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A BEURLING-TYPE THEOREM FOR THE FOCK SPACE
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(Communicated by Joseph A. Ball)

Abstract. Let M be a finite codimensional quasi-invariant subspace of the
Fock space L2

a(C). Then there exists a polynomial q such that M = [q]. We
show that [q]	 [zq] generates M if and only if q = zn for some n ≥ 0.

Introduction

Let D be the open unit disk in the complex plane C, T the unit circle, and H2(D)
the Hardy space, consisting of all functions f holomorphic on D satisfying

‖f‖2H2 = sup
0<r<1

∫ π

−π
|f(reiθ)|2dθ/(2π) <∞.

We say that N is an invariant subspace if N is a (closed) subspace of H2(D) that
is invariant for the multiplication operator Mz. In [Beu], A. Beurling proved that:
If N 6= 0 is an invariant subspace of the Hardy space H2(D), then N 	 zN is a one
dimensional subspace spanned by an inner function φ and

N = [φ] = [N 	 zN ]

where N 	 zN = N ∩ (zN)⊥ and [φ] denotes the smallest invariant subspace
containing φ. Beurling’s theorem has played an important role in operator theory,
function theory and their intersection, function-theoretic operator theory. However,
despite the great development in these fields over the past forty years, it is only
recently that progress has been made in proving analogues for the other classical
Hilbert spaces, the Dirichlet space and the Bergman space. In [Ric], Richter proved
that the analogue of Beurling’s theorem is true in the Dirichlet space. It is well
known that the invariant subspace lattice of the Bergman space L2

a(D), defined to
be the space of functions f analytic in D for which

‖f‖2L2
a

=
∫
|z|<1

|f(z)|2dA(z)
π

<∞,

is very complicated. In fact the dimension of N 	 zN can be an arbitrary positive
integer or ∞ [Hed]. However, a big breakthrough in the study of the analogue of
Beurling’s theorem on the Bergman space was made by A. Aleman, S. Richter and
C. Sundberg [ARS]. They proved that any invariant subspace N of the Bergman
space L2

a(D) also has the form N = [N 	 zN ]. H. Hedenmalm and K. Zhu showed
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that this wandering subspace property can fail in certain weighted Bergman spaces
[HZ] and we thank the referee for calling our attention to this work. In this paper
we will be concerned with the Fock space L2

a(C). The Fock space or the so-called
Siegel-Bargmann space, defined to be the space of all µ-square-integrable entire
functions on the complex plane C, where

dµ(z) = e
−|z|2

2 dν(z)(2π)−1

is the Gaussian measure on C (dν is the ordinary Lebesgue measure). It is easy to
see that L2

a(C) is a closed subspace of L2(C) with the reproducing kernel function
Kλ(z) = eλ̄z/2 and the normalized reproducing kernel function kλ(z) = eλ̄z/2−|λ|

2/4.
For general background on the Fock space one may consult [DG] and the references
therein. As proved in [GZh], there exists no nontrivial invariant subspace for mul-
tiplication operator Mz in the Fock space. Thus, they introduced an substitute
for invariant subspace, the so-called quasi-invariant subspace (see also [CGH]). Let
X = {f ∈ L2

a(C) : zf ∈ L2
a(C)}. Then X is a dense subspace of L2

a(C). Let M
be a closed subspace of the Fock space L2

a(C), and let X ∩M be dense in M . We
say that M is quasi-invariant if z(M ∩ X) ⊂ M . In this paper, we consider the
analogue of Beurling’s theorem for finite codimensional quasi-invariant subspaces
of the Fock space. Our result shows that, unlike the cases of Hardy space, Dirichlet
space and Bergman space, the analogue of Beurling’s theorem is not true in the
Fock space. Besides the Introduction, the paper has two sections. In Section 1,
we review some basic terminologies and results concerning entire functions ([Con])
and the Fock space. The main result is proved in Section 2.

The authors are deeply grateful to the referee for many helpful suggestions which
make this paper more readable. We also thank Professor Kunyu Guo for valuable
discussions and Professor Dechao Zheng who suggested we consider the analogue
of Beurling’s theorem for the Fock space and contributes many suggestions to the
present paper.

1. Preliminaries

Let M be a finite codimensional subspace of the Fock space L2
a(C). We begin

with the special case (in the case of the complex plane) of the algebraic reduction
theorem ([GZh], Theorem 5.5) for such subspaces:

Lemma 1.1 (Theorem 5.5 [GZh]). Let M be a quasi-invariant subspace of finite
codimension. Then C∩M is an ideal in the polynomial ring C and C∩M is dense in
M . Conversely, if I is an ideal in C of finite codimension, then [I] is quasi-invariant
subspaces of the same codimension and [I] ∩ C = I.

By Lemma 1.1, each finite codimensional quasi-invariant subspace M has the
form

M = [I],

where I is a finite codimensional ideal with the same codimension as M . Note
that on the complex plane C, every nonzero ideal I is principle, that is, there
is a polynomial p such that I = pC. Therefore, on the Fock space L2

a(C), finite
codimensional quasi-invariant subspaces are exactly [p], where p range over all non-
zero polynomials. Let M = [p]. It is easy to check that

codimM = dimL2
a(C)/M = deg p,
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where codimM denotes the codimension of M and deg p denotes the degree of p.
Thus codim [p] = deg p and codim [zp] = deg p + 1. Using the fact [zp] ⊂ [p], we
have

dim[p]/[zp] = 1.
Therefore, every finite codimensional quasi-invariant subspace has codimension one
property.

We also need some conceptions and results concerning entire functions [Con].
Let us recall the Weierstrass Factorization Theorem for entire functions ([Con],
VII. 5.14). Let f be an entire function with a zero of multiplicity m ≥ 0 at z = 0;
let {an} be the zeros of f , an 6= 0, arranged so that a zero of multiplicity k is
repeated in this sequence k times. Also assume that |a1| ≤ |a2| ≤ . . . . If {ln} is a
sequence of integers such that

∑∞
n=1( r

|an| )
ln+1 <∞ for every r > 0, then

P (z) =
∞∏
n=1

Eln(z/an)

converges uniformly on compact subsets of the plane, where

El(z) = (1− z)exp(z +
z2

2
+ . . .+

zl

l
)

for l ≥ 1 and E0(z) = 1− z. Consequently, the Weierstrass Factorization Theorem
says that f(z) = zmeg(z)P (z), where g is an entire function.

Let f be an entire function with zeros {a1, a2, . . . }, repeated according to mul-
tiplicity and arranged such that |a1| ≤ |a2| ≤ . . . . We say that f is of finite rank
if there is an integer k such that

∑∞
n=1 |an|−(k+1) <∞. If k is the smallest integer

such that this occurs, then f is said to be of rank k; a function with only a finite
number of zeros has rank 0. An entire function f has finite genus if f has finite
rank and if

f(z) = zmeg(z)P (z),
where P (z) is as above, and g is a polynomial. If k is the rank of f and j is
the degree of the polynomial g, then µ = max(k, j) is called the genus of f . An
entire function f is of finite order if there is a positive constant a and an r0 > 0
such that |f(z)| < exp(|z|a) for |z| > r0. If f is of finite order, then the number
λ = inf{a : |f(z)| < exp(|z|a) for z sufficiently large} is called the order of f . We
also recall that the Hadamard’s Factorization Theorem says that if f is an entire
function of finite order λ, then f has finite genus µ ≤ λ ([Con], p. 289).

2. The main result and its proof

Let M be a finite codimensional quasi-invariant subspace of the Fock space
L2
a(C). The following lemma characterizes the structure of M⊥, which will be used

to prove our main result.

Lemma 2.1. Suppose that p = zi0(z − λ1)i1(z − λ2)i2 · · · (z − λm)im and M = [p].
Then

M⊥ = span{1, z, . . . , zi0−1, e
λ̄1z

2 , . . . , zi1−1e
λ̄1z

2 , . . . , e
λ̄mz

2 , . . . , zim−1e
λ̄mz

2 }.

Proof. Since dimM⊥ = deg p and the elements in the following set are linearly
independent, we only need to show that

{1, z, . . . , zi0−1, e
λ̄1z

2 , ze
λ̄1z

2 , . . . , zi1−1e
λ̄1z

2 , . . . , e
λ̄mz

2 , . . . , zim−1e
λ̄mz

2 } ⊆M⊥.



2794 XIAOMAN CHEN AND SHENGZHAO HOU

For each f ∈M , we can write f = (z − λk)ikfk where k = 0, 1, . . . ,m and λ0 = 0.
Note that in the Fock space

f(z) =
∫
f(w)e

w̄z
2 dµ(w)

because e
z̄w
2 is the reproducing kernel. Thus we have

d

dz
f(z) =

d

dz

∫
f(w)e

w̄z
2 dµ(w)

=
∫
f(w)

w̄

2
e
w̄z
2 dµ(w)

=
1
2
〈f(w), we

z̄w
2 〉.

Similarly, one can show that

dj

dzj
f(z) =

1
2j
〈f(w), wje

z̄w
2 〉 for each j > 0.

Thus for each non-negative positive integer j (0 ≤ j < ik), we have

〈f(z), zje
λ̄kz

2 〉 = 〈(z − λk)ikfk(z) , zje
λ̄kz

2 〉

= 2j
1
2j
〈(z − λk)ikfk(z) , zje

w̄z
2 〉|w=λk

= 2j
dj

dwj
((w − λk)ikfk(w))|w=λk

= 0.

This completes the proof. �
Now we are ready to prove our main result.

Theorem 2.1. [q]	 [zq] generates [q] if and only if q = zn for some n ≥ 0.

Proof. It is obvious that [q]	 [zq] generates [q] when q = zn.
Suppose that there exists a polynomial

q = zi0−1(z − λ1)i1 (z − λ2)i2 · · · (z − λm)im with
m∏
k=1

ik 6= 0

such that [q] 	 [zq] generates [q]. Since dim [q]	 [zq] = 1, there is a φ ∈ [q] 	 [zq]
such that φ generates [q]. Using Lemma 2.1, we can write φ as

φ = p0(z) + p1(z)eλ̄1z + · · ·+ pm(z)eλ̄mz.(1)

Since deg p0 ≤ deg q − 1, p0(z) does not generate [q]. Thus there exists 1 ≤ i ≤ k
such that pi(z) 6= 0. Similarly, one can show that if φ generates [q], then there exist
at least two polynomials pi 6= 0 and pj 6= 0 in (1). Thus we may assume that each
pj 6= 0 in (1).

It is easy to see that φ has finitely many zeros because M has finite codimension.
By the Weierstrass Factorization Theorem we have

φ = p(z)eg(z)

where p(z) is a polynomial. On the other hand, for each λ > 1 there exists Mλ > 0
such that

|φ(z)| = |p0(z) + p1(z)eλ̄1z + · · ·+ p1(z)eλ̄mz| < e|z|
λ

for all |z| > Mλ.
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So, by definition, the order of φ is less than or equal to 1. It is obvious that φ
and eg have the same order. By the Hadamard’s Factorization Theorem, g is a
polynomial of degree ≤ 1. However, by using the assumption that pj 6= 0 in (1),
the order of φ is nonzero. This, together with the fact that the order of eg is equal
to the degree of g, lets us write g = az + b. Without loss of generality, we assume
that

φ(z) = q(z)eaz.
Thus we have

p0(z) + p1(z)e
λ̄1z

2 + · · ·+ pm(z)e
λ̄mz

2 = q(z)eaz.(2)

The fact that (2) does not hold in the case that pj 6= 0 is elementary. We refer the
interested reader to any elementary ordinary differential equations book (see, e.g.,
[BD]). Thus (1) does not hold. Therefore φ does not generate [q]. This completes
the proof. �
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