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A PROOF OF THE GENERALIZED
BANACH CONTRACTION CONJECTURE

ALEXANDER D. ARVANITAKIS

(Communicated by John R. Stembridge)

Abstract. We introduce the notion of J-continuity, which generalizes both
continuity and the hypothesis in the Generalized Banach Contraction Conjec-
ture, and prove that any J-continuous self-map on a scattered compact space,
has an invariant finite set. We use the results and the techniques to prove the
Generalized Banach Contraction Conjecture.

1. Introduction

The Banach Contraction Principle is one of the most important and heavily
investigated fixed point theorems. The following conjecture generalizes the one
originally studied by Banach.

Generalized Banach Contraction Conjecture (GBCC). Let T : X → X be a
self-map of a complete metric space (X, d), and let 0 < M < 1. Let J be a positive
integer. Assume that for each pair x, y ∈ X,

min{d(T kx, T ky) : 1 ≤ k ≤ J} ≤Md(x, y).

Then T has a fixed point.

Banach’s original theorem is simply the case J = 1, in which T is uniformly
continuous.

Below, we briefly summarize what has been proved about GBCC until now.
In [2], it is proved that GBCC is true if J = 2 without any additional assumption

on T. Moreover it is true for J = 3 with the additional assumption that T is
continuous. It is also shown that the case J = 3 includes examples where T may
be discontinuous.

In [3], it is proved that GBCC is true for arbitrary J, if one assumes that T is
uniformly continuous.

In [6], it is shown that GBCC is true for arbitrary J, with the additional as-
sumption that T is strongly continuous.

Finally, in [4], it is shown that GBCC is true if T is continuous. Moreover it is
proved for J = 3, without any additional assumption on T.
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In this paper, we establish the GBCC. The proof may be divided into two parts.
The results of both parts are conclusions of statements for relations on the integers
(Lemma 3.2 and Lemma 4.2). Thus the proof is mostly of a combinatorial nature.

In the first part, which is proved in section 4, we strengthen [4, Proposition 1].
Namely, we prove that if {xn}n is a sequence in a metric space, and there are J ∈ N
and 0 < M < 1 such that

min{d(xn+k, xm+k) : 1 ≤ k ≤ J} ≤Md(xn, xm) for all integers n and m,

then there is a piecewise syndetic sequence n1 < n2 < . . . such that {xni}i is
Cauchy.

Here, a subset of N is said to be piecewise syndetic if there exists an N ∈ N and
arbitrarily large finite subsets of it, say n1 < n2 < . . . < nk such that ni+1−ni ≤ N
for all i such that 1 ≤ i ≤ k − 1. (See also [1, Definition 1.11] or Definition 4.1.)

In the second part, which is proved in sections 2 and 3, we prove that if {ni}i is
a piecewise syndetic sequence, (X, d), T satisfy the GBCC assumption, and there
are z, ω ∈ X such that T niz → ω, then there is a finite subset of {T kω : k ∈ N}
which is T -invariant. This, in conjunction with [2, Lemma 1], results in a fixed
point for T. We essentially prove something more general than this which has some
interesting consequences on scattered compact spaces. In order to describe these
consequences, we first need some notation.

Let (X, d) be a metric space and T : X → X a self-map. Throughout this paper,
we will say that T satisfies the GBCC assumption, if for each pair x, y ∈ X,

min{d(T kx, T ky) : 1 ≤ k ≤ J} ≤Md(x, y).

So, GBCC states that if T satisfies the GBCC assumption and X is complete, then
T has a fixed point.

Definition 1.1. Let X be a topological space, J ∈ N and T : X → X a self-map.
We say that T is J-continuous if for every x ∈ X and every choice of neighborhoods
Ui 3 T ix, 1 ≤ i ≤ J, there is a neighborhood U 3 x such that if y ∈ U , then there
are 1 ≤ i, j ≤ J so that T jy ∈ Ui.

Clearly the case where T is continuous is the case of 1-continuous according to
the above definition. Moreover the notion of J-continuity generalizes the GBCC
assumption: If T satisfies the GBCC assumption and Ui = B(T ix, εi) (i.e. Ui is the
ball with center T ix and radius εi), then we can simply take U=B(x, min{εi:1≤i≤J}

M+1 ).
Observe that the notion of J-continuity generalizes GBCC assumption in two

aspects: The first is analogous to the generalization of the contraction by continuity.
The second is that we do not require T ix and T jy to be “close enough” for the
same iterate of T.

Clearly since continuous maps are J-continuous, it is not necessary for a J-
continuous self-map to have a fixed point. But in any case we prove the following:

Theorem 1.1. If X is a scattered compact space (not necessarily metric) and
T : X → X is J-continuous, then there exists a finite A ⊂ X which is T -invariant,
i.e. T [A] ⊂ A.

We recall that a compact space X is called scattered if every non-empty closed
subset M of X has a relatively isolated point, i.e. there exists an x ∈ M and an
open set U ⊂ X such that U ∩M = {x}.
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Theorem 1.1 is the best possible in this direction, since it is easy to construct
a scattered compact space and a continuous self-map of it having no fixed points.
The simpler case is to take X = {x1, . . . , xn}, a finite set with the discrete topology,
and

T (xi) =

{
xi+1 if 1 ≤ i < n,

x1 if i = n.

According to [2, Lemma 1], if T satisfies the GBCC assumption and A is finite
and T -invariant, then T has a fixed point. So in particular Theorem 1.1 easily
implies the GBCC in the case where X is a scattered compact metric space.

Since the case where T is continuous is from many aspects analogous to but
simpler than the general one, we present it first in section 2.

In section 3, we give the general proof of Theorem 1.1.
Finally in section 4 we give the proof of the full GBCC.
I would like to thank Professor S. A. Argyros for bringing to my attention the

original problem and for comments while preparing the paper. I also thank Profes-
sor Ch. Verykios for suggestions that improved and clarified the proof of Lemma
4.1.

While finishing the editing of the paper, I was informed by Professor J. Stein
that he and Professor J. Merryfield have also obtained a proof for GBCC in [5].

2. The continuous case for scattered compact

Let us briefly recall some facts from the theory of scattered compact spaces. Let
X be a scattered compact. For α ranging in the ordinals, we define the derivative
sets X(α) by recursion on α. Then

• X(0) = X.
• If α = β + 1, X(β+1) = X(β) \ {x ∈ X(β) : x is an isolated point of X(β)}

and
• if α is a limit ordinal X(α) =

⋂
β<αX

(β).

For any closed subset M of X, we denote by M (α) the set M ∩X(α). Since X(α)

is always a closed subset of X, if X(α) 6= ∅, then X(α+1) ( X(α) by the definition of
scattered, so that there always exists an ordinal α such that M (α) = ∅. If α0 is the
least such α, then by the compactness of X and M this must be a successor ordinal.
We denote by α(M) the ordinal α0 − 1. Again using a compactness argument, we
see that M (α0−1) must be a finite set. For an element x of X, α({x}) will also be
denoted by α(x) for simplicity.

We begin with the following lemma:

Lemma 2.1. Let X be a T2 space and T : X → X a continuous map having the
property that every finite subset A of X is not T invariant, namely T [A] 6⊂ A. Then
for every N ∈ N and for every z ∈ x there exists a neighborhood Uz of z such that
for every 2N successive iterates of T, starting at any point y, y, T y, . . . , T 2N−1y, N
successive ones among them do not belong to Uz. That is, there exists a 0 ≤ n0 ≤
N − 1, such that for all i such that 1 ≤ i ≤ N, T n0+iy 6∈ Uz.

Proof. For N ∈ N and z ∈ X, consider the following points: z, T z, T 2z, . . . , TNz.
These are N + 1 distinct points of X by our hypothesis that there exists no fi-
nite T -invariant subset of X. Using induction on i, we define an open neighbor-
hood UN−i of TN−iz as follows: UN is any open neighborhood of TNz such that
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z, T z, . . . , TN−1z 6∈ UN . (Here, by UN we denote the closure of UN .) Having defined
UN , . . . , UN−i, for i < N, we define UN−(i+1) such that

(1) UN−(i+1) ∩ Uj = ∅ for N − i ≤ j ≤ N.
(2) z, T z, . . . , TN−(i+2)z 6∈ UN−(i+1).
(3) For every x ∈ UN−(i+1), Tx ∈ UN−i.

We can find such a neighborhood of TN−(i+1)z, since X is a T2 space, T is contin-
uous and T (TN−(i+1)z) = TN−iz ∈ UN−i.

The crucial properties of U0, . . . , UN are that they are pairwise disjoint, and
moreover T [Ui] ⊂ Ui+1. So, if for some x, x ∈ U0, then for all i in the range
1 ≤ i ≤ N, T ix ∈ Ui and hence T ix 6∈ U0.

Now set Uz = U0 and given y ∈ X, consider 2N successive iterates of T on y,
y, T y, . . . , T 2N−1y. If all of y, T y, . . . , TN−1y, do not belong to Uz, then we have
nothing to prove. Otherwise there exists a 0 ≤ n0 ≤ N−1 such that T n0y ∈ Uz. But
in this case all of T n0+iy, 1 ≤ i ≤ N , do not belong to Uz = U0, since T n0+iy ∈ Ui
and Ui ∩ U0 = ∅. �

Remark 2.1. It is easy to see that in order to find for a particular z the required
neighborhood Uz, it suffices to know that z, T z, T 2z, . . . , TNz are all distinct. So,
if for some fixed z and N there is no such neighborhood, then there exists an
A ⊂ {z, T z, . . . , TNz} which is T -invariant. In particular, the same proof is possible
if we weaken the hypothesis to the following: There is no T -invariant set A of
cardinality |A| ≤ N.

The following theorem is a case of Theorem 1.1 in which T is 1-continuous.

Theorem 2.2. Let X be a scattered compact space and T : X → X a continuous
map. Then there exists a finite A ⊂ X which is T -invariant, that is, T [A] ⊂ A.

Proof. We will prove it by contradiction. So assume there is not any. In particular T
and X satisfy the hypothesis of Lemma 2.1. For any N ∈ N denote by p(N) = 2N
the sufficient number of successive iterates of T that contain N successive ones
among them not belonging to Uz (using the notation of Lemma 2.1).

We define inductively z1, z2, . . . points of X, U1, U2, . . . neighborhoods of these
points, and α1 = α(z1), α2 = α(z2), . . . ordinal numbers as follows: Having defined
them until m (m may be 0), we consider the closed subspace of X, Xm+1 = X \⋃m
i=1 Ui and let αm+1 = α(Xm+1). Next, if Xm+1 6= ∅, we find a zm+1 ∈ Xm+1

with α(zm+1) = αm+1 and Um+1 will be the neighborhood of zm+1, according to
Lemma 2.1, that works for N = pm(1). We prove the following:

Claim. The sequence {αm}m is a non-increasing sequence of ordinals, and moreover
if Xm 6= ∅ for all m ∈ N, then for all m ∈ N, there exists an m′ > m such that
αm′ < αm.

The first is obvious, since Xm+1 ⊂ Xm. Moreover, fixing m ∈ N, there are
just finitely many points x of Xm such that α(x) = α(Xm). Therefore if for all
m′ > m, αm′ = αm, then for all m′ > m, α(zm′) = αm and zm′ ∈ Xm. This is
a contradiction, since it follows easily from their construction that {zm}m are all
distinct.



THE GENERALIZED BANACH CONTRACTION CONJECTURE 3651

Since there is no strictly decreasing sequence of ordinals, the claim easily implies
that there exists an m ∈ N such that Xm+1 = ∅. Therefore

(1) X =
m⋃
i=1

Ui.

Fix an x ∈ X and consider the following first pm(1) + 1 successive iterates
of T on x : x, Tx, . . . , T p

m(1)x. By the definition of pm(1) = p(pm−1(1)) and of
the neighborhood Um 3 zm, there are pm−1(1) successive ones among them not
belonging to Um, so there are pm−2(1) successive ones among them not belonging
to Um−1 ∪ Um. Continuing this way, we find that there exists an element among
x, Tx, . . . , T p

m(1)−1x not belonging to
⋃m
i=1 Ui which is a contradiction by (1). �

3. The general J-continuous case

It is easy to check that the same proof could be used to prove Theorem 1.1,
provided that we had proved an analog to Lemma 2.1 for the general J-continuous
case. So, in order to prove Theorem 1.1, we only need the following lemma:

Lemma 3.1. Let X be a T2-space and T : X → X a J-continuous map having
the property that every finite A subset of X is not T -invariant. Then for every
N ∈ N, there exists a p(N) ∈ N such that every z ∈ X has a neighborhood Uz with
the following property: If y, T y, . . . , T p(N)−1y are any p(N) successive iterates of
T, then there are N successive ones among them not belonging to Uz.

We will try to imitate the proof of Lemma 2.1. We will need the following
technical lemma, in which the relation R must be thought of as

i R j ⇐⇒ T ix ∈ Uj,
using the notation of the proof of Lemma 2.1. This lemma is necessary in this
particular case in order to calculate the appropriate number p(N). We will use it
to construct the neighborhoods Ui 3 T iz analogously to Lemma 2.1. We assume
without loss of generality that N = `J for some ` ∈ N.

Given k, ` ∈ N we denote by [k, `] the set of all n ∈ N such that k ≤ n ≤ `.

Lemma 3.2. Let J, N = `J, be given. Then for all n,m ∈ N, there exists a number
p(n,m) ∈ N such that whenever R ⊂ [1, p(n,m)] × [0, ∞) is a relation with the
following properties

(1) in every interval [k + 1, k + N ] ⊂ [1, p(n,m)] there exists an i such that
i R 0,

(2) if i + J ≤ p(n,m) and i R j, then there are 1 ≤ i′, j′ ≤ J such that i +
i′R j + j′,

then there exists a subinterval [k+1, k+N ] ⊂ [1, p(n,m)] and k1, . . . , kn ∈ N such
that

(1) kr+1 − kr ≥ m, 1 ≤ r ≤ n− 1,
(2) for all r in the range 1 ≤ r ≤ n there exists a q ∈ [k + 1, k + N ] such that

q R kr.

Proof. We prove by induction on n that there exists such a p(n,m) for all m.
Easily, hypothesis (1) of the lemma implies that N can serve as p(1,m). Next,

given the numbers p(n,m), m ∈ N, we use our inductive hypothesis for p(n,m′),
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where m′ = m+ (mJ + 2N)J. We set

p(n+ 1,m) = p(n,m′) +mJ +N.

In order to prove that this works, let R ⊂ [1, p(n + 1,m)] × [0, ∞) be a
relation that satisfies properties (1) and (2). By the inductive hypothesis for R �
[1, p(n,m′)], there is an interval [k + 1, k + N ] ⊂ [1, p(n,m′)] and k1, . . . , kn ∈ N
such that (1) and (2) hold withm replaced bym′. For every r in the range 1 ≤ r ≤ n,
let qr ∈ [k+ 1, k+N ] be such that qr Rkr. For every such r, we inductively define
sequences q1

r = qr, k
1
r = kr and qs+1

r = qsr + i′, ks+1
r = ksr + j′ where 1 ≤ i′, j′ ≤ J

are such that qs+1
r Rks+1

r granted that qsr Rk
s
r , by property (2).

For any such r, let sr be an appropriate number such that

qsrr ∈ [k +N +mJ + 1, k +N +mJ +N ].

Since k +N ≤ p(n,m′), this interval is a subinterval of [1, p(n+ 1,m)].
Also let q′0 be in the same interval, according to (1), such that q′0R 0 and k′0 = 0,

k′r = ksrr . Notice that for any 1 ≤ r ≤ n,

m ≤sr ≤ mJ + 2N so that

m ≤ksrr − kr ≤ (mJ + 2N)J.

In particular

k′1 − k′0 = ks11 ≥ m and

k′r+1 − k′r = k
sr+1
r+1 − ksrr ≥ kr+1 − kr − (mJ + 2N)J

≥ m′ − (mJ + 2N)J = m.

So k′0, k
′
1, . . . , k

′
n are the required numbers. �

Now that we have Lemma 3.2 we can easily complete the proof of Theorem 1.1
by proving Lemma 3.1.

Proof of Lemma 3.1. We will prove the lemma by contradiction, so we need p(N) =
p(N +1, 1) iterates of T on y and therefore the following Jp(N)+1 iterates of T on
z z, T z, . . . , T Jp(N)z which are all distinct. For every i in the range 0 ≤ i ≤ Jp(N),
we define a neighborhood Ui 3 T iz starting from the end and continuing inductively
as in Lemma 2.1, in such a way that Ui has the following properties:

(1) For every j in the range i < j ≤ Jp(N), Ui ∩ Uj = ∅.
(2) For every j in the range 0 ≤ j < i, U i 63 T jz.
(3) If i + J ≤ Jp(N), then we also require, using the J-continuity of T, that

whenever x ∈ Ui then for some 1 ≤ i′, j′ ≤ J, T j′x ∈ Ui+i′ .
We set Uz = U0 and given any y ∈ X we define R ⊂ [1, p(N)] × [0, ∞) as

follows:
i R j ⇐⇒ T i−1y ∈ Uj and j ≤ iJ.

Assuming that the conclusion of the lemma is false for these particular y, p(N)
and Uz, in every interval [k + 1, k + N ] ⊂ [1, p(N)] there must be an i such that
T i−1y ∈ U0 and trivially in this case i R 0. So property (1) of Lemma 3.2 is fulfilled
for this particular R . Next we verify property (2): Assume that i+ J ≤ p(N) and
i R j. Since j ≤ iJ we also have that j + J ≤ p(N)J. Thus since T i−1y ∈ Uj , there
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are 1 ≤ i′, j′ ≤ J such that T i+i
′−1y ∈ Uj+j′ . Moreover

j + j′ ≤ iJ + J = (i + 1)J ≤ (i + i′)J

and thus i+ i′R j + j′ as required.
Applying the conclusion of Lemma 3.2, there is a subinterval [k + 1, k + N ] ⊂

[1, p(N)] and (since p(N) = p(N + 1, 1)) k1, . . . , kN+1 ∈ N all distinct and for all
r such that 1 ≤ r ≤ N + 1, there is a q ∈ [k + 1, k + N ] such that q Rkr. In this
case there must be a q ∈ [k + 1, k +N ] and r 6= r′ so that q R kr and q R kr′ . This
means in particular that T q−1y ∈ Ukr and T q−1y ∈ Ukr′ which is impossible since
by the choice of the neighborhoods Ui, Ukr ∩ Ukr′ = ∅. �
Remark 3.1. It is easy to see that Lemma 3.1 is closely related to Theorem 2 in
[4]. Indeed, if we have obtained a sequence n1 < n2 < . . . of integers such that
ni+1 − ni ≤ N and T nix → z, but the iterates of T on z are all distinct, then for
this particular N we can find a neighborhood Uz 3 z such that for any y there is
a k, [k, k + N − 1] ⊂ [0, p(N)] and T ky, . . . , T k+N−1y 6∈ Uz. Setting ni ∈ N such
that for all i′ ≥ i, T ni′x ∈ Uz, we obtain a contradiction for y = T nix.

4. The proof of the GBCC

We begin with the following definition (see also Definition 1.11 of [1]):

Definition 4.1. A finite set A = {n1 < n2 < . . . < nk} ⊂ N is called N -syndetic
for some N ∈ N if ni+1 − ni ≤ N, for 1 ≤ i ≤ k − 1.

If A is infinite, then it is called syndetic (or N -syndetic) if there exists an N ∈ N
such that for all intervals of the form [` + 1, `+ N ] = {i ∈ N : ` + 1 ≤ i ≤ ` + N}
we have that [`+ 1, `+N ] ∩A 6= ∅.

Finally, an infinite A ⊂ N is called piecewise syndetic (or N -piecewise syndetic)
if there exists an N ∈ N and arbitrarily large finite subsets of A which are N -
syndetic. That is, for all k ∈ N, there exists a B ⊂ A, finite such that |B| ≥ k and
B is N -syndetic.

Let us recall from [1, Theorem 1.24] that iff B is piecewise syndetic and we have
partitioned it, B =

⋃n
i=1Bi, then for some i, Bi is also piecewise syndetic.

The following lemma, combined with Lemma 3.1, [4, Lemma 1] and [2, Lemma
1], is the key lemma for proving the GBCC.

Lemma 4.1. Assume (X, d) is a metric space, T : X → X is a self-map that
satisfies GBCC assumption for some J and M, and x, z ∈ X. Assume moreover
that there is a K-syndetic sequence 0 < n1 < n2 < . . . for some K and a C > 0
such that d(T nix, z) < C for all i. Then there is a piecewise syndetic sequence
m1 < m2 < . . . such that {Tmiz : i ∈ N} is Cauchy.

Before proving Lemma 4.1, let us first indicate how we can use it to derive a
proof of the GBCC.

Proof of the GBCC. By Lemma 1 in [4], for any z ∈ X, there is a J-syndetic
sequence 0 < n1 < n2 < . . . such that {T niz} is bounded. Thus Lemma 4.1 for
x = z implies that there exists an N piecewise syndetic sequence m1 < m2 < . . .
for some N, such that {Tmiz}i is Cauchy. Let ω ∈ X be such that Tmiz → ω.
Assuming that T has no fixed point, by [2, Lemma 1], T cannot have any invariant
finite set, i.e. there is no finite A ⊂ X such that T [A] ⊂ A. Now using Lemma 3.1,
we conclude that there is a neighborhood Uω of ω and an integer p(N) such that
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for any successive p(N) iterates of T, N successive ones among them are outside
Uω.

Now, fix i0 ∈ N such that Tmiz ∈ Uω for all i ≥ i0. Using the definition of an
N -piecewise syndetic sequence, there is a subset {mj+1 < mj+2 < . . . < mj+k} of
{m1 < m2 < . . . } of size k = i0 + p(N) which is N -syndetic. Since in this case
obviously j + i0, j + i0 + 1, . . . , j + i0 + p(N) ≥ i0 we get that

Tmj+i0 z, Tmj+i0+1z, . . . , Tmj+i0+p(N)z ∈ Uω
and since for all ` such that j + i0 ≤ ` ≤ j + i0 + p(N) − 1, m`+1 −m` ≤ N, we
derive that among the successive iterates T iz, mj+i0 ≤ i ≤ mj+i0+p(N), there are
no N successive ones among them outside Uω. This arrives at a contradiction, since

mj+i0+p(N) −mj+i0 ≥ j + i0 + p(N)− (j + i0) = p(N)

and the proof is complete. �

The technique for proving Lemma 4.1 is in some sense similar to the one followed
while proving Lemma 3.1. As in that case we will first need a technical lemma for
some relation R ⊂ N× N which in this case must be thought of as

i R j ⇐⇒ T ix ∈ B(T jz, rj)

where B(T jz, rj) is the ball of radius rj centered in T jz. We will fix the numbers
rj later, in such a way that the conclusion of the lemma will give us a Cauchy
subsequence of {Tmz}m. The idea here is to use the triangle inequality in order
to conclude that if for some j1, j2 and i i R j1 and at the same time i R j2, then
d(T j1z, T j2z) < rj1 + rj2 .

Since a K-syndetic sequence is K ′-syndetic for all K ′ > K, we may assume that
K ≥ J in Lemma 4.1.

Lemma 4.2. Given J and K ≥ J, assume that R ⊂ N× [0,∞) is a relation with
the following properties:

(1) there is a K-syndetic sequence n1 < n2 < . . . such that for all i, niR 0.
(2) If for some i and j we have that i R j, then there exists an 1 ≤ j′ ≤ J such

that i+ j′R j + j′.

Then there is a piecewise syndetic sequence m1 < m2 < . . . , every two elements of
which are related with the same number, i.e. for all mt,ms there exists an i such
that i Rmt and i Rms.

Proof. For ` ∈ [0,∞) and 1 ≤ s ≤ K, we define a set Ls` as follows:

(2) Ls` = {j : `K + sR j}
and we also define

L` =
k⋃
s=1

Ls` .

The crucial property of L` is the following:

Claim (1). Every L` has a 2K-syndetic finite subset L′` such that minL′` = 0 and
maxL′` ≥ (`− 1)K.

For every i, we define a strictly increasing and J-syndetic sequence {ji(n)}n in
such a way that

(3) ni + ji(n)R ji(n) for all n.
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To start with, we define ji(0) = 0. By property (1) of R , (3) holds with this
definition. Next, assuming that we have defined ji(n), by property (2), there is an
1 ≤ j′ ≤ J such that ni + ji(n) + j′R ji(n) + j′. So we define ji(n+ 1) = ji(n) + j′,
so that 1 ≤ ji(n+ 1)− ji(n) ≤ J and (3) holds for ji(n+ 1).

Since {ji(n)}n is J-syndetic, strictly increasing and starts with 0 and K ≥ J,
for every ` and ni ≤ `K + K, there exists an n(`, i) such that ni + ji(n(`, i)) ∈
[`K + 1, `K + K]. In this case ji(n(`, i)) ∈ L` by the definition of L` and (3).
We will prove that L′` = {ji(n(`, i)) : ni ≤ `K + K} has the required properties.
Observe first that since {ni}i is J-syndetic and K ≥ J, there is an i such that
ni ∈ [`K + 1, `K + K]. For this particular i, ji(n(`, i)) can be taken to be 0 and
therefore 0 ∈ L′`.

Next, since n1 + j1(n(`, 1)) ≥ `K + 1 and n1 ≤ K, we get that j1(n(`, 1)) ∈ L′`
and j1(n(`, 1)) ≥ (`− 1)K as required.

In order to show that L′` is 2K-syndetic, for ni−1, ni ≤ `K + K, we wish to
estimate the difference ji−1(n(`, i − 1)) − ji(n(`, i)). We first observe that since
both terms ni−1 + ji−1(n(`, i− 1)) and ni + ji(n(`, i)) belong to the same interval
[`K + 1, `K +K], we have that

−K ≤ ni−1 + ji−1(n(`, i− 1))− ni − ji(n(`, i)) ≤ K,
and moreover 1 ≤ ni − ni−1 ≤ K, since {ni}i is K-syndetic. Therefore

(4) 1−K ≤ ji−1(n(`, i− 1))− ji(n(`, i)) ≤ 2K.

Now assume that ji(n(`, i)) < ji′(n(`, i′)) are two successive elements of L′`.
If i < i′, then for the least m > i such that ji(n(`, i)) < jm(n(`,m)) we will have

by (4) that jm(n(`,m))−ji(n(`, i)) ≤ K−1. Therefore also ji′(n(`, i′))−ji(n(`, i)) ≤
K − 1.

If i > i′, then for the largest m < i such that ji(n(`, i)) < jm(n(`,m)), again by
(4) we will have that jm(n(`,m))− ji(n(`, i)) ≤ 2K and therefore also ji′(n(`, i′))−
ji(n(`, i)) ≤ 2K. In any case L′` must be 2K-syndetic. This completes the proof of
Claim (1).

Considering now every Ls` as an element of the compact space {0, 1}[0,∞) in the
obvious way, we get that there exist a sequence `1 < `2 < . . . and Ls∞ ⊂ [0,∞),
1 ≤ s ≤ K, such that {Ls`m}m → Ls∞. Also set L∞ =

⋃K
s=1 L

s
∞.

We will use Claim (1) to prove that

Claim (2). L∞ is a 2K-syndetic infinite sequence of [0,∞).

Let [p+ 1, p+ 2K] be any interval of size 2K. Using the convergence of {Ls`m}m,
we fix a big enough m0 such that (`m0 − 1)K ≥ p + 2K and moreover for all
q ∈ [p+ 1, p+ 2K] and 1 ≤ s ≤ K,
(5) q ∈ Ls`m0

⇐⇒ q ∈ Ls∞.
By Claim (1), we get that maxL′`m0

≥ p + 2K and since minL′`m0
= 0 and L′`m0

is 2K-syndetic, we get that L′`m0
∩ [p + 1, p+ 2K] 6= ∅. Thus, since L′`m0

⊂ L`m0
,

there must exist an 1 ≤ s ≤ K such that Ls`m0
∩ [p+ 1, p+ 2K] 6= ∅. By (5) we also

get that Ls∞ ∩ [p+ 1, p+ 2K] 6= ∅ and hence L∞ is a 2K-syndetic infinite sequence
as required. This completes the proof of Claim (2).

Using Theorem 1.24 of [1], as mentioned above, we get that there exists an
1 ≤ s ≤ K such that Ls∞ is piecewise syndetic. So, we only need to show that for
every j1, j2 ∈ Ls∞, there exists an i ∈ N such that i R j1 and i R j2. Fixing such
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elements j1, j2 ∈ Ls∞, we find an m0 such that j1, j2 ∈ Ls`m0
. By the definition of

Ls`m0
, (2), we get that `m0K + sR j1 and `m0K + sR j2. �

Using Lemma 4.2, we derive a proof of Lemma 4.1, thus concluding the proof of
the GBCC.

Proof of Lemma 4.1. Consider the relation R ⊂ N× [0,∞) given by the following
rule:

(6) i R j ⇐⇒ T ix ∈ B(T jz, rj), where rj = C ·M [j/J]

where B(T jz, rj) is the d-ball centered at T jz with radius rj and by [j/J ] we denote
the greatest integer below j/J. Since for all i ∈ N, d(T nix, z) < C, we get that for
every i, niR 0. Therefore property (1) of Lemma 4.2 is fulfilled for the sequence
n1 < n2 < . . . . To prove property (2), assume that for some i and j, i R j. Then
d(T ix, T jz) < rj and since T satisfies the GBCC assumption, there exists a j′ in
the range 1 ≤ j′ ≤ J such that d(T i+j

′
x, T j+j

′
z) < rj ·M. Note that

rj ·M = C ·M [j/J]+1 = C ·M
[
j
J+1
]

= C ·M
[
j+J
J

]
≤ C ·M [(j+j′)/J]

= rj+j′ .

Therefore T i+j
′
x ∈ B(T j+j

′
z, rj+j′ ) in this case, so we get that i+ j′R j+ j′. Thus

property (2) of Lemma 4.2 is also fulfilled. Using the conclusion of the lemma,
we obtain a piecewise syndetic sequence m1 < m2 < . . . such that for every t
and s, there exists an i, so that both i Rmt and i Rms. In this case, by (6),
T ix ∈ B(Tmtz, rmt) and T ix ∈ B(Tmsz, rms). Using the triangle inequality, we get
that

d(Tmtz, Tmsz) ≤ rmt + rms = C(M [mt/J] +M [ms/J])
and the last inequality easily shows that indeed {Tmiz}i is Cauchy. �

References

1. H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton
University Press, Princeton, 1981. MR 82j:28010

2. Jacek R. Jachymski, Bernd Schroder, and James D. Stein, Jr. A connection between fixed point
theorems and tiling problems. J. Combin. Theory Ser. A, 87:273–286, 1999. MR 2000g:54075

3. Jacek R. Jachymski and James D. Stein, Jr. A minimum condition and some related fixed-point
theorems. J. Austral. Math. Soc. Ser. A, 66:224–243, 1999. MR 2000a:54072

4. James Merryfield, Bruce Rothschild, and James D. Stein, Jr. An application of Ramsey’s The-
orem to the Banach contraction principle. Proceedings of the American Mathematical Society,
130(4):927–933, 2001. MR 2002h:54040

5. James Merryfield and James D. Stein, Jr. A generalization of the Banach Contraction Principle.
to appear in Journal of Mathematical Analysis and Applications.

6. J. D. Stein, Jr. A systematic generalization procedure for fixed-point theorems. Rocky Mountain
Journal of Mathematics., 30(2):735–754, 2000. MR 2001i:54052

MPLA, Department of Mathematics, University of Athens, 15784 Panepistimiopolis,

Athens, Greece

E-mail address: aarvan@cc.uoa.gr

http://www.ams.org/mathscinet-getitem?mr=82j:28010
http://www.ams.org/mathscinet-getitem?mr=2000g:54075
http://www.ams.org/mathscinet-getitem?mr=2000a:54072
http://www.ams.org/mathscinet-getitem?mr=2002h:54040
http://www.ams.org/mathscinet-getitem?mr=2001i:54052

	1. Introduction
	2. The continuous case for scattered compact
	3. The general J-continuous case
	4. The proof of the GBCC
	References

