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HOWE DUALITY AND
THE QUANTUM GENERAL LINEAR GROUP

R. B. ZHANG

(Communicated by Dan M. Barbasch)

Abstract. A Howe duality is established for a pair of quantized enveloping
algebras of general linear algebras. It is also shown that this quantum Howe
duality implies Jimbo’s duality between Uq(gln) and the Hecke algebra.

1. Introduction

A treatment of classical invariant theory based on the highest weight theory of
representations of complex reductive algebraic groups was given in [Ho], where the
organizing principle is the multiplicity free actions of reductive groups on algebraic
varieties commonly referred to as Howe dualities. In the context of the general
linear group over the complex field, the Howe duality amounts to the following
result (or a variant of it in terms of right modules): Regard Ck as the natural
(left) GLk(C)-module for each k. GLm(C) ×GLn(C) acts on the algebra of regu-
lar functions P(Cm ⊗ Cn) on Cm ⊗ Cn in a multiplicity free manner. Moreover,
P(Cm ⊗ Cn) =

⊕
λ∈Λmin(m,n)

L
[m],0
λ ⊗ L[n],0

λ , where L[m],0
λ (respectively L

[n],0
λ ) de-

notes the irreducible GLm(C)-module (respectively GLn(C)-module) with highest
weight λ, and Λmin(m,n) is the set of the highest weights corresponding to partitions
of depth ≤ min(m,n). While this result can be proven by relatively elementary
means, its implications are far reaching. As shown in [Ho], the First and Second
Fundamental Theorems of the invariant theory for the general linear group are all
immediate consequences of this result. In particular, the celebrated Schur duality
can be easily derived from the Howe duality.

This paper aims to develop a quantum version of the Howe duality for a pair
of quantized enveloping algebras of general linear algebras at generic q. The main
problem is to construct a non-commutative analogue Vm,n of P(Cm ⊗ Cn). We
achieve this by investigating the Hopf algebra of functions on the quantum general
linear group. With the Vm,n given in Definition 3.4, we prove

Theorem 1.1. Vm,n forms a module algebra under the left action of Uq(glm) and
right action of Uq(gln), with the actions of the two quantum algebras being mutual
centralizers. Furthermore,

Vm,n =
⊕

λ∈Λmin(m,n)

L
[m]
λ ⊗ L̃[n]

λ ,
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where L
[m]
λ (respectively L̃

[n]
λ ) denote the irreducible left Uq(glm)-module (respec-

tively right Uq(gln)-module) of type I [CP] with highest weight λ.

The notion of a module algebra over a bi-algebra is explained in Definition 3.1.
It is an old result of Jimbo’s [Ji] dating back to the mid-1980s (and having

since been treated by many other people) that there existed a duality between
Uq(gln) and the Hecke algebra analogous to the celebrated Schur duality between
GLn(C) and the symmetric group. We shall derive the quantum Schur duality
from the quantum Howe duality established here. For doing this, we investigate
the representations of the q-Weyl group [KR] of Uq(gln) on the spaces of zero weight
vectors (see equation (4.4)) of finite-dimensional Uq(gln)-modules. They give rise to
representations of the Hecke algebra, which we believe are of independent interest,
thus are studied in some detail.

2. The quantum general linear group

Let h∗ be the complex vector space which has a basis {εa|1 ≤ a ≤ n} and is
endowed with a non-degenerate symmetric bilinear form ( , ) : h∗×h∗ → C defined
by (εa, εb) = δab. Set h∗Z =

⊕
a Zεa. The quantized enveloping algebra Uq(gln) of

the general linear algebra gln is a Hopf algebra over the field of rational functions
C(t) in t. As a unital associative algebra, Uq(gln) is generated by Ka, K

−1
a , 1 ≤

a ≤ n, and Eb, Fb, 1 ≤ b < n, subject to the standard relations, which we spell
out in order to fix our notation:

KaK
−1
a = 1, K±1

a K±1
b = K±1

b K±1
a ,

KaEbK
−1
a = q(εb−εb+1, εa)Eb, KaFbK

−1
a = q−(εb−εb+1, εa)Fb,

EaFb − FbEa = δab(KaK
−1
a+1 −K−1

a Ka+1)/(q − q−1),
EaEb = EbEa, FaFb = FbFa, |a− b| > 1,

S(+)
a a±1 = S(−)

a a±1 = 0,

where q = t2, and

S(+)
a a±1 = (Ea)2Ea±1 − (q + q−1)Ea Ea±1 Ea + Ea±1 (Ea)2,

S(−)
a a±1 = (Fa)2Fa±1 − (q + q−1)Fa Fa±1 Fa + Fa±1 (Fa)2.

We will also need the explicit form of the other structural maps of Uq(gln): the
comultiplication ∆ : Uq(gln) → Uq(gln)⊗Uq(gln),

∆(Ea) = Ea ⊗KaK
−1
a+1 + 1⊗ Ea,

∆(Fa) = Fa ⊗ 1 +K−1
a Ka+1 ⊗ Fa,

∆(K±1
a ) = K±1

a ⊗K±1
a ;

the co-unit ε : Uq(gln)→ C(t),

ε(Ea) = ε(Fa) = 0, ε(K±1
b ) = 1;

and the antipode S : Uq(gln)→ Uq(gln),

S(Ea) = −EaK−1
a Ka+1, S(Fa) = −KaK

−1
a+1Fa, S(K±1

a ) = K∓1
a .

We shall denote by Lλ the irreducible left Uq(gln)-module of type I (in the sense
of [CP]) with highest weight λ ∈ h∗Z. More explicitly, if v+ is the highest weight
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vector of Lλ, then

Eav+ = 0, 1 ≤ a < n,

Kav+ = q(εa, λ)v+, ∀a.

Similarly, we denote by L̃λ, λ ∈ h∗Z, the irreducible right Uq(gln)-module which
admits a unique 1-dimensional subspace C(t)ṽ+ such that

ṽ+Fa = 0, 1 ≤ a < n,

ṽ+Ka = q(εa, λ)ṽ+, ∀a.

We shall call L̃λ the irreducible right Uq(gln)-module of type I with highest weight
λ.

Define Λn := {
∑n

a=1 λaεa|λa ∈ Z+, λa ≥ λa+1}. Let Λk = Λn ∩
(⊕k

i=1 Zεi
)

if and only if k ≤ n. For λ =
∑n
a=1 λaεa ∈ Λn, we set |λ| =

∑n
a=1 λa. Let

Λn(d) = {λ ∈ Λn||λ| = d}. The irreducible left (respectively right) Uq(gln)-module
Lλ (respectively L̃λ) is finite dimensional if λ ∈ Λn.

Of particular interest for us here is the contravariant vector module V = Lε1 . It
has the standard basis {va|1 ≤ a ≤ n} with the action of Uq(gln) given by

Eavb = δb a+1va,

Favb = δbava+1,

Kavb = [1 + (q − 1)δab] vb.

We shall denote by π the irreducible Uq(gln)-representation relative to this basis.
The tensor power V ⊗k of V is completely reducible for any k ∈ Z+:

V ⊗k =
⊕

λ∈Λn(k)

mλLλ,(2.1)

where 0 < mλ ∈ Z+ is the multiplicity of Lλ.
Let Uq(gln)0 := {f ∈ Uq(gln)∗ | kerf contains a cofinite ideal of Uq(gln)} de-

note the finite dual of the quantized enveloping algebra Uq(gln). Standard Hopf
algebra theory asserts [Mon] that Uq(gln)0 has the structure of a Hopf algebra in-
duced by the Hopf algebra structure of Uq(gln). Denote by m0, ∆0, ε0, and S0 the
multiplication, comultiplication, co-unit and antipode of Uq(gln)0 respectively.

Let tab, 1 ≤ a, b ≤ n, be the matrix elements of the contravariant vector repre-
sentation of Uq(gln) relative to the standard basis. That is, the tab are elements of
the dual space Uq(gln)∗ of Uq(gln) defined by

xva =
∑
b

〈tba, x〉vb, ∀x ∈ Uq(gln),(2.2)

where 〈·, ·〉 represents dual space pairing. Clearly the matrix elements of any
finite-dimensional representation of Uq(gln) belong to Uq(gln)0. In particular, tab ∈
Uq(gln)0, ∀a, b. Under the co-multiplication of Uq(gln)0, we have

∆0(tab) =
∑
c

tac ⊗ tcb.

Definition 2.1. Denote by Tq(gln) the subbialgebra of Uq(gln)0 generated by the
tab, 1 ≤ a, b ≤ n.
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Any finite-dimensional left Uq(gln)-module has a natural right Uq(gln)0-co-
module structure. In particular, if {w(λ)

α |α = 1, 2, ...,dimLλ} is any basis of the
finite-dimensional irreducible Uq(gln)-module Lλ, then the right Uq(gln)0-comodule
action Lλ → Lλ ⊗ Uq(gln)0 is given by w

(λ)
α 7→

∑
β w

(λ)
β ⊗ t

(λ)
βα , where the t

(λ)
βα

are the matrix elements of the Uq(gln)-representation associated to Lλ relative to
the given basis. If λ ∈ Λn, then it follows from (2.1) that all the t(λ)

αβ belong to
Tq(gln). Furthermore, Burnside’s theorem implies that the matrix elements of all
the irreducible representations of Uq(gln) with highest weights in Λn are linearly
independent. Thus

Proposition 2.1. {t(λ)
βα |1 ≤ α, β ≤ dimLλ, λ ∈ Λn} forms a basis of Tq(gln).

This will be called a Peter-Weyl basis of Tq(gln).
Below we give a more explicit description of the bialgebra Tq(gln) in terms of

generators and relations following [FRT, Ta]. Let R be the R-matrix associated
with the irreducible Uq(gln)-representation π furnished by the module V in the
standard basis:

R := 1⊗ 1 +
n∑
a=1

(q − 1)eaa ⊗ eaa + (q − q−1)
∑
a<b

eab ⊗ eba.

R satisfies the quantum Yang-Baxter equation, and also the following commutation
relation:

R(π ⊗ π)∆(x) = (π ⊗ π)∆′(x)R, ∀x ∈ Uq(gln),(2.3)

where ∆′ is the opposite co-multiplication of Uq(gln).

Definition 2.2 ([FRT]). Let Cq[Xab] be the unital associative algebra over C(t)
generated by Xab, 1 ≤ a, b ≤ n, subject to the following relations:

R12X1X2 = X2X1R12,(2.4)

where R12 = R⊗ 1, X1 =
∑
a,b eab ⊗ 1⊗Xab, X2 =

∑
a,b 1⊗ eab ⊗Xab.

As is well known, Cq[Xab] has the structure of a bialgebra, with the comultipli-
cation ∆0(Xab) =

∑
cXac ⊗Xcb, and co-unit ε0(Xab) = δab.

Introduce an order > for the pairs (a, b), 1 ≤ a, b ≤ n, such that (a, b) > (a+k, c),
(a, b + k) > (a, b), if k is a positive integer. Let X(k) =

∏>
a,b (Xab)

kab , where the
product is arranged according to the order > of the indices of X ’s in such a way
that Xab is positioned in front of Xcd if (a, b) > (c, d). The k ∈ Zn2

+ appearing in
the superscript of X(k) denotes the square matrix (kab)

n
a,b=1. Set |k| =

∑
ab kab.

The following lemma is well known. It is an immediate consequence of the defining
relations (2.4).

Lemma 2.1. The monomials X(k), k ∈ Zn2

+ , form a basis of Cq[Xab].

The following result was established in [Ta]:

Theorem 2.1 ([Ta]). The following map defines a bialgebra isomorphism:

ı : Cq[Xab]→ Tq(gln), X(k) 7→ T (k) :=
>∏
a,b

(tab)
kab .(2.5)
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3. Multiplicity free actions

Let Θ = {1, 2, ...,m}, m ≤ n. We consider a number of Hopf subalgebras of
Uq(gln) related to m. One is Uq(glm) generated by the elements of the following
set: S = {K±1

i , 1 ≤ i ≤ m; Ej , Fj , 1 ≤ j < m}. We also have two parabolic
Hopf subalgebras Uq(p+) and Uq(p−), where Uq(p+) is generated by the elements of
S∪{Eµ−1, K

±1
µ , µ > m}, and Uq(p−) by the elements of S∪{Fµ−1, K

±1
µ , µ > m}.

Both Hopf subalgebras are graded by the Abelian group Γ =
⊕

µ>m Z+(εµ−1− εµ):

Uq(p+) =
⊕
β∈Γ

Uq(p+)(β),

Uq(p−) =
⊕
β∈Γ

Uq(p−)(−β).

Set Uq(p+)+ =
⊕

06=β∈Γ Uq(p+)(β) and Uq(p−)− =
⊕

06=β∈Γ Uq(p−)(−β).
There exist natural actions of Uq(gln) on Tq(gln) which preserve the algebraic

structure of Tq(gln) in the sense that the multiplication and unit of Tq(gln) are
Uq(gln)-module homomorphisms. Such actions are best described by the notion of
module algebras over bi-algebras, which we recall presently.

Definition 3.1 ([Mon]). Let H be a bi-algebra. An associative algebra A is called
a left module algebra over H if

(1) the underlying vector space of A is a left H-module, and
(2) the multiplication m : A⊗A→ A and unit 1A : C→ A of A are H-module

homomorphisms,
where the H-module structure of A⊗A is defined with respect to the comultiplica-
tion of H , and C is regarded as the H-module associated to the 1-dimensional
representation given by the co-unit of H .

A left module algebra over Hopp is also called a right module algebra over H ,
where Hopp denotes the bialgebra which has the same coalgebraic structure but the
opposite algebraic structure to that of H .

It is easy to show that Tq(gln) forms a left module algebra over Uq(gln) under
the following left action:

Φ : Uq(gln)⊗ Tq(gln) → Tq(gln),

x⊗ f 7→
∑
(f)

f(1)〈f(2), x〉,

where we have used Sweedler’s notation for the comultiplication of f ∈ Tq(gln):
∆(f) =

∑
(f) f(1) ⊗ f(2). Similarly, under the following right action:

Ψ̃ : Tq(gln)⊗Uq(gln) → Tq(gln),

f ⊗ x 7→
∑
(f)

〈f(1), x〉f(2),

Tq(gln) forms a right module algebra over Uq(gln). Closely related to Ψ̃ is the
following left Uq(gln)-action on Tq(gln):

Ψ : Uq(gln)⊗ Tq(gln) → Tq(gln),

x⊗ f 7→
∑
(f)

〈f(1), S(x)〉f(2).
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Tq(gln) forms a left Uq(gln)-module algebra under Ψ with respect to the opposite
comultiplication of Uq(gln). It is obvious but important to observe that the action
Φ commutes with Ψ and Ψ̃. Also these actions naturally restrict to actions of the
subalgebras Uq(glm), Uq(p+) and Uq(p−) on Tq(gln).

Below we shall use the following notation. For any f ∈ Tq(gln), x ∈ Uq(gln),

Ψx(f) := Ψ(x⊗ f), Φx(f) := Φ(x⊗ f), Ψ̃x(f) := Ψ̃(f ⊗ x).

Definition 3.2.

R[n]
m := {f ∈ Tq(gln)|ΨK±1

c
(f) = f, c > m, Ψx(f) = 0, x ∈ Uq(p−)−}.

Lemma 3.1. The following set forms a basis of R[n]
m :

>∏
1≤i≤m,1≤b≤n

(tib)
kib | kib ∈ Z+

 .

Proof. Observe that T (k) = ı(X(k)) ∈ R[n]
m if and only if it belongs to this set. Now

the lemma follows from Theorem 2.1. �

Theorem 3.1. (1) R[n]
m forms a left module algebra over Uq(gln) under the action

Φ, and also forms a right module algebra over Uq(glm) under the action Ψ̃.
(2) Φ(Uq(gln)) and Ψ̃(Uq(glm)) are mutual centralizers in EndC(t)(R[n]

m ). Fur-
thermore, with respect to the joint action Φ⊗ Ψ̃ of Uq(gln)⊗Uq(gln),

R[n]
m
∼=

⊕
λ∈Λm

Lλ ⊗ L̃(0)
λ ,(3.1)

where L̃(0)
λ denotes the irreducible right Uq(glm)-module with highest weight λ ∈ Λm.

Proof. Consider part (1) first. Let

C− :=

(⊕
a>m

[C(t)(Ka − 1)⊕ C(t)(K−1
a − 1)]

)⊕
Uq(p−)−,

which forms a two-sided co-ideal of Uq(gln). For any f, g ∈ R[n]
m ,

Ψx(fg) =
∑
(x)

Ψx(1)(f)Ψx(2)(g) = 0, ∀x ∈ C−.

Thus, fg belongs to R[n]
m , that is, R[n]

m forms a subalgebra of Tq(gln).
Since the left actions Φ and Ψ commute, R[n]

m clearly forms a left Uq(gln)-module
under Φ. Consider Ψ̃u(f) =

∑
〈f(1), u〉f(2) for u ∈ Uq(glm) and f ∈ R[n]

m . Now

ΨKcΨ̃u(f) = Ψ̃KcuK
−1
c

(f) = Ψ̃u(f), c > m,

ΨxΨ̃u(f) = ΨxS−1(u)(f) = 0, x ∈ Uq(p−)−,

where in the last equation we have used the fact that xS−1(u) ∈ Uq(p−)−. Thus
R[n]
m forms a right Uq(glm)-module under the action Ψ̃. The Φ(Uq(gln)) and

Ψ̃(Uq(glm)) clearly preserve the algebraic structure of R[n]
m in the sense of Defi-

nition 3.1. This completes the proof of part (1).
Now we prove the decomposition (3.1). This requires some preparation. Let L(0)

λ

be an irreducible finite-dimensional Uq(p−)-module with highest weight λ. Then
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L
(0)
λ is irreducible with respect to Uq(glm) ⊂ Uq(p−), and the elements of Uq(p−)−

act on L(0)
λ by zero. Let

(3.2) Oλ := {ζ ∈ L(0)
λ ⊗ Tq(gln)|(id ⊗Ψp)ζ = (S(p)⊗ id)ζ, ∀p ∈ Uq(p−)}.

Proposition 3.1. Oλ forms a left Uq(gln)-module under the action

Uq(gln)⊗Oλ → Oλ, x⊗ ζ 7→ (id⊗ Φx)ζ,

and Oλ ∼=
{
Lλ, λ ∈ Λn,
0, otherwise.

Remark. Proposition 3.1 is the quantum Borel-Weil theorem [APW, PW, GZ] in
our context. It can be easily deduced [GZ] from the Peter-Weyl theory for Tq(gln),
in particular, Proposition 2.1.

Now we turn back to the proof of (3.1). Consider the Φ⊗Ψ action of Uq(gln)⊗
Uq(glm) on R[n]

m . One can always decompose R[n]
m into

R[n]
m
∼=

⊕
λ∈Λm

mλLµ(λ) ⊗
(
L

(0)
λ

)∗
,

where
(
L

(0)
λ

)∗
is the dual vector space of the left Uq(glm)-module L

(0)
λ , which

has a natural left Uq(glm)-module structure. The mλ ∈ Z+ is the multiplicity of

the irreducible Uq(gln)⊗ Uq(glm)-module Lµ(λ) ⊗
(
L

(0)
λ

)∗
in R[n]

m , and µ(λ) ∈ Λn

depends on λ. Take an irreducible Uq(glm)-module L(0)
ν , ν ∈ Λm, which can be

extended to a unique Uq(p−)-module with Kc, c > m, acting by the identity map,
and Ec c−1, c > m, acting by zero. We can therefore construct an Oν from L

(0)
ν . It

is easy to see that

Oν =
(
L(0)
ν ⊗R[n]

m

)Uq(glm)

,

where the Uq(glm)-action is defined by x(v ⊗ f) =
∑

(x) x(1)v ⊗ Ψx(2)(f), for all

x ∈ Uq(glm), v⊗ f ∈ L(0)
ν ⊗R[n]

m . The Borel-Weil Theorem (Proposition 3.1) forces

mλ = 1, µ(λ) = λ, ∀λ ∈ Λm.

Thus with respect to Φ(Uq(gln))⊗Ψ(Uq(glm)),

R[n]
m
∼=

⊕
λ∈Λm

Lλ ⊗
(
L

(0)
λ

)∗
.

This is equivalent to (3.1) with respect to Φ(Uq(gln)) ⊗ Ψ̃(Uq(glm)) since the an-
tipode S of Uq(gln) is invertible.

The decomposition (3.1) implies that Φ(Uq(gln)) and Ψ̃(Uq(glm)) are mutual
centralizers in EndC(t)(R[n]

m ). �
The m = n case of the theorem leads to

Corollary 3.1. As a Uq(gln)⊗Uq(gln)-module under the joint action Φ⊗ Ψ̃,

Tq(gln) ∼=
⊕
λ∈Λn

Lλ ⊗ L̃λ.

This is also an immediate consequence of Proposition 2.1.
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Definition 3.3.

L[n]
m := {f ∈ Tq(gln)|ΦK±1

c
(f) = f, c > m, Φx(f) = 0, x ∈ Uq(p+)+}.

Similar to the discussions on R[n]
m , we have the following results.

Lemma 3.2. The following set forms a basis of L[n]
m :

>∏
1≤i≤m,1≤b≤n

(tbi)
kbi | kbi ∈ Z+

 .

Theorem 3.2. (1) L[n]
m forms a left module algebra over Uq(glm) under the action

Φ, and also forms a right module algebra over Uq(gln) under the action Ψ̃.
(2) With respect to the joint action Φ⊗ Ψ̃ of Uq(glm)⊗Uq(gln),

L[n]
m
∼=

⊕
λ∈Λm

L
(0)
λ ⊗ L̃λ.(3.3)

The theorem can be proven in a way similar to the proof of Theorem 3.1. The
following result will be of crucial importance. An irreducible Uq(glm)-module L(0)

λ

with highest weight λ extends to a unique Uq(p+)-module with Uq(p+)+ acting by
zero. Let λ̃ denote the lowest weight of L(0)

λ . Define

(3.4) Õλ := {ζ ∈ L(0)
λ ⊗ Tq(gln)|(id ⊗ Φp)ζ = (S(p)⊗ id)ζ, ∀p ∈ Uq(p+)}.

Proposition 3.2. Õλ forms a right Uq(gln)-module under the action

Õλ ⊗Uq(gln)→ Õλ, x⊗ ζ 7→ (id⊗ Ψ̃x)ζ,

and Õλ ∼=
{
L̃−λ̃, −λ̃ ∈ Λn,
0, otherwise.

Remark. This is a variant of the quantum Borel-Weil theorem [APW, PW, GZ]
and easily follows [GZ] from Proposition 2.1.

Definition 3.4.

Vm,n :=

{
R[n]
m , m ≤ n,
L[m]
n , m ≥ n.

(3.5)

Combining Theorems 3.1 and 3.2 we arrive at the quantum Howe duality, The-
orem 1.1.

4. Howe duality implies Schur duality

We adapt the definition of the q-Weyl group of [KR] to the Jimbo setting of
quantized enveloping algebras. Denote byM the set of finite-dimensional Uq(gln)-
modules of type I. Every M ∈M is semisimple, i.e., M =

⊕
Lλ⊗Mλ. Let Aut(M)

be the set consisting of the automorphisms of the underlying C(t)-vector spaces of
all the elements of M. Let G be the set of the maps σ :M→ Aut(M) such that
σ(M) : M →M , and are of the form

σ(M) =
∑

σ(Lλ)⊗ idMλ
,(4.1)
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for any M =
⊕
Lλ ⊗Mλ ∈ M. Therefore, a σ ∈ G is uniquely determined once

σ(Lλ) are given for all Lλ ∈ M. Clearly, the diagram

M
σ(M)−→ M

α ↓ ↓ α

M ′
σ(M ′)−→ M ′

commutes for any morphism α : M → M ′ of finite-dimensional Uq(gln)-modules
of type I. Furthermore, G forms a group, with the multiplication (σ, σ′) 7→ σσ′

and inverse map σ 7→ σ−1, respectively, defined by (σσ′)(M) = σ(M)σ′(M), and
σ−1(M) = (σ(M))−1, for all M ∈ M. The identity of this group is the map
M 7→ idM , ∀M . The q-Weyl group Wq(n) of Uq(gln) is a subgroup of G which we
now define.

Let U (j,c) be the type I irreducible Uq(gl2)-module with the highest weight
(j + c)ε1 + (j − c)ε2 ∈ Zε1 ⊕ Zε2 such that j ∈ Z+/2. Consider a basis {u(j,c)

m |
m = j, j − 1, ..., 1− j,−j} of U (j,c) defined by

K1u
(j,c)
m = qc+mu(j,c)

m ,

K2u
(j,c)
m = qc−mu(j,c)

m ,

E1u
(j,c)
m = [j +m+ 1][j −m]u(j,c)

m+1,

F1u
(j,c)
m = u

(j,c)
m−1,(4.2)

where [j] = qj−q−j
q−q−1 . (Recall that q = t2.) Define an automorphism w(j,c) of the

underlying vector space of U (j,c) by

w(j,c)u(j,c)
m = (−1)j−mt−2j(j+1)−2c2 [j −m]

[j +m]
u

(j,c)
−m .(4.3)

Remark. Let A = C[t, t−1] be the subring of C(t) consisting of the Laurent polyno-
mials in t. Then w(j,c) defines an automorphism of the free A-module U (j,c)

A with
basis {u(j,c)

m }.

Let Ua
q(gl2) be the subalgebra of Uq(gln) generated by Ea, Fa, K±1

a and K±1
a+1,

for a fixed a < n. Corresponding to every Ua
q(gl2), we define a wa ∈ G in the

following way. Any irreducible Uq(gln)-module Lλ ∈ M restricts to a semisimple
Ua
q(gl2)-module, Lλ =

⊕
U (j,c) ⊗ Zλ(j,c), where U (j,c) is the irreducible Ua

q (gl2)-
module defined by (4.2). We define wa(Lλ) :=

∑
w(j,c)⊗ idZλ(j,c) , and extend wa to

an element of G through (4.1).

Definition 4.1. The q-Weyl groupWq(n) of Uq(gln) is the subgroup of G generated
by the wa and (wa)−1, a = 1, 2, ..., n− 1.

Remark. Wq(n) is a slight modification of the q-Weyl group of Uq(sln) given in
[KR] because of the inclusion of c in (4.3). Both q-Weyl groups have essentially the
same properties.

Remark. A q-Weyl group can also be defined with respect to right Uq(gln)-modules
in the obvious way. Results parallel to Theorem 4.1 and Proposition 4.1 below hold
for the right module version of the q-Weyl group.
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For a finite dimensional type I Uq(gln)-module M , we define

(M)0 := {v ∈M |(Ka − q)v = 0, ∀a},(4.4)

and call it the space of zero weight vectors of M . Clearly (M)0 is stable under all
the wa(M), thus forms a Wq(n)-submodule of M . Since each finite-dimensional
Uq(gln)-module of type I is isomorphic to the tensor product of a one-dimensional
Uq(gln)-module with an Lλ, λ ∈ Λn, the study of the Wq(n)-modules (M)0 es-
sentially reduces to studying (V ⊗k)0, k ∈ Z+, where V is the contravariant vector
Uq(gln)-module. Note that (V ⊗k)0 = 0 unless k = n.

The C(t)-space (V ⊗n)0 has a basis {vσ(1) ⊗ vσ(2) ⊗ ... ⊗ vσ(n) | σ ∈ Sn}, where
Sn is the symmetric group on n letters. Denote the action of the q-Weyl group on
(V ⊗n)0 by τ :Wq(n)× (V ⊗n)0 → (V ⊗n)0 .

Theorem 4.1. C(t)τ(Wq(n)) is a homomorphic image of the Hecke algebra Ha(n).
More explicitly,

τ(wa)τ(wb) = τ(wb)τ(wa), |a− b| > 1,
τ(wa)τ(wa+1)τ(wa) = τ(wa+1)τ(wa)τ(wa+1),(4.5)

(q2τ(wa)− q)(q2τ(wa) + q−1) = 0, ∀a.(4.6)

Proof. It can be easily deduced from results of [KR] (or from the formulae (4.7)
below) that the wa obey the relations of the braid group of type A. Thus we only
need to prove the quadratic relations (4.6). Fix an index a; then (V ⊗n)0 is spanned
by the zero weight vectors of copies of the Ua

q (gl2)-modules U (1,1) and U (0,1). Acting
on
(
U (1,1)

)
0

and
(
U (0,1)

)
0
, wa takes eigenvalues −q−3 and q−1 respectively. Hence

the quadratic relations (4.6). �

We can describe the action ofWq(n) on (V ⊗n)0 more explicitly. Consider vectors
ζa, ηa ∈ (V ⊗n)0 of the form ζa := X ⊗ va ⊗ Y ⊗ va+1 ⊗ Z and ηa := X ⊗ va+1 ⊗
Y ⊗ va ⊗ Z. We have

q2τ(wa)(ζa) = (q − q−1)ζa − ηa,
q2τ(wa)(ηa) = −ζa.(4.7)

Remark. Using the formulae (4.7) one can easily prove Theorem 4.1 by direct com-
putations.

When q is specialized to 1, the action of Wq(n) on (V ⊗n)0 reduces to that of
the symmetric group Sn. To explain this in more precise terms, we consider the
free module VA over A (A = C[t, t−1]) generated by the elements of the standard
basis {va | a = 1, 2, ..., n} of V . Denote by V ⊗nA the n-th power of VA over A. Set
(V ⊗nA )0 := {w ∈ V ⊗nA |(Ka−q)w = 0, ∀a}, which is a free A-module. Because of the
remark following equation (4.3), (V ⊗nA )0 is invariant under Wq(n). Introduce to C
the following A-module structure: ψ : A ⊗C C → C, a(t) ⊗ 1 7→ a(1). We define
AWq(n)⊗A C and (V ⊗nA )0⊗A C using ψ, and consider the action of AWq(n)⊗AC
on (V ⊗nA )0 ⊗A C. Let ik, k = 1, 2, ..., n, be distinct elements of {1, 2, ..., n}. We
have

−wa ⊗ 1 : vi1 ⊗ vi2 ⊗ ...⊗ vin ⊗ 1 7→ vsa(i1) ⊗ vsa(i2) ⊗ ...⊗ vsa(in) ⊗ 1,

where sa ∈ Sn permutes a and a+1 while leaving the other elements of {1, 2, ..., n}
unchanged.
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Proposition 4.1. Assume that Lλ is an irreducible Uq(gln)-module of type I with
highest weight λ ∈ Λn(n). Then the space of zero weight vectors (Lλ)0 forms the
irreducible Hq(n)-module determined by the partition corresponding to λ. Also,
every irreducible Hq(n)-module is isomorphic to an (Lλ)0 with λ ∈ Λn(n).

Proof. Since any type I irreducible Uq(gln)-module Lλ with highest weight λ ∈
Λn(n) can be embedded into V ⊗n, and this is also an embedding of C(t)Wq(n)-
modules, we only need to consider the case when Lλ is an irreducible Uq(gln)-
submodule of V ⊗n. Let Lλ,A := V ⊗nA ∩ Lλ, and (Lλ,A)0 := V ⊗nA ∩ (Lλ)0, where
V ⊗nA is regarded as a subset of V ⊗n. Now we specialize t to 1 by using ψ. It follows
from results of Lusztig and Rosso (see [CP]) on quantized enveloping algebras at
generic q that

Lλ,A ⊗A C ∼= L0
λ,

(Lλ,A)0 ⊗A C ∼= (L0
λ)0,

where L0
λ is the irreducible gln-module with highest weight λ, and (L0

λ)0 is the space
of zero weight vectors of L0

λ. It is known that (L0
λ)0 forms the irreducible Sn-module

characterized by the partition corresponding to λ. (This result is due to Schur.
Modern treatments of it can be found in, e.g., [Ho, Ko].) Since dimC(t)(Lλ)0 =
dimC(L0

λ)0, and anyHq(n)-submodule of (Lλ)0 would give rise to an Sn-submodule
of (L0

λ)0, we conclude that (Lλ)0 is irreducible with respect to Hq(n). By recalling
the fact (see [Ma]) that Hq(n) and C(t)Sn are isomorphic as associative algebras
and are semisimple, we easily see that (Lλ)0 is the irreducible left Hq(n)-module
Sλ determined by the partition corresponding to λ. The Sλ, ∀λ ∈ Λn(n), exhaust
all the irreducible Hq(n)-modules up to isomorphisms. �

We now derive from Theorem 1.1 Jimbo’s quantum Schur duality at generic q
[Ji], which amounts to the following statement.

Theorem 4.2. Let V be the contravariant vector module over Uq(gln). Then

V ⊗m =
⊕

λ∈Λn(m)

Lλ ⊗ M̃λ,(4.8)

where M̃λ is the irreducible right Hq(m)-module associated with λ.

Proof. We shall follow the same strategy as that of section 2.4.5.2 in [Ho]. Consider
the space (Vn,m)0,Uq(glm) of zero Uq(glm)-weight vectors of Vn,m under the right
action of Uq(glm). As a left Uq(gln)-module, (Vn,m)0,Uq(glm) is isomorphic to V ⊗m.
Following Theorem 1.1,

V ⊗m =
⊕

λ∈Λn(m)

L
[n]
λ ⊗ (L̃[m]

λ )0,

where we have used the fact that (L̃[m]
λ )0 6= 0 if and only if |λ| = m. The right

module version of Proposition 4.1 immediately leads to what we seek to prove. �

5. Some remarks

Our proof of Theorem 1.1 makes essential use of the Peter-Weyl basis (Proposi-
tion 2.1) of Tq(gln) via Propositions 3.1 and 3.2. When q is specialized to a root of
unity, Proposition 2.1 fails completely. However, Tq(gln) is still well defined [PW],
and so is also Vm,n. It is clearly true that Vm,n forms a module algebra under the
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left action Φ of Uq(glm) and right action Ψ̃ of Uq(gln), with the actions of the two
quantum algebras commuting. Then a natural question is whether the following
relations hold at roots of unity:

Φ(Uq(glm))|Vm,n = EndUq(gln)(Vm,n),

Ψ̃(Uq(gln))|Vm,n = EndUq(glm)(Vm,n).

It is quite likely that the answer is affirmative in view of the fact [PW] that the
actions of Uq(gln) and Hq(m) on V ⊗m are centralizers of each other in EndC(V⊗m)
even at roots of unity.

References

[APW] Andersen, H. H.; Polo, P.; Wen, K. X., Representations of quantum algebras. Invent.
Math. 104 (1991) 1–59. MR 92e:17011

[CP] Chari, V.; Pressley, A., A guide to quantum groups. Cambridge University Press, Cam-
bridge, 1994. MR 95j:17010

[GZ] Gover, A. R.; Zhang, R. B., Geometry of quantum homogeneous vector bundles and
representation theory of quantum groups. I. Rev. Math. Phys. 11 (1999) 533–552. MR
2000j:81108

[Ho] Howe, R., Perspectives on invariant theory. The Schur Lectures (1992). Eds. I. Piatetski-
Shapiro and S. Gelbart, Bar-Ilan University, 1995. MR 96e:13006

[Ji] Jimbo, M., Quantum R matrix related to the generalized Toda system: an algebraic ap-
proach. In Field theory, quantum gravity and strings (Meudon/Paris, 1984/1985), 335–361,
Lecture Notes in Phys., 246, Springer, Berlin (1986). MR 87j:17013

[Ko] Kostant, B., On Macdonald’s η-function formula, the Laplacian and generalized exponents,
Adv. Math. 20 (1976) 257–285. MR 58:5484

[KR] Kirillov, A. N., Reshetikhin, N., q-Weyl group and a multiplicative formula for universal
R-matrices. Comm. Math. Phys. 134 (1990) 421–431. MR 92c:17023

[Ma] Mathas, A., Iwahori-Hecke algebras and Schur algebras of the symmetric group. Provi-
dence, R.I. : American Mathematical Society (1999). MR 2001g:20006

[Mon] Montgomery, S., Hopf algebras and their actions on rings. CBMS Regional Conference
Series in Math., 82. American Mathematical Society, Providence, RI, 1993. MR 94i:16019

[PW] Parshall, B.; Wang, J. P., Quantum linear groups. Mem. Amer. Math. Soc. 89 (1991), no.
439. MR 91g:16028

[FRT] Reshetikhin, N. Yu.; Takhtadzhyan, L. A.; Faddeev, L. D., Quantization of Lie groups and
Lie algebras. Algebra i Analiz 1 (1989) 178–206. (Russian) MR 90j:17039

[Ta] Takeuchi, M., Some topics on GLq(n). J. Algebra 147 (1992) 379–410. MR 93b:17055

School of Mathematics and Statistics, University of Sydney, Sydney, New South

Wales 2006, Australia

E-mail address: rzhang@maths.usyd.edu.au

http://www.ams.org/mathscinet-getitem?mr=92e:17011
http://www.ams.org/mathscinet-getitem?mr=95j:17010
http://www.ams.org/mathscinet-getitem?mr=2000j:81108
http://www.ams.org/mathscinet-getitem?mr=96e:13006
http://www.ams.org/mathscinet-getitem?mr=87j:17013
http://www.ams.org/mathscinet-getitem?mr=58:5484
http://www.ams.org/mathscinet-getitem?mr=92c:17023
http://www.ams.org/mathscinet-getitem?mr=2001g:20006
http://www.ams.org/mathscinet-getitem?mr=94i:16019
http://www.ams.org/mathscinet-getitem?mr=91g:16028
http://www.ams.org/mathscinet-getitem?mr=90j:17039
http://www.ams.org/mathscinet-getitem?mr=93b:17055

	1. Introduction
	2. The quantum general linear group
	3. Multiplicity free actions
	4. Howe duality implies Schur duality
	5. Some remarks
	References

