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BICYCLIC UNITS OF ZSn

AURORA OLIVIERI AND ÁNGEL DEL RÍO

(Communicated by Stephen D. Smith)

Abstract. We prove that the group generated by the bicyclic units of ZSn
has torsion for n ≥ 4. This answers a question of Sehgal (1993).

Let G be a finite group. For every x ∈ G of order k let x̂ =
∑k−1

i=0 x
i ∈ ZG. The

bicyclic units of ZG are the units of the form

b(x, y) = 1 + x̂y(1− x)

for x, y ∈ G. The following appears in [5] as Problem 19:
Problem: Is the group 〈b(x, y) : x, y ∈ G〉, generated by the bi-
cyclic units of ZG, torsionfree?

As a consequence of [5, Theorem 31.3] it is easy to prove that the problem has
a positive answer for several groups, including dihedral groups.

The units of the form b′(x, y) = 1 + (1 − x)yx̂ are also called bicyclic units
and in fact the problem was stated in [5] for the group generated by the b′(x, y)’s.
It is obvious that both versions are equivalent. We have chosen the b(x, y)’s for
computational reasons.

In this paper we show that the problem has a negative answer proving the fol-
lowing theorem.

Theorem 1. For every positive integer n let Sn be the symmetric group on n letters
and Bn the group generated by the bicyclic units of the symmetric group ring ZSn.
Then

Bn ∩ Sn =


1 if n ≤ 3,
〈(1 2)(3 4), (1 3)(2 4)〉 if n = 4,
An or Sn if n ≥ 5.

Since S2 is abelian and B3 is free [3] Theorem 1 is clear of n ≤ 3. We consider
Sn embedded in Sn+1 in the obvious way so that Bn ⊆ Bn+1. If g, x, y ∈ G, then
g−1b(x, y)g = b(g−1xg, g−1yg). Therefore Bn is normalized by Sn and hence Bn∩Sn
is a normal subgroup of Sn. Thus to prove Theorem 1 it is enough to prove

(1) 〈(1 2)(3 4), (1 3)(2 4)〉 = B4 ∩ S4.

In the remainder of the paper we prove this equality and in the way we obtain a
full description of B4 in terms of some groups of integral matrices.
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Consider the following four elements of S4:

a = (1 2)(3 4), b = (1 3)(2 4), c = (1 2 3), d = (1 2).

Recall that S4 = 〈a, b〉o 〈c, d〉 and 〈c, d〉 = S3. Let τ : S4 → S3 be the projection
given by the previous decomposition, that is, τ is the identity in 〈c, d〉 and Ker τ =
〈a, b〉. Extend τ by linearity to a homomorphism of rational algebras QS4 → QS3,
also denoted by τ . S4 has two inequivalent representations of degree 3. We take
from [1] ρ1 and ρ2 given by

ρ1(a) =

 −1 0 0
0 1 0
0 0 −1

 , ρ1(b) =

 1 0 0
0 −1 0
0 0 −1

 ,

ρ1(c) =

 0 1 0
0 0 1
1 0 0

 , ρ1(d) =

 0 0 1
0 1 0
1 0 0

 ,

and

ρ2(g) =
{

ρ1(g), if g ∈ A4,
−ρ1(g), if g 6∈ A4.

(The representation ρ1 and ρ2 are denoted ρ and ρ′ in [1]. Note that there is an
error in the definition of ρ in [1] where ρ(a) and ρ(b) should be interchanged.)

Extend ρ1 and ρ2 to homomorphisms of rational algebras QS4 → M3(Q) and
let ρ : QS4 → M3(Q)2 be the direct sum of ρ1 and ρ2. It is well known that
τ ⊕ ρ : QS4 → QS3 ⊕M3(Q)2 is an isomorphism.

For an arbitrary finite group G, V (ZG) denotes the group of units of ZG of
augmentation 1. The homomorphisms τ and ρ induce group homomorphisms τ :
V (ZS4) → V (ZS3) and ρ : V (ZS4) → GL3(Z)2. Clearly τ(B4) = B3. Since B3 is
free [3], one has that

(2) B4 = (B4 ∩K)o B3,

where K = {α ∈ V (ZS4) : τ(α) = 1}. Moreover, ρ is an isomorphism between K
and ρ(K) (because τ ⊕ ρ is an isomorphism) and the last has been described in [1].
Since we need this description we are going to recall it.

Let Ê(n) denote the principal congruence group of level n, of SL3(Z) (n ∈ Z);
that is,

Ê(n) = {A ∈ SL3(Z) : A ≡ 1 mod n}.
Let

X = {(xij) ∈ Ê(2) : x12 + x23 + x31 ≡ x13 + x21 + x32 mod 4}
and

X1 = {(xij) ∈ Ê(2) : x12 + x23 + x31 ≡ x13 + x21 + x32 ≡ 0 mod 4}.

Let G = 〈Q,R,Qt, Rt, Ê(8)〉 where

Q =

 1 0 4
4 5 0
0 0 5

 , R =

 5 0 0
4 1 0
0 4 5

 ,
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and At denotes the transpose of a matrix A. Finally let

T =

 17 0 −4
0 1 0
−4 0 1

 .

(Note that the matrices Q and R are different from the corresponding matrices in
[1]. This does not affect the definition of G because our Q and R are congruent to
the Q and R in [1] modulo 8.)

Now we are ready to give the description of ρ(K) in terms of integral matrices.

Theorem 2 ([1]).

ρ(K) = {(A, T sAG) : A ∈ X,G ∈ G, s = 0, if A ∈ X1 and s = 1, otherwise} .
For a permutation σ ∈ Sn and a matrix A ∈ Mn(R) let Aσ denote the matrix

obtained by permuting the rows and columns of A by σ, that is, Aσ = P−1
σ APσ

where Pσ is the permutation matrix defined by

Pσ(i, j) =
{

1, if j = σ(i),
0, otherwise.

For every x, y ∈ S4 let

κx,y = b(x, y) · τ(b(x, y))−1 ∈ B4 ∩K
and let K0 be the group generated by all the κx,y’s.

Remark 3. Let H be a group of units of ZS4 normalized by S3 = 〈c, d〉. Then
ρi(H) is normalized by ρi(S3) (i = 1, 2). This implies that Aσ ∈ ρi(H) for every
A ∈ ρi(H) and σ ∈ S3.

Some groups normalized by S3 are B4, K and Ker ρi (i = 1, 2). Another example
is K0 because τ acts as the identity in S3. �

For every 1 ≤ i 6= j ≤ 3 and n an integer let eij(n) be the 3 × 3 matrix
having n in the (i, j) entry and zeroes elsewhere. Set Eij(n) = I + eij(n). Let
E(n) = 〈Eij(n) : 1 ≤ i 6= j ≤ 3〉.
Lemma 4. (1) SL3(Z) = E(1).

(2) Ê(n) is the normal subgroup of SL3(Z) generated by E12(n).
(3) E(n) = {(aij) ∈ SL3(Z) : n|aij if i 6= j and aii ≡ 1 mod n2}, in particular

Ê(n2) ⊆ E(n).
(4) Ê(n) = 〈An, Acn, E(n)〉 (recall that c = (1 2 3)), where

An =

 1 0 0
0 1 + n n
0 −n 1− n

 .

(5) X = 〈A2
σ, Bσ, Ê(4) : σ ∈ S3〉 where B = E23(2) · E12(2).

Proof. (1) See [4, 1.2.11].
(2) See [4, 1.2.26] and [2, Corollary 4.3] or the proof of [4, 4.3.1].
(3) We first prove Ê(n2) ⊆ E(n). By 1 and 2 it is enough to show that

Eij(1)E12(n2)Eij(1)−1 belongs to E(n) for every i 6= j. This is obvious if (i, j) 6=
(2, 1). Finally

E21(1)E12(n2)E21(1)−1 = E21(1)[E13(n), E32(n)]E21(1)−1

= [E21(1)E13(n)E21(1)−1, E21(1)E32(n)E21(1)−1]
= [E23(n)E13(n), E31(−n)E32(n)].
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Let E = {(aij) ∈ SL3(Z) : n|aij if i 6= j and aii ≡ 1 mod n2}. Plainly Ê(n2) ⊆
E(n) ⊆ E. Now notice that if A = I + n(aij) and B = I + n(bij), then AB ≡ I +
n(aij+bij) mod n2. Using this it is easy to see that E(n)/Ê(n2) ' Z6

n ' E/Ê(n2),
so that E(n)/Ê(n2) = E/Ê(n2) and hence E(n) = E.

(4) and (5). A trivial verification shows that Ê(n)/Ê(n2)=〈An, Acn, E(n)〉/Ê(n2)
and X/Ê(4) = 〈A2

σ, Bσ, Ê(4) : σ ∈ S3〉/Ê(4). �
Remark 5. Let H be as in Remark 3. By Lemma 4 to prove that E(n) ⊆ ρi(H) it is
enough to show that Eij(n) ∈ ρi(H) for some i 6= j, and to prove that Ê(n) ⊆ ρi(H)
it is enough to additionally prove that An ∈ ρi(H). �
Lemma 6. ρ1(K0) = X.

Proof. By Theorem 2, ρ1(K0) ⊆ X . To prove the other inclusion we are going to
use Lemma 4 and Remarks 3 and 5 several times without specific mention.

Note that ρ1(κa,cd) = E21(4) and A2 = ρ1(κbc2d,a). Since A4 = A2
2, Ê(4) ⊆

ρ1(K0).
The proof is completed by showing that B ∈ ρ1(K0). Let C = ρ1(κabcd,ac2) and

D = ρ1(κac2,abc2d). Consider B1 = C · (D · A2)c. Then B ∈ B1Ê(4) and therefore
B ∈ ρ1(K0). This completes the proof. �
Lemma 7. G = ρ2(K0 ∩Ker ρ1).

Proof. Let N = K0 ∩ Ker ρ1. By Theorem 2, ρ2(N) ⊆ ρ2(K ∩ ker ρ1) ⊆ G. We
obtain the other embedding by proving Ê(8) ⊆ ρ2(N) and Q,Qt, R,Rt ∈ ρ2(N).
Again we are going to use Lemma 4 and Remarks 3 and 5 without specific mention.

Note that N is normalized by S3 and ρ(κb,bc ·κ−1
b,cd) = (1, E12(8)), so that E(8) ⊆

ρ2(N). Let b = (κbc2,ad · κ−1
abcd,a)

2 · (κab,ad · κab,ac2)−1 ∈ N and B = ρ2(b). Then

B ≡

 41 48 0
48 25 0
56 16 1

 mod 64

and hence A8 ∈ (B3)c
2dE(8). Thus A8 ∈ ρ2(N) and we conclude Ê(8) ⊆ ρ2(N).

Consider the following elements of ρ2(N):

Q1 = ρ2(κc2d,ac2 · κ−1
ac2d,ad),

Q2 = ρ2(κd,ac2 .κ−1
d,b),

Q3 = ρ2(κcd,ac2d.κ
−1
bcd,ac2).

Then
R ≡ Q1 ·Q2 mod 8 and Rt ≡ Q2 ·Q3 mod 8

and hence R,Rt ∈ ρ2(N). Since Q = Rc
−1

, we have that Q,Qt ∈ ρ2(N). �
Proposition 8. B4 = K o B3.

Proof. By (2), it is enough to show that K ⊆ B4. Since K0 ⊆ B4 ∩ K ⊆ K and
the restriction of ρ to K is injective, it is enough to prove that ρ(K) ⊆ ρ(K0). By
Theorem 2, any element of ρ(K) is of the form (A, T sAG) with A ∈ X , G ∈ G and
s = 0 if A ∈ X1 and s = 1 otherwise. By Lemma 6, A ∈ ρ1(K0). Thus, by Theorem
2, we have that (A, T sAG1) ∈ ρ(K0) for some G1 ∈ G. By Lemma 7, (1, G) and
(1, G1) belong to ρ(K0). Then

(A, T sAG) = (A, T sAG1) · (1, G1)−1 · (1, G) ∈ ρ(K0). �
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Proposition 8 contains the announced description of B4. Indeed, B3 is isomorphic
to the congruence subgroup of level 3 of SL2(Z), which is free of rank 3 [3]. Moreover
we have already mentioned that ρ is an isomorphism between K and ρ(K) and the
last has been described in Theorem 2.

Proof of (1). By Proposition 8, 〈a, b〉 ⊆ K∩S4 ⊆ B4∩S4. Since the last is a normal
subgroup of S4, then B4∩S4 is either 〈a, b〉, A4 or S4. We prove B4∩S4 = 〈a, b〉 by
proving that B4 has only 2-torsion (that is, every torsion element of B4 has order
≤ 2).

By Proposition 8, B4 = (K ∩ B4)o B3. Let b be a torsion element of B4. Then
b = gh with g ∈ K ∩ B4 and h ∈ B3. However, h is a torsion element of B3 and
hence h = 1, because B3 is torsionfree. Therefore b = g is a torsion element of K.
Since K ' ρ(K) ⊆ Ê(2)2, the order of b = g is ≤ 2. �

Final remark

After this paper was accepted, we received a note from Martin Hertweck with
the following two remarks.

First Bn ∩ Sn ⊆ An because Bn is embedded in the kernel of the sign represen-
tation of Sn. Therefore, by Theorem 1, Bn ∩ Sn = An if n ≥ 5. This improves
Theorem 1.

Second he has expressed the group element b ∈ S4 as a product of seven bicyclics:

b = b(b, c2) · b(ab, bc) · b(d, abc2) · b(d, bc2) · b(abd, c) · b(bc2d, c2) · b(c2d, abc).
Motivated by this we have performed an exhaustive search, using Mathematica,
looking for a shorter product of bicyclic units of ZS4 of finite order and this search
has produced the following expression of a as a product of four bicyclics:

a = b(cd, c) · b(bc2d, abc) · b(c2d, abc2) · b(cd, ac2).
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