ω = Ω0. Then

Vol(U,Ω0) =
∫
U

Ω0 =
∫
U

ϕ∗Ω =
∫
ϕ(U)

Ω ≤
∫
M

Ω = Vol(M,Ω).

Assume now that Vol (U,Ω0) ≤ Vol (M,Ω). We are going to construct a smooth
embedding ϕ : U ↪→M such that ϕ∗Ω = Ω0.

We orient Rn in the natural way. The orientations of Rn and M orient each
open subset of Rn and M . We abbreviate the Lebesgue measure Vol (V,Ω0) of a
measurable subset V of Rn by |V |, and we write V for the closure of V in Rn.
Moreover, we denote by Br the open ball in Rn of radius r centered at the origin.

Proposition 2. Assume that V is a non-empty open subset of Rn. Then there
exists a smooth embedding σ : V ↪→ Rn such that |Rn \ σ(V )| = 0.

Proof. We choose an increasing sequence

V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Vk+1 ⊂ · · ·
of non-empty open subsets of V such that Vk ⊂ Vk+1, k = 1, 2, . . . , and

⋃∞
k=1 Vk =

V . To fix the ideas, we assume that the sets Vk have smooth boundaries.
Let σ1 : V2 ↪→ Rn be a smooth embedding such that σ1(V1) ⊂ B1 and

|B1 \ σ1(V1)| ≤ 2−1.

Since V1 ⊂ V2 and σ1(V1) ⊂ B1 ⊂ B2, we find a smooth embedding σ2 : V3 ↪→ Rn
such that σ2|V1 = σ1|V1 and σ2(V2) ⊂ B2 and

|B2 \ σ2(V2)| ≤ 2−2.

Arguing by induction we find smooth embeddings σk : Vk+1 ↪→ Rn such that
σk|Vk−1 = σk−1|Vk−1 and σk(Vk) ⊂ Bk and

(1) |Bk \ σk(Vk)| ≤ 2−k,

k = 1, 2, . . . . The map σ : V → Rn defined by σ|Vk = σk|Vk is a well defined smooth
embedding of V into Rn. Moreover, the inclusions σk(Vk) ⊂ σ(V ) and the estimates
(1) imply that

|Bk \ σ(V )| ≤ |Bk \ σk(Vk)| ≤ 2−k,
and so

|Rn \ σ(V )| = lim
k→∞

|Bk \ σ(V )| = 0.

This completes the proof of Proposition 2. �

Our next goal is to construct a smooth embedding of Rn into the connected n-
dimensional manifold M such that the complement of the image has measure zero.
If M is compact, such an embedding has been obtained by Ozols [O] and Katok
[K, Proposition 1.3]. While Ozols combines an engulfing method with tools from
Riemannian geometry, Katok successively exhausts a smooth triangulation of M .
Both approaches can be generalized to the case of an arbitrary connected manifold
M , and we shall follow Ozols.

We abbreviate R>0 = {r ∈ R | r > 0} and R>0 = R>0 ∪ {∞}. We endow R>0

with the topology whose base of open sets consists of the intervals ]a, b[⊂ R>0 and
the subsets of the form ]a,∞] = ]a,∞[∪{∞}. We denote the Euclidean norm on
Rn by ‖ · ‖ and the unit sphere in Rn by S1.
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Proposition 3. Endow Rn with its standard smooth structure, let µ : S1 → R>0

be a continuous function and let

S =
{
x ∈ Rn

∣∣∣ 0 ≤ ‖x‖ < µ

(
x

‖x‖

)}
be the starlike domain associated with µ. Then S is diffeomorphic to Rn.

Remark 4. The diffeomorphism guaranteed by Proposition 3 may be chosen such
that the rays emanating from the origin are preserved.

Proof of Proposition 3. If µ(S1) = {∞}, there is nothing to prove. In the case that
µ is bounded, Proposition 3 has been proved by Ozols [O]. In the case that neither
µ(S1) = {∞} nor µ is bounded, Ozols’s proof readily extends to this situation.
Using his notation, the only modifications needed are: Require in addition that
r0 < 1 and that ε1 < 2, and define continuous functions µ̃i : S1 → R>0 by

µ̃i = min
{
i, µ− εi + δi

2

}
.

With these minor adaptations the proof in [O] applies word-by-word. �

In the following we shall use some basic Riemannian geometry. We refer to [KN]
for basic notions and results in Riemannian geometry. Consider an n-dimensional
complete Riemannian manifold (N, g). We denote the cut locus of a point p ∈ N
by C(p).

Corollary 5. The maximal normal neighbourhood N \C(p) of any point p in an n-
dimensional complete Riemannian manifold (N, g) is diffeomorphic to Rn endowed
with its standard smooth structure.

Proof. Fix p ∈ N . We identify the tangent space (TpN, g(p)) with Euclidean space
Rn by a (linear) isometry. Let expp : Rn → N be the exponential map at p with
respect to g, and let S1 be the unit sphere in Rn. We define the function µ : S1 →
R>0 by

(2) µ(x) = inf{t > 0 | expp(tx) ∈ C(p)}.

Since the Riemannian metric g is complete, the function µ is continuous [KN, VIII,
Theorem 7.3]. Let S ⊂ Rn be the starlike domain associated with µ. In view of
Proposition 3 the set S is diffeomorphic to Rn, and in view of [KN, VIII, Theorem
7.4 (3)] we have expp(S) = N \ C(p). Therefore, N \ C(p) is diffeomorphic to
Rn. �

A main ingredient of our proof of Theorem 1 are the following two special cases
of a theorem of Greene and Shiohama [GS].

Proposition 6. (i) Assume that Ω1 is a volume form on the connected open subset
U of Rn such that Vol(U,Ω1) = |U | <∞. Then there exists a diffeomorphism ψ of
U such that ψ∗Ω1 = Ω0.

(ii) Assume that Ω1 is a volume form on Rn such that Vol(Rn,Ω1) =∞. Then
there exists a diffeomorphism ψ of Rn such that ψ∗Ω1 = Ω0.
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End of the proof of Theorem 1. Let U ⊂ Rn and (M,Ω) be as in Theorem
1. After enlarging U , if necessary, we can assume that |U | = Vol (M,Ω). We set
N = M \ ∂M . Then

(3) |U | = Vol(M,Ω) = Vol(N,Ω).

Since N is a connected manifold without boundary, there exists a complete Rie-
mannian metric g on N . Indeed, according to a theorem of Whitney [W], N can
be embedded as a closed submanifold in some Rm. We can then take the induced
Riemannian metric. A direct and elementary proof of the existence of a complete
Riemannian metric is given in [NO].

Fix a point p ∈ N . As in the proof of Corollary 5 we identify (TpN, g(p)) with
Rn and define the function µ : S1 → R>0 as in (2). Using polar coordinates on Rn
we see from Fubini’s Theorem that the set

C̃(p) = {µ(x)x | x ∈ S1} ⊂ Rn

has measure zero, and so C(p) = expp
(
C̃(p)

)
also has measure zero (see [Bo, VI,

Corollary 1.14]). It follows that

(4) Vol(N \ C(p),Ω) = Vol(N,Ω).

According to Corollary 5 there exists a diffeomorphism

δ : Rn → N \ C(p).

After composing δ with a reflection of Rn, if necessary, we can assume that δ is
orientation preserving. In view of (3) and (4) we then have

(5) |U | = Vol(Rn, δ∗Ω).

Case 1. |U | <∞.

Let Ui, i = 1, 2, . . . , be the countably many components of U . Then 0 < |Ui| <∞
for each i. Given numbers a and b with −∞ ≤ a < b ≤ ∞ we abbreviate the “open
strip”

Sa,b = {(x1, . . . , xn) ∈ Rn | a < x1 < b}.
In view of the identity (5) we have∑

i≥1

|Ui| = |U | = Vol(Rn, δ∗Ω).

We can therefore inductively define a0 = −∞ and ai ∈ ]−∞,∞] by

Vol
(
Sai−1,ai , δ

∗Ω
)

= |Ui| .

Abbreviating Si = Sai−1,ai we then have Rn =
⋃
i≥1 Si.

For each i ≥ 1 we choose an orientation preserving diffeomorphism τi : Rn →
Si. In view of Proposition 2 we find a smooth embedding σi : Ui ↪→ Rn such
that Rn \ σi(Ui) has measure zero. After composing σi with a reflection of Rn, if
necessary, we can assume that σi is orientation preserving. Using the definition of
the volume, we can now conclude that

Vol(Ui, σ∗i τ
∗
i δ
∗Ω) = Vol(σi(Ui), τ∗i δ

∗Ω) = Vol(Rn, τ∗i δ∗Ω) = Vol(Si, δ∗Ω) = |Ui| .
In view of Proposition 6 (i) we therefore find a diffeomorphism ψi of Ui such that

(6) ψ∗i (σ∗i τ
∗
i δ
∗Ω) = Ω0.
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We define ϕi : Ui ↪→ M to be the composition of diffeomorphisms and smooth
embeddings

Ui
ψi−→ Ui

σi−→ Rn τi−→ Si ⊂ Rn δ−→ N \ C(p) ⊂ M.

The identity (6) implies that ϕ∗iΩ = Ω0. The smooth embedding

ϕ =
∐

ϕi : U =
∐

Ui ↪→ M

therefore satisfies ϕ∗Ω = Ω0.

Case 2. |U | =∞.

In view of (5) we have Vol (Rn, δ∗Ω) = ∞. Proposition 6 (ii) shows that there
exists a diffeomorphism ψ of Rn such that

(7) ψ∗δ∗Ω = Ω0.

We define ϕ : U ↪→M to be the composition of inclusions and diffeomorphisms

U ⊂ Rn ψ−→ Rn δ−→ N \ C(p) ⊂ M.

The identity (7) implies that ϕ∗Ω = Ω0. The proof of Theorem 1 is complete. �
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