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(Communicated by David E. Rohrlich)

Abstract. Let ~v0, ..., ~vk be vectors in Zk which generate Zk. We show that a
body V ⊂ Zk with the vectors ~v0, ..., ~vk as edge vectors is an almost minimal
set with the property that every function f : V → R with periods ~v0, ..., ~vk is
constant. For k = 1 the result reduces to the theorem of Fine and Wilf, which
is a refinement of the famous Periodicity Lemma.

Suppose ~0 is not a non-trivial linear combination of ~v0, ..., ~vk with non-
negative coefficients. Then we describe the sector such that every interior
integer point of the sector is a linear combination of ~v0, ..., ~vk over Z≥0, but
infinitely many points on each of its hyperfaces are not. For k = 1 the result

reduces to a formula of Sylvester corresponding to Frobenius’ Coin-changing
Problem in the case of coins of two denominations.

1. Introduction

Let p and q be positive integers. Put d = gcd(p, q). Let f : I → R be a function
defined on a block of integers I = {1, ...,m} such that f is periodic modulo p and
modulo q. The theorem of Fine and Wilf says that if m ≥ p + q − d, then f is
periodic modulo d, but if m < p + q − d, then f need not be periodic modulo
d. The former statement is often called the Periodicity Lemma. The theorem of
Fine and Wilf has been extended by Castelli, Mignosi and Restivo [2] to functions
f : I → R having three periods and by Justin [7] to functions having any number
of periods. See also Tijdeman and Zamboni [16]. We shall generalize the Fine and
Wilf theorem to functions f : V → R with V ⊂ Zk having k + 1 period vectors
~v0, ..., ~vk ∈ Zk, in the sense that f(~v) = f(~w) if ~v, ~w ∈ V satisfy ~v− ~w ∈ { ~v0, ..., ~vk}.
Suppose that ~v1, ..., ~vk ∈ Zk are linearly independent over Z. Let ~v0 ∈ Zk be a
vector which can be written as µ1 ~v1 + ...+µk ~vk with µi > 0, µi ∈ R for i = 0, ..., k.
Define

W = {λ0 ~v0 + λ1 ~v1 + ...+ λk ~vk : 0 ≤ λi ≤ 1, λi ∈ R for i = 0, ..., k}.
In Theorem 1 we present a set V ⊂W ∩Zk with cardinality equal to the Lebesgue
measure of W such that if f : V → R has period vectors ~v0, ..., ~vk, then f is constant
on the cosets of the lattice L generated by ~v0, ..., ~vk. The assertion remains true if
one point of V is removed, but it is no longer true if two points of V are removed
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which are in the same coset of L and do not differ by ±~vi for some i. In the present
paper we refer to points of Zk as integer points and to points of L as lattice points.

Results comparable with Theorem 1 are in the literature. Giancarlo and Mignosi
[4] have given a multi-dimensional generalization of the Fine and Wilf theorem for
connected subsets of Cayley graphs. Papers by Amir and Benson [1], Galil and Park
[5] and Mignosi, Restivo and Silva [8] provide periodicity lemmas for parallelograms
and similar domains in R2. (A periodicity lemma is a statement that a function f
defined on the integer points in some region and having prescribed period vectors
has to be constant on the cosets of the lattice generated by these vectors, without
indicating how far the region can be reduced without affecting the conclusion.)
Regnier and Rostami [10] have provided a framework for the study of periodicity
lemmas in case of multi-dimensional patterns. In the Corollary to Theorem 1 we
present a periodicity lemma for parallelotopes in any dimension.

In Frobenius’ classical Coin-changing Problem, also known as the Postage Stamp
Problem and as the Linear Diophantine Problem of Frobenius, we are given positive
integers a0, ..., ak with greatest common divisor 1, and asked to find the least integer
n such that every integer greater than n can be written as a sum of non-negative
multiples of a0, ..., ak. In the case k = 1 the answer n = n0 := a0a1 − a0 − a1 is
due to Sylvester [15]. Moreover, Sylvester proved that for 0 ≤ m ≤ n0 exactly one
of the two integers m and n0 −m is a sum of non-negative multiples of a0 and a1.
The case k = 2 has been settled by Selmer and Beyer [13]; see also Rödseth [11].
For k > 2 the answer is only known in special cases and various estimates exist for
the general case (cf. [12, 14]).

Suppose ~v0, ..., ~vk defined as above generate Zk. Then they have the prop-
erty that ~0 cannot be written as a non-trivial non-negative linear combination
of ~v0, ..., ~vk. In other words, the period vectors ~v0, ..., ~vk are on the same side of
some hyperplane. Let d0 be the smallest positive integer for which positive integers
d1, ..., dk exist with

d0 ~v0 = d1 ~v1 + ...+ dk ~vk.

By Cramer’s rule di = c · |det(~v0, ~v1, ..., ~vi−1, ~vi+1, ..., ~vk)| for i = 0, ..., k where c is
some constant. Define ~w = d0 ~v0 − (~v0 + ...+ ~vk) and

X = {s1 ~v1 + ...+ sk ~vk + ~w : s1 > 0, ..., sk > 0} ∩ Zk.

Theorem 2 implies that every integer point in X can be written as a non-negative
linear combination of ~v0, ..., ~vk, but that for k > 1 infinitely many integer points on
each hyperface of X cannot be written in that way. We are not aware of a similar
result in the literature. For k = 1 we obtain the value obtained by Sylvester [15].
The shape of W is essential for the application in Theorem 2.

Both theorems are based on a proposition which shows that V ∼= Zk/Λ, where
Λ is the lattice generated by ~v0 + ~v1, ..., ~v0 + ~vk, and that the function φ, denoting
a translation over ~v0 modulo Λ in V , induces complete cycles of the elements in
V belonging to the same coset of the lattice L. In the final section we make some
remarks on related complete sets of representatives of Zk/Λ.

We thank the referee for his useful comments.
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2. Lemmas and a proposition

Let ~vi = (vi1, ..., vik) (i = 1, ..., k) be vectors in Zk which are linearly independent
over Z. Let ~v0 = (v01, ..., v0k) ∈ Zk be a vector which can be written as

(1) ~v0 = µ1 ~v1 + ...+ µk ~vk with µi > 0 for i = 1, ..., k.

(If µi = 0, then we have to do with the same situation in a lower dimension; if
µi < 0, then we may replace ~vi by −~vi.) We define the set W by

W = {λ0 ~v0 + ...+ λk ~vk : 0 ≤ λi ≤ 1, λi ∈ R for i = 0, ..., k}.

Furthermore we write W 0 for the interior of W ,

W0 := {λ1 ~v1 + ...+ λk ~vk : 0 ≤ λi < 1 for i = 1, ..., k}

and

Wj := {λ0 ~v0+...+λk ~vk : 0 ≤ λi < 1 for 0 ≤ i < j;λj = 1; 0 < λi ≤ 1 for j < i ≤ k}.

By the above choice in each Wi exactly one among two parallel hyperfaces is re-
moved in a suitable way.

Lemma 1. W0,W1, ...,Wk are disjoint and W 0 ⊆
⋃k
j=0 Wj ⊆W .

Proof. Suppose ~x ∈W 0. Write

(2) ~x = λ0 ~v0 + ...+ λk ~vk with 0 ≤ λi ≤ 1 for i = 0, ..., k

and λ0 minimal. Suppose ~x /∈ W0. Then there is a smallest h with λh = 1. We
claim that ~x ∈ Wh. By the definition of h we have λj < 1 for 0 ≤ j < h. Suppose
λi = 0 for some i > h. Then we see from λh = 1, λi = 0 that representation (2) is
unique. This implies that ~x is a boundary point of W contradicting the hypothesis
that x belongs to W 0, the interior of W . Thus λi > 0 for i > h whence ~x ∈ Wh.
Obviously Wi ⊂W for i = 0, ..., k.

It remains to show that W0, ...,Wk are disjoint. Note that W0 ∩ Wj = ∅ for
j = 1, ..., k. Suppose ~x ∈Wh ∩Wj for some h, j with 0 < h < j ≤ k. Then

~x = λ0 ~v0 + ...+ λk ~vk = λ′0 ~v0 + ...+ λ′k ~vk

with 0 ≤ λi < 1 for 0 ≤ i < h;λh = 1; 0 < λi ≤ 1 for h < i ≤ k and 0 ≤ λ′i <
1 for 0 ≤ i < j;λ′j = 1; 0 < λ′i ≤ 1 for j < i ≤ k. By λh = 1, λ′h < 1 we have
λ0 < λ′0, but by λj ≤ 1, λ′j = 1 we have λ′0 ≤ λ0. This contradiction completes the
proof. �

We set Vi = Wi ∩ Zk for i = 0, ..., k and V =
⋃k
i=0 Vi. The case k = 2 is

illustrated in Figure 1. Generally V is a polytope in k dimensions whose hyperfaces
are (k − 1)-dimensional parallelotopes.

We define a function φ : V → V by

φ(~v) =
{
~v + ~v0 if ~v ∈ V0,
~v − ~vh if ~v ∈ Vh for some h > 0.

Note that ~v and φ(~v) are in the same coset of L.

Lemma 2. φ : V → V is a bijection.
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Figure 1. The sets V0 (closed circles), V1 (open circles) and V2

(+ signs) formed using ~v0 = (6, 4), ~v1 = (5, 1) and ~v2 = (1, 4).
Note that |V0| = | 5 1

1 4 | = 19, |V1| = | 6 1
4 4 | = 20, |V2| = | 5 6

1 4 | = 14.

Proof. For ~v ∈ V0 we have φ(~v) = ~v0 + λ1 ~v1 + ... + λk ~vk with 0 ≤ λi < 1 for
i = 1, ..., k. For ~v ∈ Vh with h > 0 we have φ(~v) = λ0 ~v0 + ...+λk ~vk with 0 ≤ λi < 1
for 0 ≤ i < h;λh = 0; 0 < λi ≤ 1 for i > h. In both cases rewrite φ(~v) as
λ′0 ~v0 + ...+ λ′k ~vk with 0 ≤ λ′i ≤ 1 for i = 0, ..., k and λ′0 minimal. Then either there
exists a smallest j with λ′j = 1 whence φ(~v) ∈ Vj , or λ′0 = 0, λ′i < 1 for i = 1, ..., k,
whence φ(~v) ∈ V0. Thus φ(V ) ⊆ V .

Next we check that φ is injective. It is obvious that φ|Vi is injective for i = 0, ..., k.
Suppose ~w = φ(~u) = φ(~v) for some ~u,~v ∈ V, ~u 6= ~v. If ~u ∈ V0, ~v ∈ Vj for some
j > 0, then

~w = λ0 ~v0 + ...+ λk ~vk = λ′0 ~v0 + ...+ λ′k ~vk

with λ0 = 1; 0 ≤ λi < 1 for i = 1, ..., k and 0 ≤ λ′i < 1 for 0 ≤ i < j;λ′j =
0; 0 < λ′i ≤ 1 for j < i ≤ k. Since λ′j = 0 we have λ′0 ≥ λ0 = 1 which yields a
contradiction.

If ~u ∈ Vh, ~v ∈ Vj for 0 < h < j ≤ k, then

~w = λ0 ~v0 + ...+ λk ~vk = λ′0 ~v0 + ...+ λ′k ~vk

with 0 ≤ λi < 1 for 0 ≤ i < h;λh = 0; 0 < λi ≤ 1 for h < i ≤ k and 0 ≤ λ′i <
1 for 0 ≤ i < j;λ′j = 0; 0 < λ′i ≤ 1 for j < i ≤ k. Since λh = 0 we have λ0 ≥ λ′0.
On the other hand, λj > 0, λ′j = 0 imply λ0 < λ′0 which also yields a contradiction.
Thus φ is injective.

Since V is finite and φ is injective, φ is also surjective. �

We call ~u and ~v φ-adjacent if ~u = φ(~v) or ~v = φ(~u). The following lemma shows
that V is in a sense minimal with respect to φ.
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Lemma 3. If ~u,~v ∈ V and ~v = ~u+ ~vi for some i with 0 ≤ i ≤ k, then ~u and ~v are
φ-adjacent.

Proof. First suppose that i > 0. Write ~u as λ0 ~v0 + ...+λk ~vk with 0 ≤ λi ≤ 1 for i =
0, ..., k and λi minimal. Since

~v = λ0 ~v0 + ...+ λi−1 ~vi−1 + (λi + 1)~vi + λi+1 ~vi+1 + ...+ λk ~vk ∈ V ⊂W,

we have λi = 0. It follows from ~u ∈ V that λj < 1 for j < i and from ~v ∈ V that
λj > 0 for j > i. Thus ~v ∈ Vi and ~u = φ(~v).

Now suppose that ~v = ~u + ~v0. Suppose, for the sake of contradiction, that
~u ∈ Vj for some j > 0. Then if ~u = λ′0 ~v0 + ... + λ′k ~vk with λ′0 minimal, we must
have λ′0 = 0, λ′j = 1. Then ~v = λ0 ~v0 + ... + λk ~vk where λ0 = 1 is minimal. This
contradicts that according to the definition of V we can always choose λ0 < 1.
Hence ~u /∈ Vj , so ~u ∈ V0 and ~v = ~u+ ~v0 = φ(~u). Again ~u and ~v are φ-adjacent. �

Let d0 be the smallest positive integer for which positive integers d1, ..., dk exist
with

(3) d0 ~v0 = d1 ~v1 + ...+ dk ~vk.

By Cramer’s rule di = d−1 · |det(~v0, ~v1, ..., ~vi−1, ~vi+1, ..., ~vk)| for i = 0, ..., k where
d = d−1

0 |det(~v1, ..., ~vk)|. By the minimality of d0 we have gcd(d0, ..., dk) = 1, whence
d ∈ Z>0. Note that µi defined at the beginning of the Introduction equals di/d0

for i = 1, ..., k. Furthermore, µ(Wi) = |det(~v0, ~v1, ..., ~vi−1, ~vi+1, ..., ~vk)| = ddi > 0
for i = 0, ..., k. Since Wi tiles Rk and the vertices of Wi are integer points, Vi
induces a similar tiling of Zk and |Vi| = µ(Wi) = ddi for i = 0, ..., k whence
|V | = d(d0 + ... + dk). Here |.| denotes the cardinality of a set. The set of linear
combinations of ~v0, ..., ~vk with integer coefficients forms a sublattice L of Zk under
addition. Let ~w1, ..., ~wk form a basis of L. Then ~wj = ρ0,j ~v0 + ... + ρk,j ~vk with
ρ0,j, ..., ρk,j ∈ Z for j = 1, ..., k and det(L) = det( ~w1, ..., ~wk). By (3)

~wj =
(
ρ0,j

d1

d0
+ ρ1,j

)
~v1 + ...+

(
ρ0,j

dk
d0

+ ρk,j

)
~vk.

Hence det(L) ∈ Z
d0

det(~v1, ..., ~vk) = dZ. Thus d|det(L) and L has at least d cosets.
The next result implies that L has exactly d cosets in Zk and that the elements in
V which belong to the same coset of L form a cycle under iteration of φ of length
d0 + ...+ dk.

Proposition. (i) If ~u ∈ V and ~v ∈ V are in the same coset of L, then ~u = φm(~v)
for some m with 0 ≤ m < d0 + ...+ dk.

(ii) If ~v is in the same coset as ~0, it can be written as

~v = a0 ~v0 − a1 ~v1 − ...− ak ~vk with ai ∈ Z, 0 ≤ ai ≤ di for i = 0, ..., k.

Proof. Since every point in Rk is a linear combination of vectors ~v1, ..., ~vk and since
by adding and subtracting vectors ~vi and so reducing the coefficients modulo 1 we
get a point in V0, each coset of L is represented in V . Since V is finite, for each
coset of L there must exist a minimal positive integer n for which some ~v ∈ V
belonging to that coset exists with φn(~v) = ~v. Hence, by the definition of φ,

(4) ~v = φn(~v) = ~v + b0 ~v0 − b1 ~v1 − ...− bk ~vk,
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with b0, ..., bk ∈ Z≥0 and b0+b1+...+bk = n. Since ~v1, ..., ~vk are linearly independent
over Z, we have b0 > 0. Hence

b1
b0
v1j + ...+

bk
b0
vkj = v0j for j = 1, ..., k.

Solving bi
b0

from the system of k linear equations in k unknowns, we find from the
definition of di that

bi
b0

=
di
d0

(i = 1, ..., k).

Since bi = b0di/d0 is an integer for i = 1, ..., k and gcd(d0, ..., dk) = 1, we obtain
d0|b0, whence b0 ≥ d0 and bi ≥ di for i = 1, ..., k. Hence

n = b0 + ...+ bk ≥ d0 + ...+ dk.

Recall that V has d(d0 + ... + dk) elements and splits into at least d cosets. Since
every coset of L has a cycle of length at least d0 + ... + dk and these d cycles are
obviously disjoint, there are exactly d cycles and each has to have minimal length
n = d0 + ...+ dk in view of the total number of elements of V . Thus for any ~v ∈ V
the set {~v, φ(~v), ..., φn−1(~v)} represents a full coset in V . This proves assertion (i).
Statement (ii) follows immediately from (4) and the fact that all the inequalities in
the proof turned out to be equalities. �

Remark. Let Λ be the lattice generated by the vectors ~v0 + ~v1, ..., ~v0 + ~vk. The
function φ can be considered as adding ~v0 and then, if necessary, subtracting with
some ~v0 + ~vi ∈ Λ to secure that the image is in V . The Proposition implies that no
two points of V are equivalent modulo Λ. Since |det(Λ)| = d(d0+d1+...+dk) = |V |,
this implies that V represents Zk/Λ.

3. Generalization of the Fine and Wilf theorem

The Proposition implies that a function f on V which is periodic with periods
~v0, ..., ~vk is constant on each coset in V of L. The following theorem provides a
slight refinement. If k = 1, it is a theorem of Fine and Wilf ([3] Theorem 1).

Theorem 1 (Fine and Wilf for any dimension). Suppose f : V → R has periods
~v0, ..., ~vk in the sense that f(~v) = f(~v + ~vi) whenever ~v,~v + ~vi ∈ V , for i = 0, ..., k.
Then f is constant within each coset of L in V . The assertion is still valid when
from each coset at most one element is removed, but it is no longer true if from
some coset two non-φ-adjacent elements are removed.

Proof. Since f(~v) = f(φ(~v)) for every ~v ∈ V , the Proposition implies that f is
constant on each coset of L. If we remove ~v ∈ V and no other element of the
same coset, we see from f(φ(~v)) = f(φ2(~v)) = ... = f(φn−1(~v)) that f is constant
on the remaining elements in V of this coset. (Of course one may also remove
~v, φ(~v), ..., φm(~v) at the same time for any m.)

In case we remove two non-φ-adjacent elements in V from the same coset, ~u
and ~v say, we have ~v = φi(~u) for some i with 1 < i < n − 1. By Lemma 3 a
point φh(~u) is non-φ-adjacent to a point φm(~u) when 0 < h < i, i < m < n and
therefore we can give different values to f(φ(~u)) = f(φ2(~u)) = ... = f(φi−1(~u)) and
to f(φi+1(~u)) = ... = f(φn−1(~u)). Thus f need not be constant on the coset of L
any longer. �
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It will rarely happen that a function f has a domain which is exactly a trans-
late of V . It is false that in statement (i) of the Proposition the set V can be
replaced by any ‘convex’ set V ∗ containing V . A natural requirement is that V ∗

is connected where two points are joined by an edge if they differ by ±~vi for some
i ∈ {0, ..., k}. This idea has been worked out by Giancarlo and Mignosi [4]. As
stated in the Introduction, Mignosi, Restivo and Silva [8] and others have given
sufficient conditions for parallelograms in R2 to satisfy this connectedness. Here we
give a sufficient condition (Periodicity Lemma) for parallelotopes in any dimension.

Corollary. Suppose ~v1, ..., ~vk ∈ Zk are linearly independent over Z and ~v0 ∈ Zk is
given by (1). Let

V ∗ = {λ1 ~v1 + ...+ λk ~vk ∈ Zk : 0 ≤ λi < li}

where li ≥ 1 + µi for i = 1, ..., k. Let f be periodic modulo ~v0, ..., ~vk on V ∗. Then
f is constant on each coset in V ∗ of the lattice generated by ~v0, ..., ~vk.

Proof. Observe that V ⊂ V ∗. So by the Proposition it suffices to prove that for
every ~v ∈ V ∗ there is a ~u ∈ V in the same coset as ~v with f(~u) = f(~v). Suppose
~v = κ1 ~v1 + ...+ κk ~vk ∈ V ∗. Then

f(~v) = ... = f(~v − bκ1c~v1) = ... = f(~v −
k∑
κ=1

bκic~vi) = f(~u),

where ~u := ~v −
∑k
κ=1bκic~vi ∈ V0 ⊂ V. �

4. Application to the generalized Frobenius problem

Recall that in the Frobenius Coin-changing Problem we are given positive inte-
gers v0, ..., vk with greatest common divisor 1, and asked to find the least integer n
such that every integer > n can be written as a sum of non-negative integer multi-
ples of v0, ..., vk. In the case k = 1 the answer v0v1−v0−v1 is due to Sylvester [15].
Here we consider the corresponding question for ~v0, ..., ~vk ∈ Zk such that d = 1,
which means that the vectors generate the full lattice Zk.

The Proposition says that every point in V can be written as a0 ~v0− a1 ~v1− ...−
ak ~vk with ai ∈ Z, 0 ≤ ai ≤ di for i = 0, ..., k and that

(3) d0 ~v0 − d1 ~v1 − ...− dk ~vk = ~0.

Recall that ~0 cannot be written as a positive linear combination of the vectors
~v0, ..., ~vk. Put

~w = (d0 − 1)~v0 − ~v1 − ...− ~vk = (d1 − 1)~v1 + ...+ (dk − 1) ~vk − ~v0

and
X = {s1 ~v1 + ...+ sk ~vk + ~w : s1 > 0, ..., sk > 0} ∩ Zk.

Theorem 2 (Sylvester for k+1 vectors in Zk). Every point in X can be written as
λ0 ~v0 + ...+ λk ~vk where λ0, ..., λk are non-negative integers, but an integer point of
the form s1 ~v1 + ...+ sk ~vk + ~w with s1 ≥ 0, ..., sk ≥ 0, s1s2 · · · sk = 0 can be written
in this way unless and only unless s1, ..., sk ∈ Z.

Proof. The set X for the case k = 2 is illustrated in Figure 2.
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Figure 2. The set X (to the northeast of the two line segments)
for Sylvester’s Theorem in two dimensions formed using ~v0 = (1, 1),
~v1 = (3, 1) and ~v2 = (1, 4).

We first show that every lattice point in the set {d0 ~v0−~v : ~v ∈ V } can be written
in the required form. Let ~x be an element of this set. Then there exist integers ai
with 0 ≤ ai ≤ di for i = 0, ..., k such that

~x = d0 ~v0 − a0 ~v0 + a1 ~v1 + ...+ ak ~vk = (d0 − a0)~v0 + a1 ~v1 + ...+ ak ~vk

which has the required form.
Now consider an arbitrary point ~x = s1 ~v1 + ...+sk ~vk+ ~w in X . Put ti = dsie−1

for i = 1, ..., k. Consider the lattice point

~x− t1 ~v1 − ...− tk ~vk = ~w + (s1 − t1)~v1 + ...+ (sk − tk) ~vk
= d0 ~v0 − ~v0 − (ds1e − s1)~v1 − ...− (dske − sk) ~vk.

Now ~v0+(ds1e−s1)~v1 +...+(dske−sk) ~vk is in V , as we have shown in the beginning
of the proof of Lemma 2. Hence ~x− t1 ~v1− ...− tk ~vk is of the form d0 ~v0−~v (~v ∈ V ).
By the first part of the proof there exist non-negative integers λ0, ..., λk such that

~x− t1 ~v1 − ...− tk ~vk = λ0 ~v0 + ...+ λk ~vk.

Thus
~x = λ0 ~v0 + (λ1 + t1)~v1 + ...+ (λk + tk) ~vk

as required.
Now suppose for instance s1 = 0. (The other cases are similar.) We have to show

that no lattice point of the form s2 ~v2 + ... + sk ~vk + ~w with s2, ..., sk non-negative
integers can be written as λ0 ~v0 + ... + λk ~vk with λ0, ..., λk non-negative integers.
By (3) we have

~v0 =
d1

d0
~v1 + ...+

dk
d0
~vk.
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Substituting this into both representations and assuming that they are equal we
obtain

k∑
i=1

si~vi +
k∑
i=1

(di − 1)~vi −
k∑
i=1

di
d0
~vi = λ0(

k∑
i=1

di
d0
~vi) +

k∑
i=1

λi~vi.

Since ~v1, ..., ~vk are linearly independent, this implies that

si + di − 1− di
d0

(1 + λ0)− λi = 0 (i = 1, ..., k).

Let gcd(d0, 1 +λ0) = g and write d0 = gD0 and 1 +λ0 = gL0. The set of equations
then becomes

si + di − 1− di
D0

L0 − λi = 0 (i = 1, ..., k).

Since all the terms here are integers and gcd(D0, L0) = 1, this implies that D0

divides di for all i. By gcd(d0, ..., dk) = 1, we must have D0 = 1. We now obtain a
contradiction by noting that s1 = 0, λ0 ≥ 0, λ1 ≥ 0, L0 > 0 and hence

0 = s1 + d1 − 1− d1

D0
L0 − λi = d1(1− L0)− 1− λ1 < 0.

Finally, consider a lattice point ~v of the form s2 ~v2 + ... + sk ~vk + ~w with s2 ≥
0, ..., sk ≥ 0 which cannot be written as λ0 ~v0 + ... + λk ~vk with λ0, ..., λk non-
negative integers. We know that ~v + ~v0 is in X and can therefore be written
as e0 ~v0 + ... + ek ~vk with ei ∈ Z≥0 for all i. We have e0 = 0 since otherwise
~v = (e0 − 1)~v0 + e1 ~v1 + ...+ ek ~vk would contradict the definition of ~v. Hence

~v − ~w = s2 ~v2 + ...+ sk ~vk = (e1 − d1 + 1)~v1 + ...+ (ek − dk + 1) ~vk.

Since ~v1, ..., ~vk are linearly independent over Z, we obtain si = ei − di + 1 for
i = 2, ..., k. Thus si ∈ Z for i = 2, ..., k. �

Remark. The obvious analogue of Sylvester’s result mentioned in the Introduction
that for 0 ≤ m ≤ n0 exactly one among m and n0 − m is a non-negative linear
combination of a0 and a1 is false. If ~v0 = (2, 2), ~v1 = (3, 0), ~v2 = (1, 5), then
~w = (24, 23) and both (5, 8) and ~w − (5, 8) = (19, 15) cannot be written as linear
combinations of ~v0, ~v1, ~v2 over Z≥0.

Of course, in general at most one of the vectors ~v and ~w−~v can be written as a
non-negative linear combination, since by Theorem 2 the sum ~w cannot be written
in this way. A valid analogue of Sylvester’s result will be described in [9]. Theorem
2 implies another complementarity property, viz. that if ~w + ~v is an integer point
on the boundary of X , then exactly one among ~v and ~w+~v is a linear combination
of ~v0, ..., ~vk over Z≥0,

5. Related representations of Zk/Λ

Remark 1. The parallelepiped with the disjoint sums of vectors ~v0 + ~vi (i = 1, ..., k)
as vertices is the simplest fundamental domain of Rk/Λ. One may wonder whether
in this parallelepiped the integer points in a coset of L also form a cycle when points
differring by ±~vi for some i ∈ {0, ..., k} are joined. The following example shows
that this is not true and that one has to introduce one more period to restore the
cycle along the representatives. Take k = 2, ~v0 = (4, 3), ~v1 = (7,−3), ~v2 = (−4, 4).
Then Λ has as generating vectors ~u1 := ~v0 + ~v1 = (11, 0) and ~u2 := ~v0 + ~v2 = (0, 7).
Hence U consists of the set {(x, y) ∈ Z2 : 0 ≤ x < 11, 0 ≤ y < 7}. After joining
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h i k b d g i j a c e
b d g i k b d f h i k
i k b d g i j l b d g
d g i j a c e h i k b
k b d f h i k b d g i
g i j l b d g i k b d
a c e h i k b d g i j

Figure 3. Distinct components for a function with period vectors
(4, 3), (7,−3), (−4, 4) are indicated by distinct letters. If a period
vector (7, 4) is added, only one component is left.

entries as indicated above, the integer points fall apart in 12 components indicated
by letters in Figure 3, since the 4-by-3 points in the upper right corner have only
one adjacent point and all others have at most 2. If we introduce an extra period,
that is, also connect entries which differ by ±(~v0 + ~v1 + ~v2) = ±(7, 4), then the
points in U form a cycle again.

Remark 2. Both Pierre Arnoux and Laurent Vuillon have remarked that the ap-
proach in this paper is related to a method used by Ito and Kimura [6] in their
analysis of the Rauzy fractal. The fundamental difference between both approaches
is the shape of the resulting representation of Zk/Λ. By using substitutions as Ito
and Kimura do, the representation becomes non-convex and has a boundary like
a fractal. The iterated use of φ in our approach results in the polytope V whose
faces are (k − 1)-dimensional parallelotopes. The shape of V is essential for the
application in the Corollary and in Theorem 2.
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14. C. Smoryński, Skolem’s solution to a problem of Frobenius, Math. Intelligencer 3 (1981),
123-132. MR 83b:03031

15. J.J. Sylvester, Mathematical questions, with their solutions, Educational Times 41 (1884),
21.

16. R. Tijdeman and L. Zamboni, The Fine and Wilf theorem for any number of periods, in
preparation.

Department of Mathematics and Statistics, Curtin University of Technology, P.O.

Box U1987, Perth, Western Australia 6001, Australia

E-mail address: simpson@maths.curtin.edu.au

Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Neth-

erlands

E-mail address: tijdeman@math.leidenuniv.nl

http://www.ams.org/mathscinet-getitem?mr=58:27740
http://www.ams.org/mathscinet-getitem?mr=83b:03031

	1. Introduction
	2. Lemmas and a proposition
	3. Generalization of the Fine and Wilf theorem
	4. Application to the generalized Frobenius problem
	5. Related representations of Zk / 
	References

