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AN ALGEBRAIC PROPERTY OF JOININGS

YOUNG-HO AHN AND MARIUSZ LEMAŃCZYK

(Communicated by Michael Handel)

Abstract. We show that an ergodic automorphism is semisimple if and only
if the set of ergodic self-joinings is a subsemigroup of the semigroup of self-
joinings.

1. Introduction

Assume that T is an ergodic automorphism of a probability standard Borel space
(X,B, µ). By J(T ) we denote the set of all self-joinings of T that are all T × T -
invariant measures defined on (X ×X,B ⊗ B), both of whose natural projections
are equal to µ. On the set J(T ) there is a natural structure of a semitopological
compact affine semigroup (see the next section for this and some further basic
notions and results). By Je(T ) we denote the set of ergodic members of J(T ).

In [3], A. del Junco, M.K. Mentzen and the second author introduced a notion of
semisimplicity. We say that T is semisimple if for any λ ∈ Je(T ) the automorphism
(T × T, λ) is relatively weakly mixing over T (T is given by the projection on the
first coordinate). The notion of semisimplicity generalized the notion of minimal
self-joinings [7] and of simplicity [4, 9]. Moreover, some Gaussian automorphisms
turned out to be semisimple (see [5]). It follows from basic properties of relative
products that Je(T ) is stable under composition whenever T is semisimple. The
aim of this note is to prove that the converse also holds.

Theorem 1. Let T be an ergodic automorphism of (X,B, µ). Then T is semisimple
if and only if the set of ergodic self-joinings is a subsemigroup of J(T ).

This note was written during the first author’s stay at the Nicholas Copernicus
University in the academic year 2000/2001.

2. Notation and basic results

Suppose that π : (Z,D, ρ)→ (Y, C, η) is a homomorphism of two standard prob-
ability spaces. Given f ∈ L1(Z, ρ), by E(f |Y ) or Eη(f |Y ) we denote the condi-
tional expectation of f with respect to Y , i.e. the function in L1(Y, η) given by
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E(f |π−1(C)) ◦ π−1. If

ρ =
∫
Y

ρy dη(y)

denotes the disintegration of ρ over η, then E(·|Y )(y) = ρy(·) for a.a. y ∈ Y
(see [2], Th. 5.8). If π′ : (Z ′,D′, ρ′) → (Y, C, η) is another homomorphism and
ρ′ =

∫
Y ρ
′
y dη(y), then the measure

ρ⊗Y ρ′ =
∫
Y

ρy ⊗ ρ′y dη(y)

defined on D ⊗ D′ is called the relative product of ρ and ρ′ over (Y, η) (see [2],
Chapter 5, §5). The resulting space will be denoted (Z ×Y Z ′, ρ ⊗Y ρ′). In what
follows we will need the following.

Lemma 1. Consider a sequence of homomorphisms (Z,D, ρ)→(Y, C, η)→(X,B, µ).
Whenever f, g ∈ L2(Z, ρ), then E(f ⊗ g|Y ×X Y ) = E(f |Y )⊗E(g|Y ), η ⊗X η a.s.

Proof. Let ρ =
∫
Y
ρy dη(y), ρ =

∫
X
ρ̃x dµ(x) and η =

∫
X
ηx dµ(x) stand for the

relevant disintegrations. We have

ρ(A) =
∫
Z

χA dρ =
∫
Y

E(χA|Y )(y) dη(y)

=
∫
X

(∫
Y

E(χA|Y )(y) dηx(y)
)
dµ(x) =

∫
X

(∫
Y

ρy(A) dηx(y)
)
dµ(x);

thus
ρ̃x =

∫
Y

ρy dηx(y).

Hence
ρ̃x ⊗ ρ̃x =

∫
Y×Y

ρy ⊗ ρy′ dηx ⊗ ηx(y, y′).

It follows that
ρ⊗X ρ =

∫
X

ρ̃x ⊗ ρ̃x dµ(x)

=
∫
X

(∫
Y×Y

ρy ⊗ ρy′ dηx ⊗ ηx(y, y′)
)
dµ(x) =

∫
Y×Y

ρy ⊗ ρy′ dη ⊗X η(y, y′).

Hence, if f, g ∈ L2(Z, ρ), then

E(f ⊗ g|Y ×X Y )(y, y′) =
∫
Y×Y

f ⊗ g dρy ⊗ ρy′

=
∫
Y

f dρy

∫
Y

g dρy′ = E(f |Y )(y) · E(g|Y )(y′)

and therefore E(f⊗g|Y ×X Y ) = E(f |Y )⊗E(g|Y ) a.s. with respect to η⊗X η. �
Assume now that T is an ergodic automorphism on a standard probability Borel

space (X,B, µ). To each element λ ∈ J(T ) we associate a Markov operator Φλ :
L2(X1, µ1)→ L2(X2, µ2) (where (Xi, µi) = (X,µ), for i = 1, 2) given by∫

X2

Φλ(f)g dµ2 =
∫
X1×X2

fg dλ.

By Markov property we mean that Φλ is positive and Φλ1 = Φ∗λ1 = 1. We also
have Φλ ◦ T = T ◦ Φλ. Moreover, for each f ∈ L2(X,µ)

(1) (Φλf)(x2) = Eλ(f |X2)(x2).
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Furthermore, each Markov operator on L2(X,µ) that commutes with T is neces-
sarily of the form Φλ (see e.g. [5] or [8]). The latter observation introduces a
semigroup law on J(T ) by the formula Φλ2◦λ1 = Φλ2 ◦ Φλ1 . Together with the
weak topology and the natural simplex structure on J(T ) we obtain that J(T ) is a
compact semitopological affine semigroup.

Suppose now λ1, λ2 ∈ J(T ). We will treat λ1 as defined on X1×X2, while λ2 is
defined on X2 ×X3. By λ∗2 we mean the joining corresponding to Φ∗λ2

, that is, the
self-joining given by

λ∗2(A2 ×A3) = λ2(A3 ×A2).

Disintegrate λ1 and λ∗2 over the common factor X2:

λ1 =
∫
X2

λ1,x2 dµ2(x2), λ∗2 =
∫
X2

λ∗2,x2
dµ2(x2).

Consider the relative product of λ1 and λ∗2 over the common factor X2 that is the
measure defined on X1 ×X2 ×X3 given by

λ1 ⊗X2 λ
∗
2 =

∫
X2

λ1,x2 ⊗ λ∗2,x2
dµ2(x2).

Take f, g ∈ L2(X,µ). Using (1) we then have∫
X1×X3

f(x1)g(x3) dλ1 ⊗X2 λ
∗
2(x1, x2, x3)

=
∫
X2

(∫
X1×X3

f(x1)g(x3) dλ1,x2 ⊗ λ∗2,x2
(x1, x3)

)
dµ2(x2)

=
∫
X2

(Φλ1f)(x2)(Φλ∗2g)(x2) dµ2(x2) =
∫
X3

(Φλ2 ◦ Φλ1)(f)g dµ3.

We have shown the following:

(2) λ2 ◦ λ1 = λ1 ⊗X2 λ
∗
2|X1×X3 .

In particular, if λ⊗X2 λ
∗ is ergodic, then λ◦λ is ergodic and the key observation

for the proof of Theorem 1 is that the converse is also true (see Proposition 1 below).
Let T acting on (X,B, µ) be a factor of an ergodic automorphism S acting on

(Y, C, η). Following [2] (see condition C5 on p. 132), we say that S is a compact
extension of T if for each 0 6= f ∈ L2(Y, η) the limit of ergodic averages of f ⊗ f
for S × S acting on (Y ×X Y, η ⊗X η) is also non-zero.

Remark 1. Usually a compact extension is defined in terms of relative eigenvectors
(see [1, 10]). R. Zimmer proved in [10] that S is a compact extension of T if and
only if S is an isometric extension of T . Another proof of Zimmer’s result follows
easily from the joining characterization of isometric extensions given in [6].

Assume thatR acting on (Z,D, ρ) is an ergodic extension of T acting on (X,B, µ).
Then (see [2], Chapter 6):

(A) there exists a biggest factor, called the relative Kronecker factor, S acting
on (Y, C, η) between R and T such that S is a compact extension of T ;

(B) the relative Kronecker factor S is trivial (i.e. S = T ) iff the relative product
R × R on (Z ×X Z, ρ ⊗X ρ) is ergodic (the latter condition means that R is a
relatively weakly mixing extension of T ).
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Finally, recall that an ergodic automorphism T on (X,B, µ) is called semisimple
([3]) if for each λ ∈ Je(T ), the relative product λ ⊗X2 λ

∗ is ergodic, that is (using
(B)), T × T on (X1 ×X2, λ) is a relatively weakly mixing extension of X2.

3. Proof of Theorem 1

We will need a lemma which is a simple consequence of the L1-convergence in
the pointwise ergodic theorem.

Lemma 2. Let S be an automorphism on (Y, C, η). Denote by I the σ-algebra of
S-invariant sets. Assume that E ⊂ C is a factor of S. Then:

(i) If the action of S on E is ergodic, then E(f |I) =
∫
Y
f dη for each f ∈ L1(E).

(ii) If f ∈ L1(Y, η) and the sequence ( 1
n

∑n−1
i=0 f ◦Si)n≥1 converges to a constant

c(=
∫
Y f dη), then E(E(f |E)|I) = c.

Proof. (i) Since f ∈ L1(Y, η), 1
n

∑n−1
i=0 f ◦ Si converges to E(f |I) in L1(C) by the

ergodic theorem. However f is measurable with respect to C which is S-invariant.
The result follows by the ergodicity of S on E .

(ii) Put g = E(f |E). Then by the ergodic theorem, 1
n

∑n−1
i=0 g ◦ Si converges to

E(g|I) in L1(C) and hence in L1(E). Therefore for all h ∈ L∞(E),

1
n

n−1∑
i=0

∫
f ◦ Si · h dη → c

∫
h dη.

We have

1
n

n−1∑
i=0

∫
f ◦ Si · h dη =

1
n

n−1∑
i=0

∫
E(f ◦ Si|E) · hdη =

1
n

n−1∑
i=0

∫
E(f |E) ◦ Si · h dη;

thus 1
n

∑n−1
i=0 g ◦ Si converges weakly to c in L1(E). Hence E(g|I) = c. �

The following lemma is a direct consequence of our definition of compact exten-
sion, the L1-convergence of ergodic averages and the fact that f ⊗ f ∈ L1(Y ×X Y )
whenever f ∈ L2(Y, η).

Lemma 3. Let S be an ergodic automorphism on (Y, C, η). Suppose that S is a
compact extension of T acting on (X,B, µ) and f ∈ L2(Y ). Then f = 0 if and only
if E(f ⊗ f |I) = 0 in the relative product Y ×X Y .

The following result is of independent interest.

Proposition 1. Assume that T is an ergodic automorphism of (X,B, µ) and let
λ ∈ Je(T ). If λ ◦ λ is ergodic, then λ⊗X λ∗ is ergodic.

Proof. Given a real function f ∈ L2(X,µ) put f ⊗ f(x1, x2, x3) = f(x1)f(x3). We
have f ⊗ f ∈ L1(X1 ×X2 ×X3, λ1 ⊗X2 λ

∗
2), where λ1 = λ2 = λ. If I denotes the

σ-algebra of T × T × T -invariant sets in the relative product, then our ergodicity
assumption on λ ◦ λ and (2) give rise to

(3) E(f ⊗ f |I) =
∫
f ⊗ f dλ⊗X2 λ

∗.
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Let (Y, C, η) denote the relative Kronecker factor of T × T on (X1 × X2, λ1) over
X2 (see (A)). Then:

(X ×X,λ)

zztttttttttt

��

Y

%%KKKKKKKKKKK

X

Fix a real function f ∈ L2(X,µ). We will show that

(4) E(f(x1)|Y ) = E(f(x1)|X2).

Let g = E(f(x1)|Y ) − E(f(x1)|X2). By Lemma 3 it is enough to prove that
E(g ⊗ g|I) = 0 with respect to λ1 ⊗X2 λ

∗
2. We have

E(g ⊗ g|I)

= E((E(f(x1)|Y1)− E(f(x1)|X2))⊗ (E(f(x3)|Y2)− E(f(x3)|X2))|I)
= E(E(f(x1)|Y1)⊗ E(f(x3)|Y2)|I)− E(E(f(x1)|Y1) ·E(f(x3)|X2)|I)
−E(E(f(x1)|X2) · E(f(x3)|Y2)|I) + E(E(f(x1)|X2) · E(f(x3)|X2)|I)

= E(E(f(x1)|Y1)⊗ E(f(x3)|Y2)|I)−
∫
Y1

E(f(x1)|Y1) · E(f(x3)|X2) dη1

−
∫
Y2

E(f(x1)|X2) · E(f(x3)|Y2) dη2 +
∫
X2

E(f(x1)|X2) ·E(f(x3)|X2) dµ2

by Lemma 2(i) and the fact that X2 is a factor of Y and Y is ergodic. By taking
in the latter three summands the conditional expectation with respect to X2, we
obtain

E(g ⊗ g|I)

= E(E(f(x1)|Y1)⊗ E(f(x3)|Y2)|I)−
∫
X2

E(f(x1)|X2) · E(f(x3)|X2) dµ2.

Using consecutively Lemma 1 and (3), together with Lemma 2(ii), and finally the
definition of the relative product, we obtain that

E(E(f(x1)|Y1)⊗ E(f(x3)|Y2)|I)

= E(E(f ⊗ f |Y1 ×X2 Y2)|I) =
∫
X×X×X

f(x1)f(x3) dλ⊗X λ∗(x1, x2, x3)

=
∫
X2

E(f(x1)|X2) · E(f(x3)|X2) dµ2.

We hence have proved E(g ⊗ g|I) = 0 and (4) directly follows.
If h = h(x2) is in L2(X2), then h is Y -measurable and by (4) we have

E(f(x1) · h(x2)|Y ) = h(x2) ·E(f(x1)|Y )

= h(x2) ·E(f(x1)|X2) = E(f(x1) · h(x2)|X2).
Since the family of the function of the form f ⊗ h as above forms a linearly dense
subset in L2(X × X,λ), E(F |Y ) = E(F |X2) for all F ∈ L2(X × X,λ). Hence
Y = X2 and the relative Kronecker factor of (X1 ×X2, λ1) over X2 is trivial. In
view of (B), it follows that λ⊗X2 λ

∗ is ergodic. �
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Proof of Theorem 1. At first, assume that T is semisimple. Consider λ1, λ2 ∈
Je(T ). Then, by using Proposition 6.3 from [2], λ1 ⊗X2 λ

∗
2 is ergodic by semisim-

plicity of T . Therefore λ2 ◦ λ1 remains ergodic.
If Je2 (T ) is a subsemigroup, then directly from Proposition 1 it follows that T is

semisimple.

Remark 2. The proof of Proposition 1 gives a slightly more general result: Assume
that λ is an ergodic joining of S (acting on (Y, C, η)) and T (acting on (X,B, µ)).
Then the relative product λ ⊗X λ is ergodic if and only if the measure λ∗ ◦ λ on
Y × Y (given by the Markov operator Φ∗λ ◦ Φλ on L2(Y, η)) is ergodic. Therefore
we obtain an answer to the question by Ryzhikov from [8], p. 95.
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[6] M. Lemańczyk, J.-P. Thouvenot, B. Weiss, Relative discrete spectrum and joinings, to appear
in Monatshefte Math.

[7] D. Rudolph, An example of a measure-preserving map with minimal self-joinings, and ap-
plication, J. Anal. Math. 35 (1979), 97–122. MR 81e:28011

[8] V.V. Ryzhikov, Joinings, wreath products, factors and mixing properties of dynamical sys-
tems, Russian Acad. Sci. Izv. Math. 42 (1994), 91–114. MR 94h:28016

[9] W.A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335–341. MR
84d:28026

[10] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373–409. MR
53:13522

Department of Mathematics, Korea Advanced Institute of Science and Technology,

Taejon 305-701, Korea

E-mail address: ahn@euclid.kaist.ac.kr

Faculty of Mathematics and Computer Science, Nicholas Copernicus University,

Chopina 12/18 87-100 Toruń, Poland
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