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THE p-EXPONENT OF THE K(1)∗-LOCAL SPECTRUM ΦSU(n)

MICHAEL J. FISHER

(Communicated by Paul Goerss)

Abstract. Let p be a fixed odd prime. In this paper we prove an exponent
conjecture of Bousfield, namely that the p-exponent of the spectrum ΦSU(n)
is (n−1)+νp((n−1)!) for n ≥ 2. It follows from this result that the p-exponent
of ΩqSU(n)〈i〉 is at least (n − 1) + νp((n − 1)!) for n ≥ 2 and i, q ≥ 0, where
SU(n)〈i〉 denotes the i-connected cover of SU(n).

1. Introduction

Let p be a prime number and A be an object in an additive category. We
define the p-exponent of A to be the smallest non-negative integer e such that the
morphism pe1A : A→ A is the zero morphism.

The purpose of this paper is to give a proof of a conjecture of Bousfield, namely
that the p-exponent of the spectrum ΦSU(n) is (n − 1) + νp((n − 1)!) for n ≥ 2
and for p an odd prime. Here and throughout νp denotes the exponent of p in
an integer and Φ is a v1 telescope functor from the homotopy category of pointed
CW-complexes to the category of K(1)∗-local spectra.

The functor Φ was introduced by Bousfield and is described in [1, 2, §6]. A similar
functor can also be found in [5]. Among the many intriguing properties of Φ are the
following: (i) for any spectrum E, there is a natural equivalence Φ(Ω∞E) ' EK/p,
(ii) Φ preserves fibrations, and (iii) v1

−1π∗(X ; p) ∼= π∗(ΦX).
The functor Φ is complicated enough to make actual calculations somewhat

onerous. However, the following example is well known. It was shown in [4] that
ΦS2n+1 = v1

−1M(pn), where M(pn) is the mod pn Moore space.
One can also obtain ΦS2n from the fibration

S2n−1 → ΩS2n → ΩS4n−1.

From here, using towers of fibrations with products of loop spaces on spheres,
various Lie groups can be computed. The Lie group SU(n) is a natural first choice;
it is interesting, yet tractable.

Given a 1-connected finite H-space X , let M ∼= Q̂K1(X ; Ẑp) ∼= PK1(X ; Ẑp), the
p-adic Adams module of indecomposables or primitives. In [3], Bousfield proves,
among other things, that if H∗(X ;Q) is associative and H∗(X ;Z(p)) is finitely
generated over Z(p), then M/ψp and ΦX have the same p-exponent. For the case
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X = SU(n) we have, via a result of Hodgkin [6],

Mn
∼= Q̂K1(SU(n); Ẑp) ∼= K1(ΣCPn−1; Ẑp) ∼= K̃0(CPn−1; Ẑp).

Now, because K̃0(CPn−1; Ẑp) = Ẑp[x]/(1, xn) where x = ξ−1 and ξ is the canon-
ical line bundle on CPn−1, we have Mn{x, x2, . . . , xn−1} with ψpx =

∑n−1
i=1

(
p
i

)
xi

and ψpxm = (ψpx)m for 2 ≤ m ≤ n − 1. Hence to prove Bousfield’s conjecture, it
suffices to prove the following lemma.

Lemma 1.1. The p-exponent of Mn/ψ
p is (n− 1) + νp((n− 1)!) for n ≥ 2.

From this we deduce our main theorem.

Theorem 1.2. The p-exponent of ΦSU(n) is (n− 1) + νp((n− 1)!) for n ≥ 2.

Additionally, we obtain the following corollary since the functor Φ preserves
loopings and since Φ carries i-connected coverings to equivalences.

Corollary 1.3. The p-exponent of ΩqSU(n)〈i〉 is at least (n− 1) + νp((n− 1)!) for
n ≥ 2 and i, q ≥ 0, where SU(n)〈i〉 denotes the i-connected cover of SU(n).

2. Proof of Lemma 1.1

The proof of Lemma 1.1 will proceed in two steps. Let ei denote the p-exponent
of xi in Mn/ψ

p, and let b = (n− 1) + νp((n− 1)!). We will show e1 = b and ei ≤ b
for all i, 2 ≤ i ≤ n− 1.

Lemma 2.1. Let a1 = pb−1 and, for k > 1,

ak =
(−1)k+1

k!
pb−k(p− 1)(2p− 1)(3p− 1) · · · ((k − 1)p− 1).

Then ψp(
∑n−1
k=1 akx

k) = pbx and
∑n−1

k=1 akx
k is the unique element of Mn taken to

pbx under the action of ψp. Moreover e1 = b.

Proof. Consider the matrix of ψp (over Ẑp) with respect to the basis {x, x2, ..., xn−1}:

[ψp] =


c1,1 0 0 . . . 0
c2,1 c2,2 0 . . . 0
c3,1 c3,2 c3,3 . . . 0

...
...

...
. . .

...
cn−1,1 cn−1,2 cn−1,3 . . . cn−1,n−1


where ci,j = the coefficient of xi in ((1 + x)p − 1)j . Note that∑

i1+i2+···+ik=i

(
p

i1

)(
p

i2

)
· · ·
(
p

ik

)
=
(
kp

i

)
.

Thus, by the principle of inclusion and exclusion (see [7] for example),

ci,j =
j−1∑
k=0

(−1)k
(

j

j − k

)(
(j − k)p

i

)
.

For the time being, view [ψp] as a linear transformation from Qn−1 to Qn−1.
Then for m ≥ 0, let a′1 = pm−1 and, for k > 1,

a′k =
(−1)k+1

k!
pm−k(p− 1)(2p− 1)(3p− 1) · · · ((k − 1)p− 1).
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We will show that
c1,1 0 0 . . . 0
c2,1 c2,2 0 . . . 0
c3,1 c3,2 c3,3 . . . 0

...
...

...
. . .

...
cn−1,1 cn−1,2 cn−1,3 . . . cn−1,n−1




a′1
a′2
a′3
...

a′n−1

 =


pm

0
0
...
0

 .

Clearly
∑n−1
j=1 c1,ja

′
j=pm and

∑n−1
j=1 c2,ja

′
j=0. We are left to show that

∑n−1
j=1 ci,ja

′
j

= 0 for i ≥ 3. Rearranging the sum
∑n−1

j=1 ci,ja
′
j (i ≥ 3) yields

=
(
p

i

)((
1
1

)
a′1 −

(
2
1

)
a′2 +

(
3
1

)
a′3 + · · ·+ (−1)i−1

(
i

1

)
a′i

)
+
(

2p
i

)((
2
2

)
a′2 −

(
3
2

)
a′3 +

(
4
2

)
a′4 + · · ·+ (−1)i−2

(
i

2

)
a′i

)
+ · · ·+

(
kp

i

)((
k

k

)
a′k −

(
k + 1
k

)
a′k+1 + · · ·+ (−1)i−k

(
i

k

)
a′i

)
+ · · ·+

(
ip

i

)(
i

i

)
a′i.

(2.1)

By induction one can see that for l = 1, ..., i,
i∑
k=l

(−1)k−l
(
k

l

)
a′k =

(−1)l+1

i!
pm−i

(
i

l

)
(p− 1)(2p− 1) · · · ̂(lp− 1) · · · (ip− 1)

where ̂ means leave out. Therefore (2.1) becomes(
pm−i

i!
(p− 1)(2p− 1) · · · (ip− 1)

) i∑
l=1

(−1)l+1

(
i

l

)(
lp

i

)
1

lp− 1
.

So it suffices to show that
i∑
l=1

(−1)l+1

(
i

l

)(
lp

i

)
1

lp− 1
= 0.

Notice that
i∑
l=1

(−1)l+1

(
i

l

)(
lp

i

)
1

lp− 1
=

p

(i− 1)!

i∑
l=1

(−1)l+1

(
i− 1
l − 1

)
(lp− 2) · · · (lp− i+ 1).

Let f(t) =
∑i

l=1(−1)l−1
(
i−1
l−1

)
(lp− 2) · · · (lp− i+ 1)tlp−i. Then

f(t)=
i∑
l=1

(−1)l−1

(
i− 1
l − 1

)(
d

dt

)i−2

tlp−2 =
(
d

dt

)i−2

tp−2
i∑
l=1

(−1)l−1

(
i− 1
l − 1

)
t(l−1)p.

Hence f(t) = ( ddt)
i−2tp−2(1− tp)i−1. Thus f(1) = 0 since all terms will be divisible

by (1− tp). Therefore
∑n−1

j=1 ci,ja
′
j = 0 for i ≥ 3.

Note that ker[ψp] = 0 over Q. Thus 〈a′1, a′2, a′3, ..., a′n−1〉 is the unique vector in
Qn−1 that is taken to 〈pm, 0, 0, ..., 0〉 by the transformation [ψp].

Now notice that the a′k, 1 ≤ k ≤ n− 1, are integral, hence also elements of Ẑp,
only when m− k ≥ νp(k!), i.e., m ≥ n− 1 + νp((n− 1)!) = b.
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Let a1 = pb−1 and, for k > 1,

ak =
(−1)k+1

k!
pb−k(p− 1)(2p− 1)(3p− 1) · · · ((k − 1)p− 1).

Then, since ker[ψp] = 0 over Ẑp, 〈a1, a2, a3, ..., an−1〉 =
∑n−1
k=1 akx

k is the unique
element of Mn such that ψp(

∑n−1
k=1 akx

k) = pbx.
To see that there does not exist w ∈ Mn such that ψp(w) = pb−εx, ε ∈ Z+,

consider the following. Suppose such a w =
∑n−1

k=1 qkx
k existed. Then at least one

of the qk has to be in Ẑp −Z. But then ψp(pεw) = pεψp(w) = pbx. Since pεqk = ak
by uniqueness, we get the contradiction pεqk ∈ Ẑp − Z and pεqk ∈ Z. �

The next lemma will finish the proof of Lemma 1.1.

Lemma 2.2. For 2 ≤ i ≤ n − 1, let ei denote the p-exponent of xi in Mn/ψ
p.

Then ei ≤ b.

Proof. First note that the relations of Mn/ψ
p are given by the following equations:

α1,1x+ α1,2x
2 + α1,3x

3 + · · ·+ α1,n−2x
n−2 + α1,n−1x

n−1 = 0,

α2,2x
2 + α2,3x

3 + · · ·+ α2,n−2x
n−2 + α2,n−1x

n−1 = 0,

α3,3x
3 + · · ·+ α3,n−2x

n−2 + α3,n−1x
n−1 = 0,

...
αn−2,n−2x

n−2 + αn−2,n−1x
n−1 = 0,

αn−1,n−1x
n−1 = 0

where αi,j =
∑i−1

k=0(−1)k
(
i

i−k
)(

(i−k)p
j

)
(these relations can be obtained from the

transpose of the matrix [ψp]). Notice that αi,i =
(
p
1

)i and αi,i+1 =
(
i
1

)(
p
2

)(
p
1

)i−1.
Since αn−1,n−1 = pn−1 we know that the p-exponent of xn−1 is n− 1. Via back-

substitution, we are then able to find the p-exponent of xn−2, xn−3, and so on, all
the way up to x. This line of thinking leads us to the formula

ei = di,i + max{ej − di,j : j = i+ 1, ..., n− 1},

where di,j = νp(αi,j). (Note: di,i = i.) It follows that ei ≥ ei+1 + (i− di,i+1).
Next we see that i−di,i+1 = −νp(i), since di,i+1 = νp(αi,i+1) = νp(

(
i
1

)(
p
2

)(
p
1

)i−1)
= νp(p−1

2 ipi). Thus ei ≥ ei+1 − νp(i). Hence if we can show that eip ≤ b − νp(ip)
for all i such that 1 ≤ i ≤ q, where qp ≤ n− 1 < (q + 1)p, we will be done.

By Lemma 2.1 and the relation

α1,1x+ α1,2x
2 + · · ·+ α1,n−1x

n−1 =
n−1∑
i=1

(
p

i

)
xi = 0

we have ep ≤ b − 1. Now choose the smallest k such that ekp > b− νp(kp). Then
the relation

αk,kx
k + αk,k+1x

k+1 + · · ·+ αk,kp−1x
kp−1 + αk,kpx

kp = pkxk + · · ·+ xkp = 0

implies that ek ≥ k + b− νp(kp) + 1 = (b + 1) + (k − νp(kp)).



THE p-EXPONENT OF THE K(1)∗-LOCAL SPECTRUM ΦSU(n) 3621

Since k − νp(kp) ≥ 0 for all k and p, we choose i so that (i + 1)p > k ≥ ip and
get the contradiction

b + (1 + k − νp(kp)) ≤ ek ≤ ek−1 ≤ · · · ≤ eip ≤ b.
Therefore it must be the case that eip ≤ b− νp(ip) for all 1 ≤ i ≤ q. �

The results in this paper are part of the author’s Lehigh University thesis, written
under the direction of Donald M. Davis.
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