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AUTOMORPHISMS OF THE ENDOMORPHISM SEMIGROUP
OF A FREE MONOID OR A FREE SEMIGROUP

G. MASHEVITZKY AND BORIS M. SCHEIN

(Communicated by Stephen D. Smith)

Abstract. We determine all isomorphisms between the endomorphism semi-
groups of free monoids or free semigroups and prove that automorphisms of
the endomorphism semigroup of a free monoid or a free semigroup are inner
or “mirror inner”. In particular, we answer a question of B. I. Plotkin.

Introduction

One of the venerable algebraic problems, the first instance of which was consid-
ered by É. Galois, is (using the words of S. U lam [7]) “determination of a mathe-
matical structure from a given set of endomorphisms”. Let End(A) and Aut(A)
denote the endomorphism monoid and the automorphism group of an algebraic
system A, respectively. What can be said about systems A and B if End(A) is
isomorphic to End(B)? This problem has been considered by numerous authors.

We consider this problem for End(X∗) and End(X+), whereX∗ andX+ denote,
respectively, the free monoid and the free semigroup generated by a set X . This
particular problem about End(A), for A a free algebra in a certain variety, was
raised by B. I. Plotkin [2] in his lectures on universal algebraic geometry. An
analogous problem for End(F ) with F a free group was solved by Formanek [1].
Other examples are given in a remark at the end of this paper.

Recall that the elements of X∗ are words over X , including the empty word 1.
The elements of X+ are nonempty words. If u = xi1 ...xik ∈ X∗, then u denotes the
“opposite” word xik ...xi1 . In particular, 1 = 1. Every bijection f : X → Y induces
an isomorphism ιf : X∗ → Y ∗ and an anti-isomorphism ῑf : X∗ → Y ∗ defined
as follows: ιf (u) = f(xi1)...f(xik ) and ῑf (u) = ιf (u) = f(xik )...f(xi1). Analogous
facts are true for X+ and Y +.

Let ι : S → T be an isomorphism or an anti-isomorphism of a semigroup S onto a
semigroup T . Define the mapping ι�ι : End(S)→ End(T ) by ι�ι(ϕ) = ι ◦ϕ ◦ ι−1

for all ϕ ∈ End(S). Thus, if ι(s1) = t1, ι(s2) = t2, and ϕ(s1) = s2 for some
s1, s1 ∈ S and t1, t2 ∈ T , then ι�ι(ϕ)(t1) = t2. It is easy to see that ι�ι is an
isomorphism of End(S) onto End(T ). We call it the isomorphism induced by ι.

Let |X | denote the cardinality of X and P the set of prime numbers. A permu-
tation of a finite or an infinite set is a bijection of that set onto itself.
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Theorem 1. Let End(X∗) and End(Y ∗) be isomorphic.
If |X | = 1, then |Y | = 1 and the isomorphisms of End(X∗) onto End(Y ∗) are

in a natural one-to-one correspondence with permutations of P (explained in the
proof).

If |X | ≥ 1, then every isomorphism α : End(X∗)→ End(Y ∗) is induced either
by the isomorphism ιf or by the anti-isomorphism ῑf of X∗ onto Y ∗ for a uniquely
determined bijection f : X → Y . In other words, either α = ιf�ιf or α = ῑf � ῑf .

The same results hold for every isomorphism α : End(X+)→ End(Y +).

Let Aut(X) and C2 denote the symmetric group on X and a 2-element group,
respectively. Also, µ is the so-called mirror automorphism (see Definition 1.4(iii)).

Theorem 2. The groups Aut(End(X+)) and Aut(End(X∗)) are isomorphic.
If |X | > 1, every automorphism of End(X∗) and of End(X+) is either inner or

a product of an inner automorphism and the mirror automorphism µ. In this case
Aut(End(X∗)) is isomorphic to the direct product Aut(X)× C2.

If |X | = 1, Aut(End(X∗)) is isomorphic to the symmetric group on a countably
infinite set.

In Theorem 2 an automorphism is inner if it is of the form ιf , where f is a
permutation of X .

1. Notations and preliminaries

We give the proofs in the case of the free monoid X∗. The proofs in the case of
the free semigroup X+ are almost verbatim the same, so we give only a few remarks
in the case of free semigroups. Each endomorphism ϕ of X∗ and of X+ is uniquely
determined by a mapping X → X∗ or, respectively, X → X+. To define ϕ, it
suffices to define ϕ(x) for all x ∈ X . The mapping ϕ 7→ ϕ∗ such that ϕ∗(x) = ϕ(x)
and ϕ∗(1) = 1 defines an injective homomorphism of End(X+) into End(X∗). For
simplicity we identify End(X+) with a subsemigroup of End(X∗).

Clearly, ϕ is an automorphism precisely when its restriction to X is a permuta-
tion of X . Thus the automorphism groups Aut(X∗) and Aut(X+) of X∗ and X+

are isomorphic to the symmetric group Aut(X) of all permutations of X .

Definition 1.1. (i) Let u = xi1 ...xik ∈ X∗. Denote the length k of u by |u|. The
empty word 1 has length 0.

(ii) Let c(u) be the set of all letters of u.
(iii) An endomorphism ϕ ∈ End(X∗) is linear if ϕ(x) ∈ X∪{1} for every x ∈ X .

In the case of End(X+), ϕ is linear when ϕ(x) ∈ X for all x ∈ X .
(iv) If u ∈ X∗ is a fixed word, let cu be the endomorphism of X+ such that

cu(x) = u for all x ∈ X . We call cu a constant endomorphism. Observe that
the range of cu does not consist of a single word, unless u = 1. Clearly, c1 is the
zero element of End(X∗). We denote it by 0, that is, c1 = 0. If v ∈ X∗, then
cu(v) = u|v|.

(v) An endomorphism ϕ ∈ End(X∗) is called full if ϕψ = 0 ⇒ ψ = 0 for all
ψ ∈ End(X∗).

Lemma 1.2. (i) ϕ is a constant endomorphism of End(X∗) if and only if ϕα = ϕ
for all α ∈ Aut(X∗). The same holds for End(X+);

(ii) ϕcu = cϕ(u) for all ϕ ∈ End(X∗);



ENDOMORPHISM SEMIGROUP OF A FREE MONOID 1657

(iii) ϕ ∈ End(X∗) is a constant idempotent if and only if either ϕ = cx for some
x ∈ X or ϕ = 0;

(iv) ϕ ∈ End(X∗) is full if and only if ϕ(x) 6= 1 for all x ∈ X.

Proof. (i) If x ∈ X , then α(x) = y ∈ X . Varying α, we obtain cuα(x) = cu(y) = u
for all y ∈ X . Thus cuα = cu. Conversely, let ϕα = ϕ for all automorphisms α.
If α(x) = y for some x, y ∈ X , then ϕ(x) = ϕα(x) = ϕ(y). Varying α, we obtain
ϕ(x) = ϕ(y) for all x, y ∈ X . It follows that ϕ = cu, where u = ϕ(x) for any x ∈ X .

(ii) ϕcu(x) = ϕ(u) for every x ∈ X . Thus ϕcu = cϕ(u).
(iii) If ϕ is a constant idempotent, that is, ϕ = cu for some u ∈ X∗ and cucu = cu,

then, by (ii), cu = cucu = ccu(u) = cu|u| . Thus u|u| = u, that is, |u| ≤ 1. The
converse is obvious.

(iv) If ϕ(x) = 1 for some x ∈ X , then cx 6= 0 but ϕcx = 0. Thus ϕ is not full.
Conversely, let ϕ(x) 6= 1 for all x ∈ X . Thus ϕ(u) 6= 1 for all u ∈ X+. If

ψ 6= 0, then ψ(x) = u 6= 1 for some x ∈ X , and hence ψcx = cψ(x) = cu 6= 0. Thus
ϕψcx = ϕcu = cϕ(u) 6= 0, so that ϕψ 6= 0. It follows that ϕ is full. �

Lemma 1.3. The mapping µ(ϕ) = ϕ is an automorphism of End(X∗).

Proof. Obviously, f : u → u is an antiautomorphism of X∗ and f−1 = f . Thus
f−1ϕf = ϕ, and Lemma 1.3 follows from this equality. �

Definition 1.4. (i) Let α : End(X∗) → End(Y ∗) be an isomorphism. By parts
(i) and (iii) of Lemma 1.2, for every x ∈ X there exists y ∈ Y such that α(cx) = cy.
Define a bijection f : X → Y by f(x) = y. We say that f is induced by α. We
make an analogous definition for End(X+)→ End(Y +).

(ii) An automorphism α of End(X∗) or of End(X+) is stable if it induces the
identity permutation of X , that is, α(cx) = cx for all x ∈ X .

(iii) The mapping µ of Lemma 1.3 is the mirror automorphism of End(X∗).

2. The case |X | = 1

If |X | > 1, let x and y be distinct elements of X . Then cxy(cx(x)) = cxy(x) =
xy 6= xx = cx(xy) = cxcxy(x), and hence cxycx 6= cxcxy. Thus End(X∗) and
End(X+) are not commutative.

If X = {x}, a singleton, then X+ = {x, x2, x3, ...} consists of all powers of x and
is isomorphic to the additive semigroup (N,+) of positive integers. Every element of
End(X+) corresponds to ϕk = ( x

xk ) for some k ∈ N, and End(X+) is isomorphic to
the multiplicative semigroup (N, ·) of positive integers. (N, ·) is a free commutative
monoid with the countably infinite set P of free generators that are prime numbers.
Therefore, End(X+) is a free commutative semigroup and {ϕk}k∈P is its set of
free generators. If α : End(X+) → End(Y +) is an isomorphism, then End(Y +)
is commutative, and hence |Y | = 1. Thus α is uniquely determined by a bijection
between the free generators of End(X+) and End(Y +). These bijections (and
hence the isomorphisms) are in a one-to-one correspondence with permutations
of P. The elements of Aut(End(X+)) correspond to permutations of generators,
and thus Aut(End(X+)) is an infinite group isomorphic to the symmetric group
Aut(P) of all permutations of P, and also isomorphic to Aut(P+) because P is
countably infinite.
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Similarly, X∗ is isomorphic to the additive semigroup (N0,+) of nonnegative
integers, End(X∗) is isomorphic to the multiplicative semigroup (N0, ·) of nonneg-
ative integers, and hence Aut(End(X∗)) is isomorphic to Aut(End(X+)).

3. Stable automorphisms of End(X∗) and End(X+)

Lemma 3.1. (i) If α is a stable automorphism of End(X∗), ϕ ∈ End(X∗), and
x ∈ X, then α(cϕ(x)) = cα(ϕ)(x).

(ii) If ϕ is linear, then α(ϕ) = ϕ.

Proof. (i) By Lemma 1.2(ii), α(cϕ(x)) = α(ϕcx) = α(ϕ)α(cx) = α(ϕ)cx = cα(ϕ)(x).
(ii) If ϕ is linear, then ϕ(x) ∈ X ∪ {1}, and hence cα(ϕ)(x) = α(cϕ(x)) = cϕ(x).

Therefore, α(ϕ)(x) = ϕ(x) for every x ∈ X , and so α(ϕ) = ϕ. �

Lemma 3.2. If α(cu) = cv, where α is a stable automorphism of End(X∗) and
u, v ∈ X∗, then c(u) = c(v).

Proof. If z ∈ c(u)\c(v), choose x ∈ X , ϕ ∈ End(X∗), and g ∈ End(X+) such that
x 6= z, ϕ(x) = u, g(z) = x, and g(y) = y for all y 6= z, y ∈ X . Then g is linear,
g(v) = v, α(g) = g by Lemma 3.1(ii), and α(cu) = cv = cg(v) = gcv = α(g)α(cu) =
α(gcu) = α(cg(u)). By injectivity of α, cu = cg(u), so that u = g(u), which is not
true. Thus c(u)\c(v) = ∅. Similarly, c(v)\c(u) = ∅. Therefore, c(u) = c(v). �

Lemma 3.3. If α is a stable automorphism of End(X∗), then |ϕ(x)| = |α(ϕ)(x)|
for all ϕ ∈ End(X∗) and x ∈ X.

Proof. Suppose that |ϕ1(x)| = |ϕ2(x)| = m, |α(ϕ1)(x)| = k, and |α(ϕ2)(x)| = l.
Then cxϕ1cx = cxϕ2cx = cxm . Also, α(cx) = cx. Therefore, α(cxm) = α(cxϕ1cx) =
cxα(ϕ1)cx = cxk and α(cxm) = α(cxϕ2cx) = cxα(ϕ2)cx = cxl . Thus k = l.

If Y is a finite n-element subset of X and m a nonnegative integer, define
EndmY (x) = {ϕ ∈ End(X∗)| |ϕ(x)| = m and c(ϕ(x)) = Y }. By the previous para-
graph and Lemma 3.2, for everym there exists k such that α(EndmY (x)) ⊆ EndkY (x).
There are nk words of length k and nm words of length m over Y . Since α is in-
jective, then k ≥ m. Since α is surjective, k = m. Thus α(EndmY (x)) = EndmY (x),
and hence |ϕ(x)| = |α(ϕ)(x)| for all ϕ ∈ End(X∗) and x ∈ X . �

Corollary 3.4. Choose two distinct elements x1, x2 ∈ X. If α is a stable automor-
phism of End(X∗), then α(cx1x2) is either cx1x2 or cx2x1 .

Proof. By Lemma 1.2(i), α(cx1x2) = cu for some u ∈ X∗. By Lemma 3.2, c(u) =
{x1, x2}. By Lemma 3.3, |u| = 2. Thus u is either x1x2 or x2x1. �

Lemma 3.5. If α is a stable automorphism of End(X∗) and α(cx1x2) = cx1x2 for
some x1, x2 ∈ X, x1 6= x2, then α is the identity automorphism of End(X∗).

Proof. First we prove that α(cu) = cu for all u ∈ X∗ by induction on |u|. The base
of induction is obvious for |u| = 0 and follows from the stability of α for |u| = 1. Let
the claim hold for |u| < k, and let |u| = k, where u = u1y. If ϕ(x1) = u1, ϕ(x2) = y,
and ϕ(x) = x for other x ∈ X , then ϕcx1x2 = cu. By the induction hypothesis,
α(cu1) = cu1 . Also, α(cx) = cx for every x ∈ X . By Lemma 3.1(i), α(ϕ)(x) = ϕ(x)
for all x ∈ X . Thus α(ϕ) = ϕ, and hence α(cu) = α(ϕcx1x2) = ϕcx1x2 = cu.

By Lemma 3.1(i), cϕ(x) = α(cϕ(x)) = cα(ϕ)(x), and so ϕ(x) = α(ϕ(x)) for all
x ∈ X . Thus ϕ = α(ϕ) for all ϕ ∈ End(X∗). �
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Lemma 3.6. If α is a stable automorphism of End(X∗) and α(cx1x2) = cx2x1 for
some x1, x2 ∈ X, x1 6= x2, then α = µ.

Proof. First we prove that α(cu) = cū for all u ∈ X∗ by induction on |u|. The base
of induction is obvious for |u| = 0 and follows from the stability of α for |u| = 1. Let
the claim hold for |u| < k, and let |u| = k, where u = u1y. If ϕ(x1) = u1, ϕ(x2) = y,
and ϕ(x) = x for other x ∈ X , then ϕcx1x2 = cu. By the induction hypothesis,
α(cu1) = cū1 . Also, α(cx) = cx for every x ∈ X . By Lemma 3.1(i), α(ϕ)(x) = ϕ(x)
for all x ∈ X . Thus α(ϕ) = ϕ, and hence α(cu) = α(ϕcx1x2) = ϕcx2x1 = cyū1 = cū.

By Lemma 3.1(i), α(ϕ) = ϕ for all ϕ ∈ End(X∗). Thus α = µ. �
We skip the proof of the following proposition (it is obtained as an obvious

simplification of our proof of Theorem 2).

Proposition 3.7. Let F (X) be the free commutative monoid with a set X, |X | > 1,
of free generators. Every automorphism of End(F (X)) is inner.

Remark 3.8. Similarly, automorphisms of a free commutative semigroup are inner.

4. Group of automorphisms of End(X∗)

Proof of Theorem 1. For |X | = 1 Theorem 1 was proved in Section 2. Suppose
that |X | > 1, α : End(X∗) → End(Y ∗) is an isomorphism, and f : X → Y is a
bijection induced by α, that is, α(cx) = cf(x) for every x ∈ X . Then f extends
to an isomorphism ιf : X∗ → Y ∗ and ιf induces an isomorphism αf = ιf�ιf :
End(X∗)→ End(Y ∗). Consider the automorphism β = α−1

f α of End(X∗). Then
β(cx) = α−1

f (α(cx)) = α−1
f (cf(x)) = cf−1(f(x)) = cx for every x ∈ X and β is stable.

By Corollary 3.4 and Lemmas 3.5 and 3.6, β is an identity automorphism ∆ or a
mirror automorphism µ. In the former case, α−1

f α = ∆, and hence α = αf , the
automorphism induced by ιf . In the latter case, α−1

f α = µ, whence α = αfµ, the
automorphism induced by ῑf . �
Proof of Theorem 2. If X = Y , Theorem 1 becomes the first part of Theorem 2.
Thus we prove here the second part of Theorem 2 for |X | > 1.

Obviously, {∆, µ} is a two-element group of automorphisms of End(X∗). It
is isomorphic to C2. Define a mapping i : Aut(End(X∗)) → Aut(X) × C2 as
follows: if α ∈ Aut(End(X∗)), then i(α) = (f,∆) for α = αf , and i(α) = (f, µ) for
α = αfµ. Clearly, i is a bijection. Also, i is a homomorphism because αg◦αf = αg◦f
and µ ◦ α = α ◦ µ for all f, g ∈ Aut(X) and α ∈ Aut(End(X∗)). Thus i is an
isomorphism of Aut(End(X∗)) onto Aut(X)× C2. �
Remark 4.1. Let L be the variety of all left zero semigroups (that is, the semigroups
satisfying the identity x1x2 = x1). It is easily seen that every semigroup in this
variety is free. If X is a left zero semigroup, then every transformation X → X
is an endomorphism of X , and hence End(X) is merely the full transformation
semigroup TX of the set X . Then Aut(End(X)) = Aut(TX). Schreier [5] proved
that all automorphisms of TX are inner and Aut(TX) is isomorphic to Aut(X),
the symmetric group on X .

Let Z be the variety of all zero semigroups (that is, the semigroups satisfying
the identity x1x2 = x3x4). They are semigroups X0 = X ∪ {0}, 0 /∈ X , with zero
0 such that xy = 0 for all x, y ∈ X0. Every semigroup in this variety is free. Every
partial transformation f of X corresponds bijectively to an endomorphism f̄ of X0:
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for every s ∈ X0, f̄(s) = f(s) if f(s) is defined, and f̄(s) = 0 otherwise. Clearly,
FX , the semigroup of all partial transformations of X , is naturally isomorphic to
End(X0) under the correspondence f 7→ f̄ , and hence Aut(End(X)) is isomorphic
to Aut(FX). As proved by Shutov [6], all automorphisms of FX are inner and
Aut(FX) is isomorphic to Aut(X), the symmetric group on X .
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