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HYPERCYCLIC OPERATORS
ON NON-LOCALLY CONVEX SPACES

JOCHEN WENGENROTH

(Communicated by Jonathan M. Borwein)

ABSTRACT. We transfer a number of fundamental results about hypercyclic
operators on locally convex spaces (due to Ansari, Beés, Bourdon, Costakis,
Feldman, and Peris) to the non-locally convex situation. This answers a prob-
lem posed by A. Peris [Multi-hypercyclic operators are hypercyclic, Math. Z.
236 (2001), 779-786).

During the past years much research has been done about hypercyclic operators;
the article [6] contains a rather complete survey of results until 1999. A (continuous
linear) operator T : X — X on a topological vector space X is called hypercyclic if
it admits a vector z € X having dense orbit Orb(z) = {z,Tz,T?z,...} (x is then
called a hypercyclic vector). The following theorem collects some of the recent
fundamental results:

Theorem. Let X be a locally convex space and let T : X — X be an operator.

(1) Ansari [1]: If T is hypercyclic, then so is T™ for each n € N.

(2) Bourdon [B], Bes [2]: If T is hypercyclic there is a dense invariant subspace
of (except for 0) hypercyclic vectors.

(3) Costakis [5], Peris [8]: If T is multi-hypercyclic (i.e. there are finitely many
vectors such that the union of their orbits is dense), then T is hypercyclic.

(4) Bourdon, Feldman [4]: FEach orbit is either everywhere dense or nowhere
dense.

A. Peris asked in [8] whether in (3) local convexity is really needed and we now
show that it is indeed not:

ALL PARTS OF THE THEOREM HOLD FOR TOPOLOGICAL VECTOR SPACES.

The only place in the proof of the Theorem where local convexity plays a role is
the following lemma which, for hypercyclic operators, is due to P. Bourdon [3] (the
complex case) and J. Bes [2] (the real case). Our proof for the non-locally convex
case is quite similar to their arguments.
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Lemma. Let T be a continuous linear operator on a topological vector space ad-
mitting a vector with somewhere dense orbit. Then for each non-zero polynomial p
the operator p(T') has dense range.

Of course, the coefficients of the polynomial are assumed to be real if X is a real
topological vector space.

Proof. We first consider a complex topological vector space X. Since the complex
polynomial factorizes and the composition of dense range operators has dense range
we may assume p(z) = z — A for some A € C.

We assume L = (T — Aid)(X) # X and consider the quotient map ¢ : X — X/L
which clearly vanishes on L and thus satisfies ¢ o (T — Aid) = 0. Inductively this
yields g o T™ = \"q for all n € N and therefore

qg(Orb(z)) ={\"¢q(z): ne N} =M

where x is a vector whose orbit is somewhere dense. Since ¢ is a quotient map,
q(Orb(z)) is somewhere dense, too. On the other hand, M is contained in a one-
dimensional subspace of the separated (since L is closed) topological vector space
X/L, hence M is nowhere dense if the dimension of X/L is at least two. Otherwise
X/L is isomorphic to C and then (depending on |A|) M either consists of a null
sequence, is contained in some circle, or is closed, and in any case nowhere dense,
a contradiction.

Now let X be a real topological vector space. If there is a polynomial p such that
p(T) does not have dense range we could use similar arguments as in [2] to produce
a finite-dimensional factor of the dynamical system (X,T') with a somewhere dense
orbit — indeed, by factorization it is enough to consider p(t) = > — at — b and then
we would obtain that the linear map given by (¢ }) on R? has a somewhere dense
orbit — and elementary arguments show that this is impossible.

However, there is a simpler proof which was generously provided by A. Peris.
Let X = X +iX and T(x + iy) = T(x) + iT(y) be the complexifications. Since
p(T) has dense range if and only if p(f) = p(T) has dense range, it is again enough
to show that 7' — Aid has dense range for each A € C. Assuming the contrary, we
define as before L as the closure of (T — Aid)(X) and denote the quotient map
X — X/L by q. If Orb(z) is somewhere dense in X, then A = Orb(z) 4+ iOrb(z) is
somewhere dense in X. On the other hand, for z = T"(z) 4+ iT™(z) € A we have
q(z) = (A" 4+ iA™)q(z), hence the somewhere dense set ¢(A) is contained in a one-
dimensional subspace which implies X /L = C (or, in other words, that ¢ € X' is an
cigenvector of T*). Now, we can argue as in [8]: Q(y) = |q(y)| defines a continuous
and open map X — [0,00), hence Q(Orb(z)) is somewhere dense contradicting

QT (x)) = (T (@))| = |¢(T™(@))| = [N"a(x)| = |AI"|g(=)].
O

The results about hypercyclicity stated in the theorem above have counterparts
for supercyclic operators which, by definition, have an orbit whose scalar multiples
are dense, i.e. there is x € X such that Orb((z)) = {aT™(z) : n € N, a € K}
is dense ({x) denotes the linear span of {z}). For locally convex spaces, Peris [8]
proved that (in the obvious sense) multi-supercyclic operators are supercyclic and
Bourdon and N. Feldman [4] even showed that Orb((z)) is either everywhere dense
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or nowhere dense for each vector individually. As for the hypercyclic case, local
convexity was only used in the proof of the locally convex version of:

Lemma. Let T be an operator on a topological vector space X admitting a vector
x such that Orb({z)) is somewhere dense. Then there exists A € C such that p(T)
has dense range for each polynomial p with p(\) # 0.

Proof. Let us show the real case; the complex one is similar but simpler. If p
is a polynomial with p(T') having non-dense range, there is a root Ay € C of p
such that T — A1 id does not have dense range (where as before, X and T denote
complexifications) and if the lemma were false we could find Ay ¢ {A;,\;} such
that T — A2id has non-dense range, too. Again, we denote by L; the closures of
(T — Ajid) (X) and the corresponding quotient maps by q;-

Since Orb((z))+iOrb((z)) is somewhere dense in X, we again obtain )A(:/Lj ~C,
i.e. g; is an eigenvector of T* with respect to ;. If g5 = ¢;+iv; with real continuous
linear functionals ¢; and 1; we obtain that either ¢ or 1, is linear independent
of {2,192}, since otherwise we could find a,b € C such that ¢go = ag; + bgy where
71 = @1 — i1y is an eigenvector with respect to A;, contradicting the fact that
eigenvectors with respect to different eigenvalues are linearly independent. Hence
there is y € X such that ¢1(y) # 0 and ¢2(y) = 0.

We fix a non-zero a € R and n € N such that u = aT"(x) € A where A is the
interior of Orb((z})). Since A—w is a 0-neighbourhood in X there is € > 0 such that
for 0 < § < e we have u+dy € A C Orb((x)). For fixed ¢ with ¢; (u+dy) # 0 we can
thus choose sequences (3;)ien in R and (k;)jen in N such that 3T (x) — u + 6y.
From A; # 0 (as T has dense range) and g1 () # 0 (as q1(Orb((z)) + iOrb({(z))) is
somewhere dense) we obtain for [ large enough

Yo" ga(@) | _ qz(ﬁzT’”(x))‘ qz(u+5y)‘ _ g2(u) ‘
Ml a@)] o [a(BiT™ () a(utoy)|  Ja(w)+6q(y)
Since g2(u) = aAjge(z) # 0 this implies that |g1(v) + 01 (y)| is independent of §
which contradicts ¢1(y) # 0. O
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