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GLOBAL EXISTENCE FOR THE CRITICAL
GENERALIZED KDV EQUATION

G. FONSECA, F. LINARES, AND G. PONCE

(Communicated by David S. Tartakoff)

Abstract. We discuss results regarding global existence of solutions for the
critical generalized Korteweg-de Vries equation,

ut + uxxx + u4 ux = 0, x, t ∈ R.
The theory established shows the existence of global solutions in Sobolev spaces
with order below the one given by the energy space H1(R), i.e. solutions
corresponding to data u0 ∈ Hs(R), s > 3/4, with ‖u0‖L2 < ‖Q‖L2 , where Q
is the solitary wave solution of the equation.

1. Introduction

Consider the initial value problem

(1.1)

{
ut + u4 ux + uxxx = 0, x ∈ R, t ∈ R,
u(x, 0) = u0(x).

We study the global existence of solutions for data in Hs(R), s ∈ (0, 1).
In [8] the local (subcritical) well-posedness of IVP (1.1) was shown. For data in

Hs(R), s > 0, i.e. for any u0 ∈ Hs(R), there exist T (‖u0‖s, s) > 0 and a unique
solution u of (1.1) in C([0, T ] : Hs(R)). It was also proved that for any data u0 ∈
L2(R) there exist T (u0) > 0 and a unique strong solution u in C([0, T ] : L2(R)).
Moreover, the solution is global for small data.

The latter follows from the local theory in [8] and the fact that L2 is a critical
space (see the argument below).

Notice that scaling also works for complex-valued functions where the conserva-
tion of ‖u(t)‖L2 does not hold. More precisely, if u solves (1.1), then, for λ > 0, so
does

uλ(x, t) = λ1/2 u(λx, λ3t),

with data uλ(x, 0) = λ1/2 u(λx, 0). It follows that

‖uλ(·, 0)‖Ḣs = λs ‖u(·, 0)‖Ḣs .
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This suggests that the optimal Sobolev index s is s = 0. Indeed, this result
was established in [1]. Hence, the results in [8] imply that complex solutions corre-
sponding to data u0 ∈ L2(R) with

(1.2) ‖u0‖L2 ≤ ε0
are global in time.

On the other hand, Weinstein [14] showed the following Gagliardo-Nirenberg
estimate for v ∈ H1(R) and Q(x) = {3c sech2(2

√
c x)}1/4, the solitary wave solution

of (1.1):

(1.3)
1
6

∫
v6 ≤ 1

2

( ∫ v2∫
Q2

)2
∫
v2
x.

This estimate combined with the conservation laws for real solutions of (1.1),∫
u2(t) =

∫
u2

0,(1.4)

and

1
2

∫
u2
x(t)− 1

6

∫
u6(t) =

1
2

∫
u′0

2 − 1
6

∫
u6

0,(1.5)

gives an a priori estimate in H1(R) provided ‖u0‖L2 < ‖Q‖L2 and therefore the
global existence of solutions in H1(R) for initial data satisfying that condition.
From this it is clear that ε0 < ‖Q‖L2. Thus if we want to show global existence
of solutions in Hs(R), s ∈ (0, 1), we must assume that the initial data satisfy
ε0 < ‖u0‖L2 < ‖Q‖L2.

Several interesting results have been lately obtained for solutions of IVP (1.1).
Merle [12] proved the existence of real-valued solutions of (1.1) in H1(R) corre-
sponding to data u0 ∈ H1 satisfying ‖u0‖L2 > ‖Q‖L2 that blow up. There are
also various results concerning instability of solitary wave solutions as well as the
structure of the blow-up formation obtained by Martel and Merle [10], [11].

In the last few years there have been a great deal of results regarding global
existence of solutions for several nonlinear dispersive equations below the energy
space. The first result in this direction was obtained by Bourgain [2] for the two-
dimensional Schrödinger equation. His method was used to obtain such kind of
results, for instance, for the mKdV equation [5] and the KdV equation [3]; see also
[7], [13]. Recently, a new variant of Bourgain’s method was introduced to obtain
sharp global results for the KdV and mKdV equations; see [4]. In [6] for the gKdV-3
equation a sharp local result was obtained which implies L2 global well-posedness.

Our main result in this paper reads as follows:

Theorem 1.1. Let s > 3/4. Then for any initial data u0 ∈ Hs(R) satisfying
ε0 < ‖u0‖L2 < ‖Q‖L2, see (1.2), the unique solution of the IVP (1.1) given by the
local theory (see Theorem 2.1) extends to any time interval [0, T ].

The idea of the proof is similar the one we developed in [5]. That is a combination
of sharp smoothing effects present in solutions of the linear problem associated to
(1.1) and the iteration process introduced by Bourgain. There are two new elements
that can bring some extra difficulty. First, we need to be careful controlling the L2-
norm of the initial data. We must be in the conditions of the global well-posedness in
H1(R). This situation is similar to the one for the derivative Schrödinger equation
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treated by Takaoka in [9]. Second, in the local well-posedness result, the time of
existence depends on the Sobolev space Hs (see below).

We organized this paper as follows: In section 2, we give the statement of the
local result obtained in [8] and the main estimates used in the subsequent sections.
To prove Theorem 1.1 we need to study two auxiliary IVP’s and the properties of
their solutions; this will be done in section 3. Finally, the proof of Theorem 1.1 is
given in section 4.

2. Preliminary results

We begin this section with the local sharp result obtained in [8].

Theorem 2.1 ([8]). Let s > 0. Then for any u0 ∈ Hs(R) there exist T =
T (‖u0‖s,2) (with T (ρ, s) → ∞ as ρ → 0) and a unique strong solution u(·) of
the IVP (1.1) satisfying

u ∈ C([−T, T ] : Hs(R)),(2.1)

‖u‖L5
xL

10
T

+ ‖Ds
x u‖L5

xL
10
T

+ ‖Ds/3
t u‖L5

xL
10
T
<∞,(2.2)

and

‖∂xu‖L∞x L2
T

+ ‖Ds
x ∂xu‖L∞x L2

T
+ ‖Ds/3

t ∂xu‖L∞x L2
T
<∞.(2.3)

Given T ′ ∈ (0, T ) there exists a neighborhood V of u0 in Hs(R) such that the map
ũ0 → ũ(t) from V into the class defined by (2.1), (2.2) and (2.3) with T ′ instead of
T is Lipschitz.

Remark 2.2. From the proof of Theorem 2.1 it follows that the time of existence T
satisfies

(2.4) T ' c ‖u0‖−3/s
s .

This can also be deduced from the scaling argument.

The proof of Theorem 2.1 uses as main tools
(1) The smoothing effect of Kato’s type associated to the linear problem

(2.5)

{
∂tu+ ∂3

xu = 0,
u(x, 0) = u0(x).

More precisely, let U(t) be the linear group describing the solution of (2.5),
then

(2.6)
(∫ ∞
−∞
|∂xU(t)u0(x)|2 dt

)1/2

= ‖u0‖, for any x ∈ R.

(2) Its dual version, that is,

(2.7) ‖∂x
∫ ∞
−∞

U(−τ)g(x, τ) dτ‖ ≤ c ‖g‖L1
xL

2
t
.

(3) The double smoothing effect, solutions of the non-homogeneous linear equa-
tion

(2.8)

{
∂tu+ ∂3

xu = f,

u(x, 0) = 0,
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satisfy the estimate

(2.9) ‖∂2
xu‖L∞x L2

T
≤ c ‖f‖L1

xL
2
T
.

(4) The fractional derivative commutators.

Theorem 2.3. Let α ∈ (0, 1), α1, α2 ∈ [0, α], α1 + α2 =α. Suppose p, p1,
p2, q, q1, q2∈(1,∞) with 1

p = 1
p1

+ 1
p2

and 1
q = 1

q1
+ 1

q2
.

Then

(2.10) ‖Dα
x (fg)− fDα

xg − gDα
xf‖LpxLqT ≤ c ‖D

α1
x f‖Lp1

x L
q1
T
‖Dα2

x g‖Lp2
x L

q2
T
.

Moreover, for α1 = 0 the value q1 =∞ is allowed.

(5) The chain rule for fractional derivatives

Theorem 2.4. Let α ∈ (0, 1), and p, p1, p2, q, q2 ∈ (1,∞), q1 ∈ (1,∞] such
that 1

p = 1
p1

+ 1
p2

and 1
q = 1

q1
+ 1

q2
. Then

(2.11) ‖Dα
xF (f)‖LpxLqT ≤ c ‖F

′(f)‖Lp1
x L

q1
T
‖Dα

xf‖Lp2
x L

q2
T
.

(6) Several interpolation theorems.

These tools plus the contraction mapping principle give the result.

3. Local well-posedness for the auxiliary problems

In this section we describe the properties of two auxiliary IVP’s we will use in
the proof of Theorem 1.1. We first set some notation.

Let N be a sufficiently large positive number to be chosen later.
Define the norm ||| · |||s by

|||u|||s = ‖u‖L∞T Hs + ‖u‖L5
xL

10
T

+ ‖Ds
x u‖L5

xL
10
T

+ ‖Ds/3
t u‖L5

xL
10
T

+ ‖∂xu‖L∞x L2
T

+ ‖Ds
x ∂xu‖L∞x L2

T
+ ‖Ds/3

t ∂xu‖L∞x L2
T
.

(3.1)

Proposition 3.1. Consider the IVP

(3.2)

{
vt + v4vx + vxxx = 0, x ∈ R, t > 0,
v(x, 0) = v0(x) ∈ H1(R).

If v0 satisfies

(3.3) ‖v0‖L2 < ‖Q‖L2 and ‖v0‖H1 ' N1−s,

then for ∆T ' ‖v0‖−3
H1 ' cN−3(1−s), the existence time given by Theorem 2.1.

(1) The solution v of (3.2) satisfies

(3.4) sup
[0,∆T ]

‖v(t)‖H1 ≤ cN1−s.

(2) For any ρ ∈ (0, 1), the solution v of (3.2) satisfies

(3.5) |||v|||ρ ' Nρ(1−s).

Proof. To prove (3.4) we use (1.5) and (1.3). The estimate (3.5) is established by
using Theorem 2.1 and ‖v0‖Hρ ≤ cNρ(1−s). �
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Proposition 3.2. Let w0 ∈ Hs(R), s > 0, and let v be the solution of the IVP
(3.2). Then there exists a unique solution w of the IVP

(3.6)

{
∂tw + ∂3

xw + ∂x(v4w + 2v3w2 + 2v2w3 + w4v + 1
5 w

5) = 0,
w(x, 0) = w0(x),

defined in the same interval of existence of v, [0,∆T ], such that

w ∈ C([0,∆T ] : Hs(R)),

‖w‖L5
xL

10
∆T

+ ‖Ds
xw‖L5

xL
10
∆T

+ ‖Ds/3
t w‖L5

xL
10
∆T

<∞,

and

‖∂xw‖L∞x L2
∆T

+ ‖Ds
x ∂xw‖L∞x L2

∆T
+ ‖Ds/3

t ∂xw‖L∞x L2
∆T

<∞.

Proof. The argument is the same as used in [8] to prove Theorem 2.1. For the sake
of clearness we will sketch it.

We use the integral equation form of (3.6), that is,

(3.7) w(t) = U(t)w0(x)−
∫ t

0

U(t−t′) ∂x(v4w+2v3w2+2v2w3+w4v+
1
5
w5)(t′) dt′.

Defining

(3.8) Xa,To = {w ∈ C([0, To] : Hρ(R)) : |||w|||ρ ≤ a},
where ||| · ||| is as in (3.1), and

Φ(w) = Φv,w0(w)

≡ U(t)w0(x)−
∫ t

0

U(t− t′) ∂x(v4w + 2v3w2 + 2v2w3 + w4v +
1
5
w5)(t′) dt′.

(3.9)

Next we shall show that Φ is a contraction. We will work in detail the case
‖Dρ

xΦ‖L2. The other estimates follow similar arguments.
Using the dual of the smoothing effect (2.7), the chain and Leibniz rules for

fractional derivatives (2.10) and (2.11), we obtain

‖Dρ
x

∫ t

0

U(t− t′) ∂x(v4w)(t′) dt′‖ = ‖∂x
∫ t

0

U(t− t′)Dρ
x(v4w)(t′) dt′‖

(3.10)

≤ c‖Dρ
x (v4w)‖L1

xL
2
To

≤ c‖Dρ
x(v4)w‖L1

xL
2
To

+ c‖v4‖
L

5/4
x L

5/2
To
‖Dρ

xw‖L5
xL

10
To

≤ c‖Dρ(v4)‖
L

5/4
x L

5/2
To
‖w‖L5

xL
10
To

+ c‖v‖4L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To

≤ c‖v‖3L5
xL

10
To
‖Dρ

xv‖L5
xL

10
To
‖w‖L5

xL
10
To

+ c‖v‖4L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To

≤ cT 4ρ/3
o ‖Dρ/3

t v‖3L5
xL

10
To
‖Dρ

xv‖L5
xL

10
To
‖Dρ/3

t w‖L5
xL

10
To

+ cT 4ρ/3
o ‖Dρ/3

t v‖4L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To

≤ cT 4ρ/3
o |||v|||4ρ|||w|||ρ,
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‖Dρ
x

∫ t

0

U(t− t′) ∂x(v3w2)(t′) dt′‖ ≤ c‖Dρ
x (v3w2)‖L1

xL
2
To

(3.11)

≤ c‖Dρ
x v

3‖
L

5/3
x L

10/3
To
‖w2‖

L
5/2
x L5

To
+ c‖v3‖

L
5/3
x L

10/3
To
‖Dρ

xw
2‖
L

5/2
x L5

To

≤ c‖v‖2L5
xL

10
To
‖Dρ

x v‖L5
xL

10
To
‖w‖2L5

xL
10
To

+ c‖v‖3L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To
‖w‖L5

xL
10
To

≤ cT 4ρ/3
o |||v|||3ρ|||w|||2ρ,

‖Dρ
x

∫ t

0

U(t− t′) ∂x(v2w3)(t′) dt′‖ ≤ c‖Dρ
x (v2w3)‖L1

xL
2
To

(3.12)

≤ c‖Dρ
x v‖L5

xL
10
To
‖v‖L5

xL
10
To
‖w‖3L5

xL
10
To

+ c‖v‖2L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To
‖w‖2L5

xL
10
To

≤ cT 4ρ/3
o |||v|||2ρ|||w|||3ρ,

‖Dρ
x

∫ t

0

U(t− t′) ∂x(vw4)(t′) dt′‖ ≤ c‖Dρ
x (w4v)‖L1

xL
2
To

(3.13)

≤ c‖Dρ
x v‖L5

xL
10
To
‖w‖4L5

xL
10
To

+ c‖v‖L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To
‖w‖3L5

xL
10
To

≤ cT 4ρ/3
o |||v|||ρ|||w|||4ρ,

and finally

‖Dρ
x

∫ t

0

U(t− t′) ∂x(w5)(t′) dt′‖ ≤ c‖Dρ
x (w4v)‖L1

xL
2
To

≤ c‖Dρ
x (w4)‖

L
5/4
x L

5/2
To
‖w‖L5

xL
10
To

+ c‖w‖4L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To

≤ c‖w‖4L5
xL

10
To
‖Dρ

xw‖L5
xL

10
To

≤ cT 4ρ/3
o |||w|||5ρ.

(3.14)

Combining (3.7) and (3.10)–(3.14) we have

‖Dρ
xΦ(w)‖ ≤ c‖Dρ

xw0‖+ T 4ρ/3
o

{
|||v|||4ρ + |||v|||3ρ|||w|||ρ

+ |||v|||2ρ|||w|||2ρ + |||v|||ρ|||w|||3ρ + |||w|||4ρ
}
|||w|||ρ

≤ c‖Dρ
xw0‖+ T 4ρ/3

o

{
|||v|||4ρ1 + |||v|||3ρ1 |||w|||ρ

+ |||v|||2ρ1 |||w|||2ρ + |||v|||ρ1 |||w|||3ρ + |||w|||4ρ
}
|||w|||ρ.

(3.15)

Similarly we can obtain estimates for the other norms involved in (3.1) to get

(3.16) |||Φ(w)|||ρ ≤ ‖w0‖Hρ + T 4ρ/3
o F (|||v|||1, |||w|||ρ)|||w|||ρ.

Choosing a = max{‖v0‖1, ‖w0‖ρ}(= ‖v0‖1) and taking To = ∆T we have

c (∆T )4ρ/3 a4 <
1
2
.

Thus Φ is well defined since F (|||v|||1, |||w|||ρ) ≤ c a4.
The same argument applies to show that Φ is a contraction. Hence the contrac-

tion mapping principle gives the result. �
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Next we record an L2-norm growth estimate for solutions of the IVP (3.6).

Lemma 3.3. Let v and w be solutions of the IVP (3.2) and (3.6) with data v0 in
H1(R) and w0 in Hs(R) satisfying ‖v0‖H1 ' N1−s and ‖w0‖2 ' N−s, 0 < s < 1,
respectively. Define

|||w|||0 = sup
[0,∆T ]

‖w(t)‖L2 + ‖w‖L5
xL

10
∆T

+ ‖∂xw‖L∞x L2
∆T
.

Then

(3.17) |||w|||0 ' N−s.

4. Proof of Theorem 1.1

Consider the solution of the IVP

(4.1)

{
ut + u4 ux + uxxx = 0, x ∈ R, t ∈ R,
u(x, 0) = u0(x).

For u0 ∈ Hs(R), 0 < s < 1, with ‖u0‖L2 < ‖Q‖L2, we split u0 as

u0(x) = v0(x) + w0(x) = (û0 χ|ξ|≤N)∨ + (û0 χ|ξ|>N)∨.

N � 1 will be determined later. Observe that

‖v0‖L2 < ‖Q‖L2, ‖v0‖H1 ' N1−s,(4.2)

and

‖w0‖ρ ' Nρ−s, for 0 < ρ ≤ s < 1.(4.3)

Using Propositions 3.1 and 3.2 we have solutions v(t) ∈ H1(R) and w(t) ∈ Hρ(R)
such that u(t) = v(t) + w(t), for t ∈ [0,∆T ] where ∆T ' ‖v0‖−3

H1 ' N−3(1−s).
Our goal is to extend the time of existence of (4.1) up to any time T > 0.
To do so we use an iteration scheme that we will describe below.
First notice that from Proposition 3.2 we have

w(t) = U(t)w0(x) + z(t)

where

z(t)=−
∫ t

0

U(t− t′) ∂x(v4w + 2v3w2 + 2v2w3 + w4v +
1
5
w5)(t′) dt′, t∈ [0,∆T ].

Hence the solution u of (4.1) can be written as

u(t) = v(t) + U(t)w0 + z(t)

for any t ∈ [0,∆T ]. In the process of iteration we need to check the growth of the
solution at each interval of size ∆T .

We observe that at the point t = ∆T

u(∆T ) = v(∆T ) + U(∆T )w0 + z(∆T ),

and that U(∆T )w0 stays in Hs(R) by group properties. Hence we shall show that
for v(∆T ) + z(∆T ) the conditions (4.2) hold.

From Proposition 3.1
‖v‖L∞t H1 ≤ cN (1−s).

On the other hand,

(4.4) ‖z‖L∞∆TH1 ≤ cN (1−2s).
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In fact, the worst term in z(t) is ∂x(v4 w). Thus we estimate

‖∂x
∫ ∆T

0

U(t− t′)∂x(v4 w)(t′) dt′‖L2,

and

‖
∫ ∆T

0

U(t− t′)∂x(v4 w)(t′) dt′‖L2 .

The dual version of the smoothing effect (2.7), Hölder’s inequality and Sobolev’s
embedding give

‖∂x
∫ ∆T

0

U(t− t′)∂x(v4 w)(t′) dt′‖L2 ≤ ‖v4 ∂xw‖L1
xL

2
∆T

+ ‖v3 ∂xv w‖L1
xL

2
∆T

≤ ‖v‖4L4
xL
∞
∆T
‖∂xw‖L∞x L2

∆T
+ ‖v‖3L5

xL
10
∆T
‖∂xv‖L5

xL
10
∆T
‖w‖L5

xL
10
∆T

≤ ‖v‖4L4
xL
∞
∆T
‖∂xw‖L∞x L2

∆T
+ ∆T ‖D1/3

t v‖3L5
xL

10
∆T
‖∂xv‖L5

xL
10
∆T
‖w‖L5

xL
10
∆T

≤ c |||v|||41/4|||w|||0 + ∆T |||v|||41 |||w|||0
≤ c |||v|||1|||w|||0 + ∆T |||v|||41 |||w|||0
≤ cN (1−s)N−s + cN−3(1−s)N4(1−s)N−s

≤ cN (1−2s).

(4.5)

A similar argument as in (4.5) yields

‖
∫ ∆T

0

U(t− t′)∂x(v4w)(t′) dt′‖L2 = ‖∂x
∫ ∆T

0

U(t− t′)(v4w)(t′) dt′‖L2

≤ ‖v‖4L5
xL

10
T
‖w‖L5

xL
10
T
≤ (∆T )4/3‖D1/3

t v‖4L5
xL

10
T
‖w‖L5

xL
10
T

≤ (∆T )4/3|||v|||41 |||w|||0 ≤ cN−4(1−s)N4(1−s)N−s

≤ cN−s.

(4.6)

From (4.5) and (4.6) we obtain (4.4).
We also have that

‖v(∆T ) + z(∆T )‖L2 = ‖u(∆T )− U(∆T )w0‖L2

≤ ‖u0‖L2 + ‖w0‖L2

≤ ‖u0‖L2 +N−s,

(4.7)

where we have used the conservation law (1.4) and group properties. So if N is
sufficiently large, we will have

‖v(∆T ) + z(∆T )‖L2 < ‖Q‖L2.

Thus at each step there is a contribution of N (1−2s) from ‖z‖L∞∆TH1 .
Hence, to reach the time T , the needed number of iterations is T

∆T , so if we want
to guarantee that the H1-norm grows on the interval [0, T ] as N (1−s), that is,

(4.8)
T

∆T
N (1−2s) ∼ T N3(1−s)N (1−2s) ≤ cN (1−s),

we must choose N(T ) ∼ T
1

4s−3 for 3/4 < s < 1.
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From (4.7) we also have a contribution at each step from the L2-norm of N−s.
Therefore to reach T we have

T N3(1−s)N−s ≤ c,
which is satisfied by the N(T ) previously chosen. This completes the proof of the
theorem. �
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