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GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR
SECOND ORDER OPERATORS ON THE TORUS

CHIARA BOITI AND LUISA ZANGHIRATI

(Communicated by David S. Tartakoff)

Abstract. Assuming a subelliptic a-priori estimate we prove global analytic
regularity for non-linear second order operators on a product of tori, using the
method of majorant series.

1. Introduction

Hypoellipticity for linear partial differential operators has been largely investi-
gated by many authors. In the non-linear case, on the contrary, there are still few
results and many open questions.

Some results about C∞-hypoellipticity for non-linear partial differential equa-
tions have been obtained in [X] and [G], using the para-differential calculus of
Bony [B].

We are interested in analytic hypoellipticity for non-linear second order p.d.e.’s.
Local analytic regularity for a model operator given by sums of squares of non-linear
vector fields has been proved in [TZ]. Here we prove global analytic regularity on
the torus for non-linear second order operators constructed from rigid vector fields,
generalizing the result obtained for the linear case in [T].

The problem of regularity of solutions on the torus in the linear case has been
studied by many other authors in the frameworks of C∞, Gevrey and analytic
functions (see, for instance, [GPY] and the references there).

2. Notation and main result

Let TN be the N -dimensional torus and split TN ' Tm × Tn. Let us then
consider, for u ∈ C∞(TN ) and for some integer n′ ≥ n, the operator

P = Pu = P (x, u,D)(1)

=
n′∑

j,k=1

ajk(u(t, x))XjXk +
n′∑
j=1

bj(u(t, x))Xj +X0 + c(u(t, x))
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defined for (t, x) ∈ Tm × Tn, where the real analytic coefficients ajk(u), bj(u) and
c(u) are complex valued, but the real analytic rigid vector fields

Xj =
n∑
k=1

djk(x)
∂

∂xk
+

m∑
k=1

ejk(x)
∂

∂tk
, j = 0, . . . , n′,(2)

are real valued (rigid means that the coefficients djk, ejk do not depend on t).
Assume also that, for every x ∈ Tn, the fields

X ′j =
n∑
k=1

djk(x)
∂

∂xk
, j = 1, . . . , n′,(3)

span the tangent space Tx(Tn).
Let us now denote by A(TN ) the space of real analytic functions on TN , and fix

a solution u ∈ C∞(TN ) of the equation Pu = f for f ∈ A(TN ).
We shall assume in the sequel that the following a-priori estimate is satisfied for

some δ, C > 0 and for all v ∈ C∞(TN ):

n′∑
i,j=1

‖XiXjv‖µ +
n′∑
j=1

‖Xjv‖µ + ‖v‖µ+δ ≤ C(‖Puv‖µ + ‖v‖µ),(4)

where µ is a fixed integer with µ > N/2, so that the Sobolev space Hµ(TN ) is an
algebra and

‖fg‖µ ≤ Λ‖f‖µ · ‖g‖µ ∀f, g ∈ Hµ(TN ),

for a positive Λ depending only on N .
Before giving the analytic regularity result, we first give an example of an oper-

ator of type (1) satisfying the required assumptions, and in particular the a-priori
estimate (4).

Example 2.1. Let (t, x) ∈ T2 and consider the operator

P = ∂2
x + sin2x (1 + a2(u(t, x)))∂2

t ,

where a(u) is a real analytic function. This operator is of the form (1) with

X1 = X ′1 = ∂x, X2 = sinx ∂t,
a11(u) ≡ 1, a12(u) ≡ a21(u) ≡ 0, a22(u) = 1 + a2(u).

We must prove the a-priori estimate (4). From [RS] it easily follows that

‖v‖2µ+δ ≤ c

 2∑
j=1

‖Xjv‖2µ + ‖v‖2µ

 ∀v ∈ C∞(T2), δ = 1/2.

This implies, by standard arguments, the following a-priori estimate for the operator
P̃ = ∂2

x + sin2x ∂2
t :

2∑
i,j=1

‖XiXjv‖2µ +
2∑
j=1

‖Xjv‖2µ+δ + ‖v‖2µ+2δ ≤ c′|〈P̃ v, v〉µ|+ ‖v‖2µ,(5)

for some c′ > 0 and for all v ∈ C∞(T2).
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Since P = P̃ + a2(u)X2
2 , we have that

|〈P̃ v, v〉µ| ≤ |〈Pv, v〉µ|+ |〈a2(u)X2
2v, v〉µ|

≤ 1
2
‖Pv‖2µ +

1
2
‖v‖2µ + ε‖a2(u)X2

2v‖2µ +
1
4ε
‖v‖2µ

≤ 1
2
‖Pv‖2µ +

2ε+ 1
4ε
‖v‖2µ + εK‖X2

2v‖2µ
for some constant K > 0. Substituting in (5) we obtain the desired estimate (4),
for ε > 0 small enough.

Let us now state the main result of this paper.

Theorem 2.2. Let P be the operator defined in (1), and assume that the vector
fields {Xj}j=0,...,n′ are rigid and that for every fixed x ∈ Tn the {X ′j}j=1,...,n′ span
Tx(Tn).

Assume moreover that u ∈ C∞(TN ) is a solution of the equation

P (x, u,D)u = f,

for some f ∈ A(TN ), and that the a-priori estimate (4) is satisfied. Then also
u ∈ A(TN ).

Remark 2.3. We can follow [X] to obtain from the a-priori estimate (4) and the
use of para-differential operators a result of C∞-hypoellipticity for the operator (1)
with the given assumptions on the Xj ’s: if f ∈ C∞(TN ) and u ∈ Cµ+3(TN ) is a
solution of Pu = f , then u ∈ C∞(TN ).

Before giving the proof of Theorem 2.2, we first need some notation.
Define, for u ∈ C∞(TN ),

|||u |||µ =
n′∑

i,j=1

‖XiXju‖µ +
n′∑
j=1

‖Xju‖µ + ‖u‖µ+δ,

and consider the sequence mq = cq!/(q+ 1)2, where the constant c is such that (see
[AM]) ∑

0≤β≤α

(
α

β

)
m|β|m|α−β| ≤ m|α|.(6)

Then set Mq = ε1−qmq for ε > 0 and q ≥ 1. The relation (6) implies that∑
0<β<α

(
α

β

)
M|β|M|α−β| ≤ εM|α|(7)

and hence, if we consider the formal power series

θ(Y ) =
∑
α>0

M|α|
α!

Y α,(8)

for Y = (t, x) ∈ RN , we obtain that

θq(Y )� εq−1θ(Y ) ∀q ≥ 1, Y ∈ RN ,
meaning that each coefficient of the formal power series on the left is less than or
equal to the corresponding coefficient of the formal power series on the right-hand
side.
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It follows that, if we choose A,R > 0 satisfying for every integer q ≥ 0

n′∑
i,j=1

‖a(q)
ij ‖Hµ(u(TN )) +

n′∑
j=1

‖b(q)j ‖Hµ(u(TN )) + ‖c(q)‖Hµ(u(TN )) ≤ ARqq!(9)

(which is possible because of the analyticity of the coefficients), and we define the
formal power series

φ(w) =
+∞∑
q=1

ARqwq, for w ∈ R,(10)

then, for every ρ > 0,

φ(ρθ(Y ))� A

ε
θ(Y )

+∞∑
q=1

(ρRε)q =
ARρ

1− ερR θ(Y )(11)

for all ε > 0 such that ερR < 1.

Proof of Theorem 2.2. From the given assumptions on the vector fields Xj , it is
sufficient to prove the analytic estimate for ‖∂btku‖µ for k = 1, . . . ,m and for every
b ≥ 1.

We fix k and denote, for simplicity, t = tk and T = ∂t = ∂tk . Then we define

[u]t,r = sup
0<q≤r

|||T qu |||µ
Mq

,

and prove by induction on r ≥ 1 that there exist ε,M > 0 such that for all r ≥ 1,

[u]t,r ≤M.(12)

We claim that we can take

M = max
{

1,
4
c

max
1≤q≤3

|||T qu |||µ
}
,(13)

whereas ε will be chosen in the following.
For p = 1, 2, 3 we clearly have that [u]t,p ≤ M for ε small enough. Assume that

(12) is satisfied for all 3 ≤ r < b and let us prove it for r = b (the above request
b ≥ 3 will be understood in the following).

By the a-priori estimate (4) we have that

|||T bu |||µ =
n′∑

j,k=1

‖XjXkT
bu‖µ +

n′∑
j=1

‖XjT
bu‖µ + ‖T bu‖µ+δ

≤ C(‖PT bu‖µ + ‖T bu‖µ).(14)

For every ε1, δ1 > 0 we can find a positive constant Cε1,δ1 > 0 such that

‖T bu‖µ ≤ ε1‖T bu‖µ+δ + Cε1,δ1‖T bu‖µ−δ1 .(15)

Moreover

‖PT bu‖µ ≤ ‖[P, T b]u‖µ + ‖T bPu‖µ.(16)

Since ε1‖T bu‖µ+δ will be absorbed in the left-hand side of (14), ‖T bu‖µ−δ1 will
be estimated by induction and ‖T bPu‖µ will not give any problems because of the
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analyticity of f = Pu, we first estimate ‖[P, T b]u‖µ. To this aim we compute

[T b, P ] = T bP − PT b

=
n′∑

j,k=1

b∑
b′=1

(
b

b′

)
T b
′
(ajk(u(t, x)))XjXkT

b−b′

+
n′∑
j=1

b∑
b′=1

(
b

b′

)
T b
′
(bj(u(t, x)))XjT

b−b′ +
b∑

b′=1

(
b

b′

)
T b
′
(c(u(t, x))) T b−b

′
(17)

since the Xj ’s do not depend on the variable t.
Let us denote by a◦u the generic coefficient ajk(u(t, x)) or bj(u(t, x)) or c(u(t, x)),

and write (X2) for the generic term of the form 1, or Xj or XjXk. Then we estimate∥∥∥∥∥
b∑

b′=1

(
b

b′

)
T b
′
(a ◦ u)(X2)T b−b

′
u

∥∥∥∥∥
µ

≤ Λ‖T b(a ◦ u)‖µ · ‖(X2)u‖µ

+Λ
b−1∑
b′=1

(
b

b′

)
‖T b′(a ◦ u)‖µ · ‖(X2)T b−b

′
u‖µ.(18)

It can be easily proved by induction on p ≥ 1 that the derivative T p of the composite
function a(u(t, x)) can be written as

T p(a ◦ u) =
∑

ri∈N\{0}
r1+...+rq=p

Cq,ra
(q)(u)∂r1t u · · ·∂

rq
t u

= a′(u)T pu+
∑

r1+...+rq=p
0<ri<p

Cq,ra
(q)(u)∂r1t u · · · ∂

rq
t u

for some Cq,r > 0, and therefore

‖T b(a ◦ u)‖µ ≤ ‖a′(u)T bu‖µ +
∑

r1+...+rq=b
0<ri<b

Cq,rΛq‖a(q)(u)‖µ‖∂r1t u‖µ · · · ‖∂
rq
t u‖µ

≤ Λ‖a′(u)‖µ · ‖T bu‖µ
+

∑
r1+...+rq=b

0<ri<b

Cq,r‖a(q)(u)‖µ(Λ[u]t,b−1)q∂r1t θ(0) · · · ∂rqt θ(0)(19)

since ‖∂rht u‖µ ≤ [u]t,b−1Mrh = [u]t,b−1∂
rh
t θ(0) for 1 ≤ rh ≤ b − 1, h = 1, . . . , q,

where θ(Y ) is the formal power series defined in (8).
With the choice made for A,R > 0 in (9), we have that ‖a(q)(u)‖µ ≤ ARqq! and

hence, substituting in (19),

‖T b(a ◦ u)‖µ ≤ ΛAR‖T bu‖µ
+

∑
r1+...+rq=b

0<ri<b

Cq,rAR
qq!(Λ[u]t,b−1)q∂r1t θ(0) · · · ∂rqt θ(0).(20)
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Let us now remark that, for φ given by (10) and ρ > 0,

T b (φ(ρθ)) =
∑

r1+...+rq=b
ri>0

Cq,rφ
(q)(ρθ)ρq∂r1t θ · · · ∂

rq
t θ

= φ′(ρθ)ρ∂bt θ +
∑

r1+...+rq=b
0<ri<b

Cq,rφ
(q)(ρθ)ρq∂r1t θ · · · ∂

rq
t θ

and therefore

T b (φ(ρθ(Y )))
∣∣
Y=0

= ARρMb +
∑

r1+...+rq=b
0<ri<b

Cq,rAR
qq!ρq∂r1t θ(0) · · · ∂rqt θ(0)

since ∂αθ(0) = M|α| and φ(q)(0) = ARqq!.
Substituting in (20) with ρ = Λ[u]t,b−1,

‖T b(a ◦ u)‖µ ≤ ΛAR‖T bu‖µ + T b (φ(Λ[u]t,b−1θ(Y )))
∣∣
Y=0

−ΛAR[u]t,b−1Mb.(21)

From (11) we deduce that

T b (φ(ρθ(Y )))� ARρ

1− ερR T bθ(Y ) if ερR < 1,

and hence

T b (φ(Λ[u]t,b−1θ(Y )))
∣∣
Y=0
≤ ARΛ[u]t,b−1

1− εRΛ[u]t,b−1
Mb

if εRΛ[u]t,b−1 < 1.
By the inductive assumption we can take ε = εo/(MRΛ), with 0 < εo < 1 to be

chosen in the following, so that

εRΛ[u]t,b−1 ≤
εo

MRΛ
RΛM = εo < 1.

We thus obtain from (21) and (15) that

‖T b(a ◦ u)‖µ ≤ ΛAR(ε1‖T bu‖µ+δ + Cε1,δ1‖T bu‖µ−δ1) +
ΛAR
1− εo

[u]t,b−1Mb

−ΛAR[u]t,b−1Mb

= ε1ΛAR‖T bu‖µ+δ + ΛARCε1,δ1‖T bu‖µ−δ1 +
εo

1− εo
ΛAR[u]t,b−1Mb.(22)

This estimate will be substituted in (18). In a similar way we obtain the following
estimates for 1 ≤ b′ ≤ b− 1:

‖T b′(a ◦ u)‖µ ≤
∑

r1+...+rq=b
′≤b−1

ri>0

Cq,rAR
qq!(Λ[u]t,b−1)q∂r1t θ(0) · · · ∂rqt θ(0)

= T b
′

(φ(Λ[u]t,b−1θ(Y )))|Y=0 ≤
ΛAR
1− εo

[u]t,b−1Mb′ .(23)
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Substituting (22) and (23) in (18),

∥∥∥∥∥
b∑

b′=1

(
b

b′

)
T b
′
(a ◦ u)(X2)T b−b

′
u

∥∥∥∥∥
µ

≤ Λ‖(X2)u‖µ
{
ε1ΛAR‖T bu‖µ+δ

+ΛARCε1,δ1‖T bu‖µ−δ1 +
εo

1− εo
ΛAR[u]t,b−1Mb

}
+Λ

b−1∑
b′=1

(
b

b′

)
ΛAR
1− εo

[u]t,b−1Mb′‖(X2)T b−b
′
u‖µ.(24)

Let us set m = |||u |||µ (so that ‖(X2)u‖µ ≤ m), and estimate the norms ‖T bu‖µ−δ1
and ‖(X2)T b−b

′
u‖µ:

‖T bu‖µ−δ1 ≤ ‖T b−1u‖µ+δ ≤ [u]t,b−1Mb−1 if δ1 ≥ 1− δ, δ1 > 0,

‖(X2)T b−b
′
u‖µ ≤ |||T b−b

′
u |||µ ≤ [u]t,b−1Mb−b′ since b′ ≥ 1.

Then, from (24) and the inductive assumption,

∥∥∥∥∥
b∑

b′=1

(
b

b′

)
T b
′
(a ◦ u)(X2)T b−b

′
u

∥∥∥∥∥
µ

≤ ε1mΛ2AR‖T bu‖µ+δ +mΛ2ARCε1,δ1MMb−1

+
εo

1− εo
mΛ2ARMMb +

Λ2AR

1− εo
M2

b−1∑
b′=1

(
b

b′

)
Mb′Mb−b′

≤ ε1mΛ2AR‖T bu‖µ+δ +mΛ2ARCε1,δ1MεMb

+
εo

1− εo
mΛ2ARMMb +

Λ2AR

1− εo
M2εMb

because of (7) and of the estimate Mb−1 ≤ εMb for b ≥ 3. (Here is the only reason
why we start with r = 3 in the induction.)

By the choice of ε = εo/(MRΛ) we have

∥∥∥∥∥
b∑

b′=1

(
b

b′

)
T b
′
(a ◦ u)(X2)T b−b

′
u

∥∥∥∥∥
µ

≤ ε1mΛ2AR‖T bu‖µ+δ

+εo

(
mΛACε1,δ1 +

mΛ2ARM

1− εo
+

ΛAM
1− εo

)
Mb.(25)

From (17) and (25) we finally obtain the desired estimate for ‖[P, T b]u‖µ:

‖[P, T b]u‖µ ≤ ε1mΛ2AR(n′2 + n′ + 1)‖T bu‖µ+δ

+εo

(
mΛACε1,δ1 +

mΛ2ARM

1− εo
+

ΛAM
1− εo

)
(n′2 + n′ + 1)Mb.(26)
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Then, from (14), (15), (16) and (26),

|||T bu |||µ ≤ C

[
ε1mΛ2AR(n′2 + n′ + 1)‖T bu‖µ+δ

+εo

(
mΛACε1,δ1 +

mΛ2ARM

1− εo
+

ΛAM
1− εo

)
(n′2 + n′ + 1)Mb

+Bb+1
f

b!
(b+ 1)2

+ ε1‖T bu‖µ+δ + Cε1,δ1 [u]t,b−1Mb−1

]
≤ ε1[CmΛ2AR(n′2 + n′ + 1) + C] · ‖T bu‖µ+δ

+εoCM
(
mΛACε1,δ1 +

mΛ2AR

1− εo
+

ΛA
1− εo

)
(n′2 + n′ + 1)Mb

+Bb+1
f

b!
(b+ 1)2

+ CCε1,δ1M
εo

MRΛ
Mb,

where Bf > 0 is given by the analyticity of f .
We now choose 0 < ε1 < 1 with

Aε1 = ε1[CmΛ2AR(n′2 + n′ + 1) + C] < 1

and then 0 < εo < 1 sufficiently small so that, for b ≥ 3,

Bb+1
f

Aε1

b!
(b+ 1)2

≤ 1
2
Mb =

c

2
ε1−b
o

(MRΛ)1−b
b!

(b+ 1)2

and

εo
C

Aε1

[(
mΛACε1,δ1 +

mΛ2AR

1− εo
+

ΛA
1− εo

)
(n′2 + n′ + 1) +

Cε1,δ1
RΛ

]
≤ 1

2
.

With such choices we finally have that |||T bu |||µ ≤MMb and hence, by the inductive
assumption,

[u]t,b = sup
0<q≤b

|||T qu |||µ
Mq

= max

{
sup

0<q<b

|||T qu |||µ
Mq

,
|||T bu |||µ
Mb

}
≤M.

The theorem is therefore proved. �

3. The case of coefficients also depending on (t, x) ∈ Tm × Tn

Let us now consider the case in which the operator P has real analytic complex
valued coefficients which depend also on (t, x) ∈ Tm × Tn ' TN :

P = P (t, x, u,D)(27)

=
n′∑

j,k=1

ajk(t, x, u(t, x))XjXk +
n′∑
j=1

bj(t, x, u(t, x))Xj + X0 + c(t, x, u(t, x)),

where the real valued rigid vector fields {Xj}0≤j≤n′ are defined as in (2) and satisfy
the same assumptions as in §2.

Then we can prove the analogue of Theorem 2.2:

Theorem 3.1. Let P be the operator defined in (27) and assume that the vector
fields {Xj}j=0,...,n′ are rigid and that for every fixed x ∈ Tn the {X ′j}j=1,...,n′ span
Tx(Tn).
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Assume moreover that u ∈ C∞(TN ) is a solution of the equation

P (t, x, u,D)u = f,

for some f ∈ A(TN ) and that the a-priori estimate (4) is satisfied. Then also
u ∈ A(TN ).

Proof. It is analogous to that of Theorem 2.2, and therefore we give here only the
sketch of it.

Following the same outline as in the proof of Theorem 2.2, we replace (9) and
(10) defining A,R > 1 and the formal power series φ by the following formulas:

n′∑
i,j=1

‖∂rt ∂quaij‖Hµ(TN×u(TN )) +
n′∑
j=1

‖∂rt ∂qubj‖Hµ(TN×u(TN ))

+‖∂rt ∂quc ‖Hµ(TN×u(TN )) ≤ ARr+q(r + q)! ∀r, q ≥ 0

φ(w) =
+∞∑
q=1

A(2R)qwq for w ∈ R,

so that we have (11) with R̄ = 2R instead of R. We then set

M = max
{

1,
4
c

max
1≤q≤3

|||T qu |||µ, 2A
}

instead of the choice made for M in (13).
Following the proof of Theorem 2.2, we must estimate the Hµ(TN )-norm of

T ba(t, x, u(t, x)). To this aim we first recall the following formula, which can be
easily proved by induction on p ≥ 1:

∂pt a(t, x, u(t, x)) = (∂pt a)(t, x, u(t, x))

+
p∑
s=1

(
p

s

) ∑
r1+...+rq=s

ri>0

Cq,r(∂qu∂
p−s
t a)(t, x, u(t, x))∂r1t u(t, x) · · ·∂rqt u(t, x)(28)

for some Cq,r > 0. Then

T ba(t, x, u(t, x)) = (∂bta)(t, x, u(t, x)) + ∂bta(τ, x, u(t, x))|τ=t

+
b−1∑
s=1

(
b

s

) ∑
r1+...+rq=s

ri>0

Cq,r(∂qu∂
b−s
t a)(t, x, u(t, x))∂r1t u(t, x) · · · ∂rqt u(t, x),(29)

for b ≥ 3. Let us denote by a ◦ u the composite function a(t, x, u(t, x)). The first
term on the right-hand side of (29) is then easily estimated by

‖∂bta ◦ u‖µ ≤ ARbb! ≤
M

2
Mb,

if 0 < ε ≤ ε̄ with ε̄ small enough in order that

R̄pp! ≤Mp = ε1−pc
p!

(p+ 1)2
∀p ≥ 2.(30)

The second term on the right-hand side of (29) is estimated as in (22) with R̄ = 2R
instead of R and 0 < ε̄o < min{1, ε̄MR̄Λ} instead of εo, taking ε = ε̄o/(MR̄Λ).
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We have to estimate the third term of the right-hand side of (29). To this aim
we first recall that (k + j)! ≤ 2k+jk!j! for all k, j ∈ N, and hence

‖∂qu∂b−st a ◦ u‖µ ≤ ARq+b−s(q + b− s)! ≤ AR̄q+b−sq!(b − s)!.
Therefore∥∥∥∥∥∥∥∥

b−1∑
s=1

(
b

s

) ∑
r1+...+rq=s

ri>0

Cq,r∂
q
u∂

b−s
t a ◦ u ∂r1t u · · ·∂

rq
t u

∥∥∥∥∥∥∥∥
µ

≤
b−1∑
s=1

(
b

s

)
R̄b−s(b− s)!

∑
r1+...+rq=s

ri>0

Cq,rAR̄
qq!(Λ[u]t,b−1)q∂r1t θ(0) · · · ∂rqt θ(0)

≤ R̄bT b−1φ(Λ[u]t,b−1θ(Y ))|Y=0 +
b−2∑
s=1

(
b

s

)
Mb−sT

sφ(Λ[u]t,b−1θ(Y ))|Y=0

≤ AR̄Λ
1− ε̄o

[u]t,b−1

[
R̄bMb−1 +

b−2∑
s=1

(
b

s

)
Mb−sMs

]

≤ 3AR̄2Λ
1− ε̄o

[u]t,b−1εMb,

because of (30), of

T pφ(Λ[u]t,b−1θ(Y ))|Y=0 ≤
AR̄Λ
1− ε̄o

[u]t,b−1Mp ∀p ≥ 1,

of (7) and of bMb−1 ≤ 2εMb for b ≥ 3.
The same arguments can be hold to estimate ‖T b′a ◦ u‖µ for 1 ≤ b′ ≤ b − 1.

We can thus proceed as in the proof of Theorem 2.2 to obtain the desired estimate
(12). �
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