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(Communicated by Andreas Seeger)

Abstract. We show that the spectra Λ of frequencies λ obtained by random
perturbations of the integers allows one to represent any measurable function
f on R by an almost everywhere converging sum of harmonics:

f =
∑
Λ

cλe
iλt.

1. Introduction

This paper concerns the representation of functions by series of exponentials
which converge almost everywhere (a.e.). According to Menshov’s theorem (1941,
see [1]) every 2π-periodic measurable function f admits a representation as

(1) f(t) =
∑
k∈Z

c(k)eikt a.e.

Among the many generalizations and analogs of this fundamental result, there
exists a version for the non-periodic case: Davtjan [2] proved that the corresponding
representation on R can be obtained if instead of the sum over integers one considers
a “trigonometric integral” which involves all real frequencies.

In our paper [4] it was shown that most of the frequencies are redundant. Namely,
by appropriate small perturbations of the integers we constructed a spectrum of
frequencies Λ = {λ(k), k ∈ Z} such that any f ∈ L0(R) (that is, a measurable
function on R) can be decomposed as

(2) f(t) =
∑
k∈Z

c(k)eiλ(k)t a.e.

The aim of this note is to show that this is not an exceptional feature of the
constructed spectrum. In fact, by choosing the perturbations randomly one gets
such a property with probability 1.

Analogously to the periodic case (see [5]) we introduce the following

Definition. A sequence Λ = {... < λ(k) < ... < λ(−1) < λ(0) < λ(1) < ...} is
called a Menshov spectrum for R if for any f ∈ L0(R) there are coefficients {c(k)}
such that the decomposition (2) holds (convergence in (2) is understood in the sense
of the limit of symmetric partial sums, i.e. limx→∞

∑
|λ|<x).
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Theorem. Let r(n) be independent variables uniformly distributed on the segment
[− 1

2 ,
1
2 ]. Then the sequence

(3) λ(n) = n+ r(n), n ∈ Z,

is almost surely a Menshov spectrum for R.

The proof is based on the technique used in our recent paper [5]. We refer the
reader to this paper for some historical comments and additional references.

2. Preliminaries

By a trigonometric polynomial P we mean a finite linear combination of expo-
nentials with real (not necessarily integer) frequencies ... < λ(−1) < λ(0) < ... .
We call the set of λ’s involved, the spectrum of P and denote it by specP . The
corresponding coefficients are denoted as P̂ (λ), so

P =
∑

specP

P̂ (λ)eiλx, x ∈ R .

We denote

degP = max
specP

|λ| .

As usual

||P̂ ||1 :=
∑
|P̂ (λ)|, ||P̂ ||∞ := max |P̂ (λ)| .

Let P ∗ be the (non-symmetric) majorant of partial sums:

P ∗(x) := max
a<b

∣∣∣∣∣∣
∑

specP∩[a,b]

P̂ (λ)eiλx

∣∣∣∣∣∣ .
For a given P and l ∈ Z+ we denote by P[l] the “contracted” polynomial:

P[l](x) = P (lx) .

The following “special products” are used:

H = Q[l]P .

If specQ ⊂ Z and l > 2 degP , then this product has a simple structure which
provides the following estimate (compare with (10) in [5]):

(4) H∗(x) ≤ |P (x)| · ||Q∗||L∞(−π,π) + 2P ∗(x) · ||Q̂||∞ .

We will use the following

Lemma 1 (see [5], Lemma 2.1). Given any ε > 0, δ > 0, there exists a trigono-
metric polynomial P = Pε,δ with integer spectrum such that

(i) P̂ (0) = 0, ||P̂ ||∞ < δ;
(ii) m {x ∈ [−π, π] : |P (x) − 1| > δ} < ε;
(iii) ||P ∗||∞ < Cε−1.
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3. Proof of the theorem

3.1. The result is an easy consequence of the following (nonstochastic)

Proposition. Let Λ = {λ(n)}, λ(n) = n+ r(n), n ∈ Z, and suppose that for every
k ∈ Z+ there exists a number l = l(k) in Z+ such that

(5) |r(sl + q)− 2−|q|+1| < 1
k2
, 0 < |s| < k, |q| < k .

Then Λ is a Menshov spectrum for R.

To deduce the theorem from the proposition it is enough to mention that if we
fix k and run l over a sufficiently fast increasing sequence {lj}, then the events Bj
that the inequalities above are fulfilled for l = lj are mutually independent and
each has a positive probability p(k) which does not depend on j. So for a random
spectrum H the condition of the proposition is true almost surely.

3.2. Now we pass to the proof of the proposition. Denote I(k) := {sl(k) + q :
0 < |s| < k, |q| < k} and M(k) = kl(k) + k. Clearly (passing to a subsequence if
necessary) we may suppose that

I(k + 1) ∩ [−M(k),M(k)] = ∅ .
Let f ∈ L0(R) be given. We shall define by induction an increasing sequence {kj}
and “blocks” of coefficients {c(n)}, n ∈ I(kj); all other coefficients of the expansion
(2) will be zero. We denote:

Aj :=
∑
I(kj)

c(n) exp(iλ(n)x),

SN :=
∑
j≤N

Aj N ∈ Z+, S0 := 0.

Fix N and suppose that the polynomials Aj are already defined for j < N . Let us
describe the N ’th step of the induction. Set

RN := f − SN−1 .

We need the following result proved in [3]:
if 0 < |r(q)| = o(1), then the system of exponentials exp i(q + r(q)), q ∈ Z, is

complete in L0(R), that is, the set of linear combinations is dense with respect to
convergence a.e.

Using this we find a polynomial

FN (x) =
∑

aq exp i(q + 2−|q|+1)x

so that

(6) m
{
x ∈ [−Nπ,Nπ] : |FN (x)−RN (x)| > 1

N4

}
<

1
N2

.

Next we use Lemma 1 with

(7) δ = δN =
1

N4||F̂N ||1
, ε =

1
N3

and find the corresponding polynomial QN . Fix a number kN large enough:

(8) kN > kN−1, 3 degFN ,
||Q̂N ||1
δN
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and set

(9) HN := FN · (QN )[l(kN )] .

One can easily see that

specH ⊂
{
sl(kN ) + q + 2−|q|+1 : 0 < |s| < k, |q| < k

}
,

so we can write

(10) HN =
∑

0<|s|<kN
|q|<kN

b(N, s, q) exp i(sl(kN) + q + 2−|q|+1)x .

Finally we set:

(11) AN :=
∑

0<|s|<kN
|q|<kN

b(N, s, q) exp iλ(sl(kN ) + q)x ≡
∑
I(kN )

c(n) exp iλ(n)x .

3.3. Now we show that

(12) SN → f a.e.

For this first we get from (ii) of Lemma 1:

m
({

x ∈ [−Nπ,Nπ] : |HN (x)− FN (x)| > 1
N4

})
≤ N ·m ({x ∈ [−π, π] : |QN − 1| ≥ δN}) = O(N−2) .(13)

Further, (9), (8) and (7) imply:

(14) ||ĤN ||1 = ||F̂N ||1 · ||Q̂N ||1 < ||F̂N ||1kNδN =
kN
N4

,

so we can estimate, using (10), (11), (5), (14), (3) and (8):

||AN −HN ||L∞(−πN,πN)

≤ ||ĤN ||1 · max
0<|s|<kN
|q|<kN

|| exp i(r(sl(kN ) + q)− 2−|q|+1)x− 1||∞

<
kN
N4
· 1
k2
N

· πN = O(N−4) .(15)

Finally, we have from (6), (13) and (15):

m
{
x ∈ [−Nπ,Nπ] : |AN (x) −RN (x)| > C

N4

}
= O(N−2) ,

so

(16) RN+1 = RN −AN = O(N−4) a.e.,

and (12) follows.
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3.4. At last:

(17) A∗N → 0 a.e.

Indeed, estimating as in (15) we see:

A∗N < H∗N +O(N−4) a.e.

Since l(kN ) > kN > 3 degFN we can use (4) and get:

H∗N (x) < |FN (x)| · ||Q∗N ||L∞(−π,π) + 2||Q̂||∞ · ||F̂ ||1 .

The first term on the right hand side is O(N−1) a.e. due to (6), (16) and (iii).
The last term is O(N−4) because of (i) and (7). Clearly (12) and (17) imply the
decomposition (2) and this completes the proof. �

4. Remarks

4.1. One can see that the result holds for r(n) uniformly distributed on any fixed
neighbourhood of zero. Moreover, it holds true for r(n) uniformly distributed on
[−dn, dn] if dn decrease slowly enough. This allows one to cover in full generality
the result from [4] where a Menshov spectrum {n+ o(1)} was constructed. But dn
really must decay slowly. In contrast to the completeness property which occurs
for any (nonzero) perturbation r(n) = o(1) (the result from [3] used above), the
following simple observation is true:

If λ(n) = n+O(n−α), α > 0, then it is not a Menshov spectrum.
Indeed, if ∆f := f(x)− f(x− 2π), then

∆k
(∑

cne
iλnx

)
=
∑

cnO(n−αk)eiλnx.

Hence for k sufficiently large (depending only on α) the representation (2) implies
that ∆kf equals a smooth function a.e., so λ(n) cannot be a Menshov spectrum
for R.

4.2. In [5] we studied Menshov spectra in the periodic case. The main results
of that paper can be extended to Menshov spectra in R. For example, Menshov
spectra for R may be quite sparse, up to “almost Hadamarian lacunarity”. More
precisely:

For any ε(n) decreasing to zero one can construct a (symmetric) Menshov spec-
trum Λ for R such that λ(n+ 1)/λ(n) > 1 + ε(n), n ∈ Z+.

This is an analog of Theorem 1 from [5] and the proof is basically the same.
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