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VOLUME PRESERVING EMBEDDINGS
OF OPEN SUBSETS OF R" INTO MANIFOLDS

FELIX SCHLENK

(Communicated by Jozef Dodziuk)

ABSTRACT. We consider a connected smooth n-dimensional manifold M en-
dowed with a volume form 2, and we show that an open subset U of R™ of
Lebesgue measure Vol (U) embeds into M by a smooth volume preserving
embedding whenever the volume condition Vol (U) < Vol (M, Q) is met.

1. INTRODUCTION

Consider a connected smooth n-dimensional manifold M with or without bound-
ary. A volume form on M is a smooth nowhere vanishing differential n-form Q. It
follows that M is orientable. We orient M such that || o §Yis positive, and we write
Vol (M, ) = [;, Q. We endow each open (not necessarily connected) subset U of
R™ with the Euclidean volume form

Qo =dxi N--- Ndxy,.
A smooth embedding ¢: U — M is called volume preserving if
(p*Q = Qo.

Then Vol (U, Q) < Vol (M, ). In this note we prove that this obvious condition
for the existence of a volume preserving embedding is the only one.

Theorem 1. Consider an open subset U of R™ and a smooth connected n-dimen-
sional manifold M endowed with a volume form Q. Then there exists a volume
preserving embedding ¢: U — M if and only if Vol (U, Q) < Vol(M, Q).

If U is a bounded subset whose boundary has zero measure and if Vol (U, {g) <
Vol (M, Q), Theorem [ is an easy consequence of Moser’s deformation method.
Moreover, if U is a ball and M is compact, Theorem [ has been proved in [K].
The main point of this note therefore is to show that Theorem [0 holds true for an
arbitrary open subset of R™ and an arbitrary connected manifold even in the case
that the volumes are equal.
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2. PROOF OF THEOREM [1I

Assume first that ¢: U <— M is a smooth embedding such that ¢*Q = Q4. Then

Vol (U, Qo) :/QO :/30*9 :/ Q g/ Q = Vol (M, Q).
U U o(U) M

Assume now that Vol (U, Q) < Vol (M,). We are going to construct a smooth
embedding ¢: U — M such that ¢*Q = Q.

We orient R™ in the natural way. The orientations of R™ and M orient each
open subset of R™ and M. We abbreviate the Lebesgue measure Vol (V) of a
measurable subset V of R” by |V|, and we write V for the closure of V in R™.
Moreover, we denote by B, the open ball in R™ of radius r centered at the origin.

Proposition 2. Assume that V is a non-empty open subset of R™. Then there
exists a smooth embedding o: V — R™ such that |[R™ \ o(V')| = 0.

Proof. We choose an increasing sequence
V1C‘/2C"'CVkCVk+1C'~'

of non-empty open subsets of V such that Vi, C Viy1, k= 1,2,..., and Uiozl Vi =
V. To fix the ideas, we assume that the sets Vj have smooth boundaries.
Let 01: Vo < R"™ be a smooth embedding such that o1 (V1) C By and

[Bi\ o1(V1)] < 27
Since V; C Va and 01(V1) C By C Bs, we find a smooth embedding oy: V3 < R"
such that oz2|y, = o1]v; and o2(V2) C By and

By \ 02(V2)| < 272
Arguing by induction we find smooth embeddings oy: Viy1 — R™ such that
Uk|Vk,1 = Uk—1|Vk,1 and Uk(Vk) C By and
(1) 1B \ o (Va)] < 275,

k=1,2,.... Themap o: V — R"™ defined by o|v, = ox|v, is a well defined smooth
embedding of V into R™. Moreover, the inclusions o1 (V%) C o(V') and the estimates
(@) imply that

[Bi\o(V)| < |By\on(Vi)| < 27,
and so
[R"\ o(V)| = klim |Br \ o(V)| = 0.
— 00
This completes the proof of Proposition O

Our next goal is to construct a smooth embedding of R™ into the connected n-
dimensional manifold M such that the complement of the image has measure zero.
If M is compact, such an embedding has been obtained by Ozols [O] and Katok
IKl, Proposition 1.3]. While Ozols combines an engulfing method with tools from
Riemannian geometry, Katok successively exhausts a smooth triangulation of M.
Both approaches can be generalized to the case of an arbitrary connected manifold
M, and we shall follow Ozols.

We abbreviate Rsg = {r € R | 7 > 0} and R>g = R~ U {o0}. We endow R~g
with the topology whose base of open sets consists of the intervals |a, b[ C Rs¢ and
the subsets of the form ]a, 00] = ]a, c0[U {oco}. We denote the Euclidean norm on
R™ by || - || and the unit sphere in R™ by S;.
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Proposition 3. Endow R™ with its standard smooth structure, let p: S; — Rsg

be a continuous function and let
x
o< lell<u(75)]

be the starlike domain associated with p. Then S is diffeomorphic to R™.

S—{xGR"

Remark 4. The diffeomorphism guaranteed by Proposition [3] may be chosen such
that the rays emanating from the origin are preserved.

Proof of Proposition[d. If u(S1) = {oco}, there is nothing to prove. In the case that
u is bounded, Proposition B has been proved by Ozols [O]. In the case that neither
1(S1) = {oo} nor g is bounded, Ozols’s proof readily extends to this situation.
Using his notation, the only modifications needed are: Require in addition that
ro < 1 and that €; < 2, and define continuous functions fi;: S; — Rsq by

ﬂi:min{i,u—ei—i—%}.

With these minor adaptations the proof in [O] applies word-by-word. O

In the following we shall use some basic Riemannian geometry. We refer to [KN]
for basic notions and results in Riemannian geometry. Consider an n-dimensional
complete Riemannian manifold (N, g). We denote the cut locus of a point p € N
by C(p).

Corollary 5. The mazimal normal neighbourhood N\ C(p) of any point p in an n-
dimensional complete Riemannian manifold (N, g) is diffeomorphic to R™ endowed
with its standard smooth structure.

Proof. Fix p € N. We identify the tangent space (T,N, g(p)) with Euclidean space
R™ by a (linear) isometry. Let exp,: R" — N be the exponential map at p with
respect to g, and let Sy be the unit sphere in R". We define the function u: 51 —
R0 by

(2) p(r) = inf{t >0 | exp,(tr) € C(p)}.

Since the Riemannian metric g is complete, the function p is continuous [KN| VIII,
Theorem 7.3]. Let S C R™ be the starlike domain associated with u. In view of
Proposition B the set S is diffeomorphic to R™, and in view of [KN| VIII, Theorem
7.4 (3)] we have exp,(S) = N \ C(p). Therefore, N \ C(p) is diffeomorphic to
R™. O

A main ingredient of our proof of Theorem [Il are the following two special cases
of a theorem of Greene and Shiohama |GS].

Proposition 6. (i) Assume that Q1 is a volume form on the connected open subset
U of R™ such that Vol (U,1) = |U| < co. Then there exists a diffeomorphism ¢ of
U such that ¥*Q = Q.

(ii) Assume that Q is a volume form on R™ such that Vol (R"™, ) = co. Then
there exists a diffeomorphism ¢ of R™ such that ¥*Qy = .



1928 FELIX SCHLENK

End of the proof of Theorem [ Let U C R" and (M, Q) be as in Theorem
[ After enlarging U, if necessary, we can assume that |U| = Vol (M, ). We set
N = M\ OM. Then

(3) U] = Vol(M,Q) = Vol(N, ).

Since N is a connected manifold without boundary, there exists a complete Rie-
mannian metric g on N. Indeed, according to a theorem of Whitney [W], N can
be embedded as a closed submanifold in some R”. We can then take the induced
Riemannian metric. A direct and elementary proof of the existence of a complete
Riemannian metric is given in [NOJ.

Fix a point p € N. As in the proof of Corollary [ we identify (T,V, g(p)) with
R™ and define the function p: S; — Rsg as in (). Using polar coordinates on R"
we see from Fubini’s Theorem that the set

Clp) = {wx)z |z e S} C R

has measure zero, and so C(p) = exp, (5(]))) also has measure zero (see [Bal VI,
Corollary 1.14]). It follows that
(4) Vol (N \ C(p),Q?) = Vol(N,Q).
According to Corollary [ there exists a diffeomorphism
0:R" — N\ C(p).
After composing § with a reflection of R™, if necessary, we can assume that ¢ is
orientation preserving. In view of ([B) and @) we then have
(5) |U| = Vol(R",§*Q).
Case 1. |U] < .

Let U;, i =1,2,..., be the countably many components of U. Then 0 < |U;| < oo
for each i. Given numbers a and b with —oo < a < b < oo we abbreviate the “open
strip”

Sap={(z1,...,2,) ER" | a < z1 < b}.
In view of the identity (5) we have
> Uil = |U| = Vol(R",5*Q).
i>1
We can therefore inductively define agp = —oo and a; €] — 00, 00] by
Vol (Sa;_1,0:,0°Q) = |Uy] .

Abbreviating S; = Sy, , 4, we then have R" = J,», S;.

For each ¢ > 1 we choose an orientation preserving diffeomorphism 7;: R* —
S;. In view of Proposition 2 we find a smooth embedding o;: U; — R™ such
that R™ \ 0;(U;) has measure zero. After composing o; with a reflection of R”, if
necessary, we can assume that o; is orientation preserving. Using the definition of
the volume, we can now conclude that

Vol (Us, 02 776*Q) = Vol (o4(Uy), 776*Q) = Vol (R™, 76*Q) = Vol (S, 5*Q) = |U;] .

(2] 7 "1

In view of Proposition [6] (i) we therefore find a diffeomorphism 1); of U; such that
(6) i (o7776%Q) = Q.
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We define @;: U; — M to be the composition of diffeomorphisms and smooth
embeddings

U YU, R TS c RSN\ CO(p) © M.
The identity (B) implies that ¢FQ = Qp. The smooth embedding

@ZH%:U:HUi‘—)M

therefore satisfies *2 = Q.
Case 2. |U| = 0.

In view of (@) we have Vol (R", ")) = oco. Proposition [Bl(ii) shows that there
exists a diffeomorphism 1 of R™ such that

(7) PO = Q.

We define ¢: U < M to be the composition of inclusions and diffeomorphisms
UcR* LR N\C(p) ¢ M.

The identity (@) implies that ¢*Q = Qg. The proof of Theorem [lis complete. O
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