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CONVERGENCE RATES OF CASCADE ALGORITHMS

RONG-QING JIA

(Communicated by David R. Larson)

Abstract. We consider solutions of a refinement equation of the form

φ =
∑
γ∈Zs

a(γ)φ(M · − γ),

where a is a finitely supported sequence called the refinement mask. Associ-
ated with the mask a is a linear operator Qa defined on Lp(Rs) by Qaψ :=∑
γ∈Zs a(γ)ψ(M · − γ). This paper is concerned with the convergence of the

cascade algorithm associated with a, i.e., the convergence of the sequence
(Qnaψ)n=1,2,... in the Lp-norm.

Our main result gives estimates for the convergence rate of the cascade
algorithm. Let φ be the normalized solution of the above refinement equation
with the dilation matrix M being isotropic. Suppose φ lies in the Lipschitz
space Lip(µ, Lp(Rs)), where µ > 0 and 1 ≤ p ≤ ∞. Under appropriate
conditions on ψ, the following estimate will be established:∥∥Qnaψ − φ∥∥p ≤ C(m−1/s)µn ∀n ∈ N,

where m := |detM | and C is a constant. In particular, we confirm a conjecture
of A. Ron on convergence of cascade algorithms.

1. Introduction

We are interested in functional equations of the form

(1.1) φ =
∑
α∈Zs

a(α)φ(M · − α),

where φ is the unknown function defined on the s-dimensional Euclidean space Rs,
a is a finitely supported sequence on Zs, and M is an s × s integer matrix such
that limn→∞M

−n = 0. The equation (1.1) is called a refinement equation, and the
matrix M is called a dilation matrix. Correspondingly, the sequence a is called the
refinement mask. Throughout this paper we assume that the mask a satisfies∑

α∈Zs
a(α) = m := | detM |.

Under this condition the refinement equation (1.1) has a unique compactly sup-
ported distributional solution φ up to a constant factor.
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For 1 ≤ p ≤ ∞, by Lp(Rs) we denote the Banach space of all complex-valued
measurable functions f on Rs such that ‖f‖p <∞, where

‖f‖p :=
(∫

Rs
|f(x)|p dx

)1/p

for 1 ≤ p <∞,

and ‖f‖∞ is the essential supremum of |f | on Rs. By C(Rs) we denote the space
of all continuous functions on Rs.

For 1 ≤ p ≤ ∞, by `p(Zs) we denote the Banach space of all complex-valued
sequences b on Zs such that ‖b‖p <∞, where

‖b‖p :=
(∑
α∈Zs

|b(α)|p
)1/p

for 1 ≤ p <∞,

and ‖b‖∞ is the supremum of |b| on Zs.
Let N denote the set of positive integers, and let N0 := N∪{0}. An element of Ns0

is called a multi-index. The length of µ = (µ1, . . . , µs) ∈ Ns0 is |µ| := µ1 + · · ·+ µs,
and the factorial of µ is µ! := µ1! · · ·µs!. For µ = (µ1, . . . , µs) ∈ Ns0 and x =
(x1, . . . , xs) ∈ Rs, define

xµ := xµ1
1 · · ·xµss .

The function x 7→ xµ (x ∈ Rs) is called a monomial and its (total) degree is |µ|.
A polynomial is a linear combination of monomials. The degree of a polynomial
q =

∑
µ cµx

µ is defined to be deg q := max{|µ| : cµ 6= 0}. By Πk we denote the
linear space of all polynomials of degree at most k.

For a vector y = (y1, . . . , ys) ∈ Rs, its norm is defined as |y| := |y1|+ · · ·+ |ys|.
We use Dy to denote the differential operator given by

Dyf(x) := lim
t→0

f(x+ ty)− f(x)
t

, x ∈ Rs.

Moreover, we use ∇y to denote the difference operator given by

∇yf = f − f(· − y).

Let e1, . . . , es be the unit coordinate vectors in Rs. For j = 1, . . . , s, we write
Dj for Dej . For a multi-index µ = (µ1, . . . , µs), Dµ stands for the differential
operator Dµ1

1 · · ·Dµs
s . Given a polynomial q =

∑
µ cµx

µ, we use q(D) to denote the
differential operator

∑
µ cµD

µ.
For a positive integer k and 1 ≤ p ≤ ∞, the Sobolev seminorm | · |k,p is defined

as
|f |k,p :=

∑
|µ|=k

‖Dµf‖p.

The Sobolev space W k
p (Rs) consists of all functions f ∈ Lp(Rs) such that |f |k,p <

∞.
Lipschitz spaces are defined in terms of the modulus of smoothness. The modulus

of continuity of a function f in Lp(Rs) is defined by

ω(f, h)p := sup
|y|≤h

∥∥∇yf∥∥p, h ≥ 0.

Let k be a positive integer. The kth modulus of smoothness of f ∈ Lp(Rs) is defined
by

ωk(f, h)p := sup
|y|≤h

∥∥∇kyf∥∥p, h ≥ 0.
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For 1 ≤ p ≤ ∞ and 0 < ν ≤ 1, the Lipschitz space Lip(ν, Lp(Rs)) consists of all
functions f ∈ Lp(Rs) for which

ω(f, h)p ≤ C hν ∀h > 0,

where C is a positive constant independent of h. For ν > 0 we write ν = r + η,
where r is an integer and 0 < η ≤ 1. The Lipschitz space Lip(ν, Lp(Rs)) consists
of those functions f ∈ Lp(Rs) for which Dµf ∈ Lip(η, Lp(Rs)) for all multi-indices
µ with |µ| = r.

The Fourier transform of a function f ∈ L1(Rs) is defined by

f̂(ω) :=
∫
Rs
f(x)e−ix·ω dx, ω ∈ Rs,

where i stands for the imaginary unit, and x·ω denotes the inner product of two
vectors x and ω in Rs. The Fourier transform can be extended to the class of
tempered distributions (see [1]). For instance, the Fourier transform of the Dirac
distribution δ is 1, while the Fourier transform of a polynomial q is (2π)sq(iD)δ.

Let Qa be the cascade operator given by

Qaf :=
∑
α∈Zs

a(α)f(M · − α), f ∈ Lp(Rs).

For n = 1, 2, . . ., we have (see [7])

Qnaf =
∑
α∈Zs

an(α)f(Mn · − α),

where the sequences an are given by

(1.2) a1 = a and an(α) =
∑
β∈Zs

a(α−Mβ)an−1(β), α ∈ Zs.

The iteration scheme fn := Qnaf (n = 0, 1, 2, . . . ) is called a cascade algorithm.
The main purpose of this paper is to investigate rates of convergence of cascade
algorithms.

Convergence of cascade algorithms are closely related to approximation with
shift-invariant spaces. Let f be a compactly supported integrable function on Rs.
We say that f satisfies the Strang-Fix conditions of order k (see [18]) if

f̂(0) = 1 and Dµf̂(2πβ) = 0 ∀ |µ| < k and β ∈ Zs.

If f satisfies the Strang-Fix conditions of order k, then the shift-invariant space
generated by f provides approximation order k.

Let φ be the unique compactly supported distributional solution of the refine-
ment equation (1.1) subject to the condition φ̂(0) = 1. Such a solution is called the
normalized solution. If the normalized solution φ lies in Lp(Rs) (1 ≤ p ≤ ∞), then
it was shown in [13] that φ satisfies the Strang-Fix conditions of order 1. Suppose ψ
is a compactly supported function in Lp(Rs) (1 ≤ p ≤ ∞). If the cascade algorithm
with the initial function ψ converges to φ in the Lp norm, that is,

lim
n→∞

‖Qnaψ − φ‖p = 0,
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then it was shown in [7] that ψ satisfies the Strang-Fix conditions of order 1. A
typical choice of the initial function is the tensor product of the hat functions:

χ(x) :=
s∏
j=1

max
{

1− |xj |, 0
}
, x = (x1, . . . , xs) ∈ Rs.

If limn→∞ ‖Qnaχ − φ‖p = 0, then limn→∞ ‖Qnaψ − φ‖p = 0 for any compactly
supported function ψ in Lp(Rs) satisfying the Strang-Fix conditions of order 1
(see [7]). However, the sequence (Qnaχ)n=1,2,... may diverge, even if the normalized
solution φ lies in Lp(Rs). Thus it is desirable to find appropriate conditions on ψ
such that Qnaψ converges to φ in the Lp norm.

For a compactly supported distribution f on Rs, we use K(f) to denote the
linear space of all sequences c on Zs such that∑

α∈Zs
c(α)f(· − α) = 0.

If K(f) = {0}, then we say that the (multi-integer) shifts of f are linearly indepen-
dent. It was shown in [16] that the shifts of f are linearly independent if and only
if for any ζ ∈ Cs there exists some β ∈ Zs such that f̂(ζ + 2πβ) 6= 0.

In Section 4 we will establish the following result:

Theorem 1.1. Suppose the normalized solution φ of the refinement equation (1.1)
lies in Lp(Rs), 1 ≤ p < ∞. If ψ is a compactly supported function in Lp(Rs)
satisfying the Strang-Fix conditions of order 1, and if K(φ) ⊆ K(ψ), then

lim
n→∞

∥∥Qnaψ − φ∥∥p = 0.

In the case p = ∞, if both φ and ψ are continuous, then Qnaψ converges to φ
uniformly.

In particular, if the shifts of φ are linearly independent, then the cascade sequence
Qnaψ converges to φ for any compactly supported function ψ in Lp(Rs) satisfying
the Strang-Fix conditions of order 1. This result is also valid, provided the shifts
of φ are stable.

Let f be a compactly supported function in Lp(Rs) (1 ≤ p ≤ ∞). We say that
the (multi-integer) shifts of f are stable, if there exist two positive constants C1

and C2 such that

C1‖b‖p ≤
∥∥∥∥∑
α∈Zs

b(α)f(· − α)
∥∥∥∥
p

≤ C2‖b‖p ∀ b ∈ `p(Zs).

The shifts of f are stable if and only if for any ξ ∈ Rs there exists some β ∈ Zs such
that φ̂(ξ+ 2πβ) 6= 0 (see [14]). Consequently, linear independence implies stability.

Convergence rates of subdivision schemes were studied in [5] and [2] for box
splines. This problem was investigated in [3], [6] and [20] for dyadic refinable
functions. Also, see [4] and [22] for some related work. Suppose φ is the normalized
solution of the dyadic refinement equation

φ =
∑
α∈Zs

a(α)φ(2 · − α),

where a is finitely supported and
∑

α∈Zs a(α) = 2s. If φ lies in the Sobolev space
W k
∞(Rs), then φ satisfies the Strang-Fix conditions of order k (see [3]). If, in
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addition, the shifts of φ are stable, then∥∥Qnaψ − φ∥∥∞ ≤ C2−kn ∀n ∈ N
for any compactly supported continuous function ψ on Rs satisfying the condition

Dµψ̂(2πβ) = Dµφ̂(2πβ) ∀β ∈ Zs and |µ| < k.

This result was established in [21].
Recently, Ron [17] conjectured that the same result is also true under the con-

dition K(φ) ⊆ K(ψ) instead of stability of φ. In fact, his conjecture was stated for
Sobolev spaces Wα

p (Rs) of fractional order. In [19] Sun gave a partial answer to
the conjecture. Ron’s conjecture will be confirmed in this paper.

Our result will be valid for the more general refinement equation (1.1). We
assume that the dilation matrix M is isotropic, that is, M is similar to a diagonal
matrix diag {σ1, . . . , σs} with |σ1| = · · · = |σs| = m1/s, where m = | detM |.
Theorem 1.2. Let φ be the normalized solution of the refinement equation (1.1)
with the dilation matrix M being isotropic. Suppose φ ∈ Lip(µ,Lp(Rs)), where
µ > 0 and 1 ≤ p ≤ ∞. Let k be the integer such that k − 1 < µ ≤ k. Let ψ be
a compactly supported function in Lp(Rs) satisfying the Strang-Fix conditions of
order k. If K(φ) ⊆ K(ψ), and if Dνψ̂(0) = Dν φ̂(0) for all |ν| < k, then there
exists a positive constant C such that∥∥Qnaψ − φ∥∥p ≤ C(m−1/s)µn ∀n ∈ N.

The proof of this theorem will be completed in Section 4. Preparatory to the
proof, we shall investigate relative stability in Section 2 and approximation schemes
in Section 3.

2. Relative stability

Let `(Zs) be the linear space of all sequences on Zs, and let `0(Zs) be the linear
space of all finitely supported sequences on Zs. For u ∈ `(Zs) and v ∈ `0(Zs),
define

〈u, v〉 :=
∑
α∈Zs

u(α)v(−α).

With respect to this bilinear form, `(Zs) is the algebraic dual of `0(Zs).
If 〈u, v〉 = 0, then u and v are orthogonal and we write u ⊥ v. For a linear

subspace V of `0(Zs), we define

V ⊥ :=
{
u ∈ `(Zs) : 〈u, v〉 = 0 ∀ v ∈ V

}
.

If w ∈ `0(Zs) satisfies w ⊥ V ⊥, then w ∈ V . This claim can be justified by
contraposition. Suppose w /∈ V . Let W be the linear span of V and w. Then we
can find a linear functional f on W such that f vanishes on V and f(w) = 1. This
linear functional can be extended to a linear functional on `0(Zs). Since `(Zs) is
the algebraic dual of `0(Zs), this means that there exists some element u in `(Zs)
such that u ⊥ V and 〈u,w〉 = 1. This contradicts the assumption w ⊥ V ⊥.

The main result of this section is the following lemma on relative stability.

Lemma 2.1. Let φ and ψ be compactly supported functions in Lp(Rs) (1 ≤ p ≤ ∞).
Suppose K(φ) ⊆ K(ψ). Then there exists a positive constant C such that

(2.1)
∥∥∥∥∑
α∈Zs

b(α)ψ(· − α)
∥∥∥∥
Lp(Rs)

≤ C
∥∥∥∥∑
α∈Zs

b(α)φ(· − α)
∥∥∥∥
Lp(Rs)

∀ b ∈ `p(Zs).
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Proof. We can find linearly independent functions φ1, . . . , φm in Lp(Rs) supported
on [0, 1]s such that

φ =
m∑
j=1

∑
β∈Zs

φj(· − β)λj(β),

where λ1, . . . , λm ∈ `0(Zs) (see [10]). For b ∈ `p(Zs), it follows that

(2.2)
∑
α∈Zs

b(α)φ(· − α) =
m∑
j=1

∑
γ∈Zs

(b∗λj)(γ)φj(· − γ),

where b∗λ denotes the convolution of b and λ. Since the functions φ1, . . . , φm are
supported on [0, 1]s and are linearly independent, there exists a constant C1 such
that

(2.3) ‖b∗λj‖p ≤ C1

∥∥∥∥∑
α∈Zs

b(α)φ(· − α)
∥∥∥∥
p

, j = 1, . . . ,m.

Let Vφ be the linear span of (multi-integer) shifts of λ1, . . . , λm. In light of
(2.2) we see that u ∈ K(φ) if and only if u is orthogonal to shifts of λ1, . . . , λm.
Consequently, K(φ) = V ⊥φ .

Similarly, we can find linearly independent functions ψ1, . . . , ψn in Lp(Rs) sup-
ported on [0, 1]s such that

ψ =
n∑
k=1

∑
β∈Zs

ψk(· − β)µk(β),

where µ1, . . . , µn ∈ `0(Zs). We have µk ⊥ K(ψ) for k = 1, . . . , n. By the as-
sumption, K(φ) ⊆ K(ψ). Hence, µk ⊥ K(φ) = V ⊥φ . By the remark made at the
beginning of this section, we assert that µk lies in Vφ. In other words, each µk can
be expressed as

µk =
m∑
j=1

ckj∗λj ,

where ckj ∈ `0(Zs), j = 1, . . . ,m, k = 1, . . . , n. Note that

∑
α∈Zs

b(α)ψ(· − α) =
n∑
k=1

∑
γ∈Zs

(b∗µk)(γ)ψk(· − γ).

Hence, there exists a constant C2 such that

(2.4)
∥∥∥∥∑
α∈Zs

b(α)ψ(· − α)
∥∥∥∥
p

≤ C2

n∑
k=1

‖b∗µk‖p.

But

‖b∗µk‖p =
∥∥∥∥ n∑
j=1

ckj∗(λj∗b)
∥∥∥∥
p

≤
n∑
j=1

‖ckj‖1 ‖b∗λj‖p, k = 1, . . . , n.

This in combination with (2.3) and (2.4) gives the desired result (2.1). �
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3. Approximation schemes

In this section we discuss approximation schemes induced by quasi-projection
operators.

For f ∈ Lp(Rs) and g ∈ Lp′(Rs) (1/p′ + 1/p = 1) we define

〈f, g〉 :=
∫
Rs
f(y)g(−y) dy.

Let φ be a compactly supported function in Lp(Rs), and let g be a compactly
supported function in Lp′(Rs), where 1/p′ + 1/p = 1. Consider the linear operator
P on Lp(Rs) defined by

(3.1) Pf =
∑
α∈Zs
〈f, g(· − α)〉φ(· − α), f ∈ Lp(Rs).

Such an operator is called a quasi-projection operator. Clearly, P is a bounded
operator on Lp(Rs). For h > 0, let

P hf :=
∑
α∈Zs

〈
f, h−1g(·/h− α)

〉
φ(·/h− α), f ∈ Lp(Rs).

It is easily seen that ‖P h‖ = ‖P‖.
Approximation by means of quasi-projection operators is discussed in [15]. In

particular, the following result was established there: If the quasi-projection op-
erator P reproduces all polynomials of degree at most k − 1, i.e., Pq = q for all
q ∈ Πk−1, then there exists a constant C > 0 such that

‖P hf − f‖p ≤ Chk|f |k,p ∀ f ∈ W k
p (Rs) and h > 0.

In [12] the above result was extended to the following form: Under the same
conditions as above, there exists a constant C > 0 such that

‖P hf − f‖p ≤ Cωk(f, h)p ∀h > 0

for f ∈ Lp(Rs) (f ∈ C(Rs) in the case p =∞).
Now let us discuss approximation with shift-invariant spaces scaled by a dilation

matrix. Let M be an isotropic dilation matrix with m := | detM |. For n = 1, 2, . . .,
let Pn be the quasi-projection operator given by

Pnf :=
∑
α∈Zs

〈
f,mng(Mn · − α)

〉
φ(Mn · − α), f ∈ Lp(Rs).

Note that the absolute value of every eigenvalue of the matrix M is equal to m1/s.
We have the following result, whose proof can be found in [12].

Lemma 3.1. Let P be the quasi-projection operator given in (3.1). If Pq = q for
all q ∈ Πk−1, then there exists a constant C > 0 such that

‖Pnf − f‖p ≤ Cωk(f,m−n/s)p
for n = 1, 2, . . . and f ∈ Lp(Rs) (f ∈ C(Rs) in the case p = ∞). In particular, if
f ∈ Lip(µ,Lp(Rs)), where µ > 0 and 1 ≤ p ≤ ∞, then

(3.2) ‖Pnf − f‖p ≤ C
(
m−1/s

)µn
.

Consequently, if the quasi-projection operator P reproduces constants, i.e., P1 = 1,
then

(3.3) lim
n→∞

‖Pnf − f‖p = 0
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for f ∈ Lp(Rs) (1 ≤ p <∞), or f ∈ C(Rs) (p =∞). In fact, in order for (3.3) to
be true, the dilation matrix M does not need to be isotropic.

The following lemma gives a sufficient condition for the quasi-projection operator
P to reproduce all polynomials of degree at most k − 1.

Lemma 3.2. Suppose φ satisfies the Strang-Fix conditions of order k. Let g be a
compactly supported function in Lp′(Rs), 1/p′ + 1/p = 1. If Dν(1 − ĝφ̂)(0) = 0
for all |ν| < k, then the quasi-projection operator P given in (3.1) reproduces all
polynomials of degree at most k − 1, i.e., Pq = q for all q ∈ Πk−1.

Proof. Let q ∈ Πk−1. We observe that Pq = q if and only if∑
α∈Zs

r(α)φ(· − α) = q,

where r := q∗g is a polynomial. By using the Poisson summation formula, it was
proved in [8] that ∑

α∈Zs
r(α)φ(· − α) = φ̂(−iD)r.

The Fourier transform of φ̂(−iD)r is φ̂r̂ = φ̂ĝ ((2π)sq̂(iD)δ), where δ stands for the
Dirac distribution. Consequently, φ̂(−iD)r = q if and only if φ̂ĝ(q̂(iD)δ) = q̂(iD)δ.
This happens if

(3.4) Dν(1− ĝφ̂)(0) = 0 ∀ |ν| < k.

Hence, (3.4) implies Pq = q for all q ∈ Πk−1. The proof of the lemma is
complete. �

For given cν (|ν| < k) we can find a compactly supported function g ∈ Lp′(Rs)
such that Dν ĝ(0) = cν for all |ν| < k. Therefore, there exists a compactly supported
function g in Lp′(Rs) such that (3.4) is true.

4. Cascade algorithms

We are in a position to prove Theorems 1.1 and 1.2. Our proofs follow the lines
of [9].

Proof of Theorem 1.1. We only consider the case 1 ≤ p < ∞. The proof for the
case p =∞ is similar.

Since the normalized solution φ of (1.1) lies in Lp(Rs), φ must satisfy the Strang-
Fix conditions of order 1 (see [13]). Let g be a compactly supported function in
Lp′(Rs) (1/p′ + 1/p = 1) such that ĝ(0) = 1. According to our assumption, ψ
satisfies the Strang-Fix conditions of order 1. By Lemma 3.2 the quasi-projection
operators Pφ and Pψ given by

(4.1) Pφf =
∑
α∈Zs
〈f, g(· − α)〉φ(· − α) and Pψf =

∑
α∈Zs
〈f, g(· − α)〉ψ(· − α)

reproduce constants, i.e., Pφ1 = 1 and Pψ1 = 1. For n = 1, 2, . . ., let

fn :=
∑
α∈Zs

bn(α)φ(Mn · − α) and gn :=
∑
α∈Zs

bn(α)ψ(Mn · − α),

where
bn(α) = 〈φ,mng(Mn · − α)〉, α ∈ Zs.
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By (3.3) we have

(4.2) lim
n→∞

‖fn − φ‖p = 0 and lim
n→∞

‖gn − φ‖p → 0.

Let
hn := Qnaψ =

∑
α∈Zs

an(α)ψ(Mn · − α),

where the sequences an (n = 1, 2, . . .) are given in (1.2). Clearly,

φ =
∑
α∈Zs

an(α)φ(Mn · − α).

It follows that

(fn − φ)(M−nx) =
∑
α∈Zs

(bn − an)(α)φ(x − α), x ∈ Rs.

Similarly,

(gn − hn)(M−nx) =
∑
α∈Zs

(bn − an)(α)ψ(x − α), x ∈ Rs.

Since K(φ) ⊆ K(ψ), Lemma 2.1 tells us that there exists a positive constant C
independent of n such that∥∥(gn − hn)(M−n ·)

∥∥
p
≤ C

∥∥(fn − φ)(M−n ·)
∥∥
p
.

Consequently,
‖gn − hn‖p ≤ C‖fn − φ‖p.

But
‖hn − φ‖p ≤ ‖hn − gn‖p + ‖gn − φ‖p ≤ C‖fn − φ‖p + ‖gn − φ‖p.

This in connection with (4.2) shows that limn→∞ ‖hn − φ‖p = 0, as desired. �
Proof of Theorem 1.2. Since the normalized solution φ of (1.1) lies in the Sobolev
space W k−1

p (Rs), φ must satisfy the Strang-Fix conditions of order k (see [3] and
[11]). We can find a compactly supported function g ∈ Lp′(Rs) (1/p′ + 1/p = 1)
such that (3.4) is valid. By our assumption, Dν ψ̂(0) = Dν φ̂(0) for all |ν| < k.
Hence, we also have

Dν(1− ĝψ̂)(0) = 0 ∀ |ν| < k.

By Lemma 3.2, the quasi-projection operators Pφ and Pψ given in (4.1) reproduce
all polynomials of order at most k − 1, i.e., Pφq = Pψq = q for all q ∈ Πk−1.

Let an and bn (n = 1, 2, . . .) be the same sequences as above. Let

fn :=
∑
α∈Zs

bn(α)φ(Mn · − α), gn :=
∑
α∈Zs

bn(α)ψ(Mn · − α)

and
hn := Qnaψ =

∑
α∈Zs

an(α)ψ(Mn · − α).

Since φ ∈ Lip(µ,Lp(Rs)), (3.2) tells us that there exists a positive constant C1

independent of n such that

‖fn − φ‖p ≤ C1(m−1/s)µn and ‖gn − φ‖p ≤ C1(m−1/s)µn.

Note that φ = Qnaφ. Hence, it follows that∥∥∥∥∑
α∈Zs

[
bn(α)− an(α)

]
φ(Mn · − α)

∥∥∥∥
p

≤ C1(m−1/s)µn.
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Since K(φ) ⊆ K(ψ), by Lemma 2.1, there exists a positive constant C2 such that∥∥∥∥∑
α∈Zs

[
bn(α)− an(α)

]
ψ(Mn · − α)

∥∥∥∥
p

≤ C2(m−1/s)µn,

that is,
‖gn − hn‖p ≤ C2(m−1/s)µn.

Therefore,
‖φ− hn‖p ≤ ‖φ− gn‖p + ‖gn − hn‖p ≤ C(m−1/s)µn,

where C := C1 + C2. The proof of Theorem 1.2 is complete. �
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