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EXACTLY k-TO-1 MAPS AND HEREDITARILY
INDECOMPOSABLE TREE-LIKE CONTINUA

THOMAS E. GONZALEZ

(Communicated by Alan Dow)

Abstract. In 1947, W.H. Gottschalk proved that no dendrite is the continu-
ous, exactly k-to-1 image of any continuum if k ≥ 2. Since that time, no other
class of continua has been shown to have this same property. It is shown that
no hereditarily indecomposable tree-like continuum is the continuous, exactly
k-to-1 image of any continuum if k ≥ 2.

One of the earliest results concerning exactly k-to-1 maps between continua is
W. H. Gottschalk’s [2] result that no dendrite is the continuous exactly k-to-1 image
of any continuum if k ≥ 2. Since Gottschalk’s result, no other class of continua
has been shown to repel exactly k-to-1 functions from continua in the manner that
dendrites do. It is proved that no hereditarily indecomposable tree-like continuum
is the continuous exactly k-to-1 image of any continuum if k ≥ 2. This result gives
more information towards a resolution of a question posed by Nadler and Ward [10]
i.e., which continua are k-to-1 images of continua, where k ≥ 2? The result also
generalizes a result of J. Heath [5] who proved that no hereditarily indecomposable
tree-like continuum is a two-to-one image of a continuum. It is known that for each
k > 2 there exists a k-to-1 map between tree-like continua [4]. For more results
concerning k-to-1 functions between continua, the reader is directed to a survey
paper of J. Heath [7].

A space is a compact metric space, a continuum is a nonempty, compact, con-
nected metric space, and a map is a continuous function. If X and Y are spaces,
then a map f from X into Y is said to be confluent if for any continuum L in the
image, every component of f−1(L) maps onto L.

Lemma 1. Suppose that f is a confluent map onto a space Y and n is a positive
integer such that n ≤ k. Let C denote the set of all continua in Y whose inverse
image under f has exactly n components. If C is non-empty, then C has a minimal
element with respect to inclusion.

Proof. It will be shown that every chain L ⊂ C has a lower bound in C, namely⋂
L. It need only be shown that f−1(

⋂
L) has n components. If L is an element

of L, the fact that f is confluent implies that for every subcontinuum M of L,
each component of f−1(L) contains at least one component of f−1(M). If M ∈ L,
then f−1(M) and f−1(L) have the same number of components, in which case
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each component of f−1(L) contains exactly one component of f−1(M). Thus, the
components of f−1(M), where M ’s are in L, form n decreasing chains of continua
where elements of different chains are disjoint. The intersection of each of these n
chains is a continuum, and f−1(

⋂
L) is the union of these intersections. Therefore,

L belongs to C. It follows that C has a minimal element. �

If X and Y are spaces, a map f is said to be k-crisp if for every proper subcon-
tinuum L of Y , f−1(L) is the union of k disjoint continua and f restricted to each
of the k disjoint continua comprising f−1(L) is a homeomorphism onto L. Two
elements of X , x and y, are said to be siblings if f(x) = f(y).

The following lemma extends a lemma of Griffus [3] to a more general class of
spaces.

Lemma 2. Let X be a space and let Y be a continuum. If f : X → Y is a k-crisp
map, then f is locally one-to-one.

Proof. First, it is shown that f maps every component H of X onto Y . Suppose
that f(H) is a proper subcontinuum of M . As a component of X , H ⊂ f−1(M)
is a component of f−1(M). Since f is k-crisp, H is mapped onto M , which is a
contradiction. It follows that X has no more than k components.

According to a lemma of Griffus [3], which is a generalization of a result of
Mioduszewski [8], there exist nonempty open sets U1, U2, . . . , Uk in X such that

(1) U i ∩ U j = ∅ for every i, j ∈ {1, 2, . . . k} such that i 6= j.
(2)

∣∣f−1(f(x)) ∩ Ui
∣∣ = 1 for every x ∈

⋃k
j=1 Uj and every i ∈ {1, 2, . . . , k}.

(3) For every i ∈ {1, 2, . . . , k}, f is locally one-to-one at each point of U i.

Let U denote the set
⋃k
i=1 Ui. Suppose that f is not locally one-to-one at the

point z. Let C denote the component of X containing z. There exist two disjoint
sibling sequences {pi} and {p̂i} in C \ U each of which converges to z.

For each pi, let Ci be the component of pi in C \U . Since C \U is a nonempty,
proper, closed subset of the continuum C, the Janiszewski lemma [9] implies that
the continuum Ci must bump the boundary of C ∩ U . Let xi be an element of
Ci ∩Bd(U). The k-crisp property implies that there exists a continuum Ĉi that is
disjoint from Ci and that contains p̂i. Since all siblings of xi are in the boundary
of U , there is a sibling of xi, x̂i in Ĉi ∩ Bd(U).

There exists a common convergent subsequence of the sequence {Ci} and of the
sequence {Ĉi}. Denote the limiting continuum of the common subsequence of {Ci}
by A and the limiting continuum of the common subsequence of {Ĉi} by B. The
continuum A must contain the point z, as well as a limit point of the sequence {xi},
call it a. The continuum B must also contain the point z, as well as a limit point of
the sequence {x̂i}, call it b. The points a and b must be distinct as well as siblings.
However, this is a contradiction since f(A ∪B) 6= Y and f is k-crisp. Therefore, f
is locally one-to-one. �

Theorem 3. No tree-like continuum is the confluent k-to-1 image of any contin-
uum, for any k ≥ 2.

Proof. Suppose that there exists a confluent k-to-1 map f : X → Y from a con-
tinuum X onto a tree-like continuum Y , where k ≥ 2. Choose n to be the largest
integer in the set {2, 3, . . . , k− 1} such that there is a continuum M ⊆ Y whose in-
verse image has n components. By Lemma 1, it may be assumed that M is minimal.
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Since the property of being tree-like is hereditary, M is tree-like. The restriction of
f to f−1(M) is k-crisp. Indeed, if L is a proper subcontinuum of M , then f−1(L)
has at least k components. Since f is confluent, each of them is mapped onto L.
Hence f−1(L) has exactly k components, on which f is one-to-one.

By Lemma 2, the restriction of f to f−1(M) is locally one-to-one. A theorem
of J. Heath [6] states that every locally one-to-one map from a continuum onto a
tree-like continuum is a homeomorphism. Therefore, f restricted to any one of the
n components of f−1(M) is one-to-one. Hence, f restricted to f−1(M) is n-to-one,
which is a contradiction. �

The final result follows from a result of H. Cook [1], namely that any map from
a continuum onto a hereditarily indecomposable continuum is confluent.

Corollary 4. No hereditarily indecomposable tree-like continuum is the continuous
k-to-1 image of a continuum for any k ≥ 2.
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