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ZEROES OF COMPLETE POLYNOMIAL VECTOR FIELDS
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Dedicated to my father

Abstract. We prove that a complete polynomial vector field on C2 has at
most one zero, and analyze the possible cases of those with exactly one which
is not of Poincaré-Dulac type. We also obtain the possible nonzero first jet sin-
gularities of the foliation FX at infinity and the nongenericity of completeness.
Connections with the Jacobian Conjecture are established.

Introduction and results

Let X = P(z1, z2) ∂
∂z1

+Q(z1, z2) ∂
∂z2

be a polynomial vector field on C2 of degree
m = max{degP, degQ} ≥ 2 with isolated zeroes. It is known, [9], that X extends as
a rational vector field in CP2 having a pole along the line at infinity, L∞. Removing
the pole, we obtain a foliation FX of degree d, where d = m if L∞ is invariant and
d = m− 1 if it is not. We denote by Sing(FX) the singular set of FX .

Recall that a holomorphic vector field X in a complex manifold M is said to be
complete if, for every p ∈ M , the differential equation defined by X can be solved
for every complex time t.

In this paper we study complete polynomial vector fields X on C2 through some
properties of the leaves of FX . In section 1, we analyze the trajectories of X at
infinity and we give in Theorem 1.1 the possible nonzero first jet of FX at its
singular points in L∞, thus proving Corollary 1.1: foliations induced by complete
polynomial vector fields of degree m give a nowhere dense set in the space of degree
m foliations, F(m, 2), providing a polynomial version of Buzzard-Fornaess’s result,
[5]. We also apply our results to the problem of exploding orbits of complex poly-
nomial Hamiltonians, obtaining a simple geometric proof of Fornaess and Grellier’s
result, [8], in that case.

In section 2, we further study the isolated zeroes of X . A natural question (posed
in [1] and [15]) is if there exist complete holomorphic vector fields on C2 with more
than one isolated zero. The answer, given in Theorem 2.1, is no for polynomial
ones. Our result relies on the study of proper orbits due to Brunella in [4]. We also
classify the complete polynomial vector fields with rational first integral and, using
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Andersen’s result in [2], those with one zero p which is not of Poincaré-Dulac type,
when it is nondicritical and at least two of the separatrices through it are algebraic
at infinity. When p is dicritical with no rational first integral, or nondicritical with
just one separatrix algebraic at infinity, the induced foliation FX is, as in Brunella’s
result [4], P -complete where P can be written in a simple form due to [17] and [16]
(Proposition 2.1 and Theorem 2.2).

In section 3, we state the Jacobian Conjecture in terms of completeness of certain
vector fields, and characterize the complete commutative bases of C-derivations of
the polynomial ring.

I want to thank Luis Giraldo and Jesús Muciño-Raymundo for helpful conversa-
tions, advise and encouragement.

1. Separatrices at infinity and completeness

A germ Σ of an analytic irreducible curve is said to be a trajectory of X at
p ∈ L∞ if p ∈ Σ and Σ \ {p} is invariant by X . In this case one can extend Σ \ {p}
by analytic continuation to obtain the complex orbit L of X . If γ : D → Σ is the
(minimal) Puiseaux’s parametrization of a neighborhood Up of p in Σ, L = L∪{p}
can be endowed with an abstract Riemann surface structure as follows: for any
q ∈ L, by the existence of local solutions for X , we can take the parametrization γq
of an open neighborhood Uq ⊂ L, and define the local chart as zq = γq

−1 : Uq → C.
Otherwise, γ defines the local chart around p in L as zp = γ−1 : Σ→ D.

Lemma 1.1. Let X be a polynomial vector field in C2, and let Σ be a trajectory of
X at p ∈ L∞. Then, if X is complete on L\ {p}, it extends to p as a zero of order
1 or 2.

Proof. As L\{p} is uniformized by C, and it is contained in the Stein manifold C2,
then L \ {p} is (analytically) isomorphic to C or C∗. If L \ {p} ' C, it follows that
L ' CP1 and X extends to p as zero of order 2, by Riemann-Roch. On the other
hand, if L \ {p} ' C∗, then X extends to p as zero of order 1. We refer to [10] for
the study of complete vector fields on Riemann surfaces. �

Corollary 1.1. If X is a complete polynomial vector field on C2, then L∞ is
invariant by FX .

Remark 1.1. If L \ {p} ' C, by Chow’s Theorem L \ {p} is contained in a rational
curve.

Remark 1.2. Lemma 1.1 is valid for polynomial vector fields on Cn, n ≥ 2.

Let p ∈ Sing(FX) ∩ L∞, and let Σ 6= L∞ be a separatrix of FX through p,
parametrized by γ : D→ Σ. Without loss of generality assume that p = (0 : 1 : 0).
Then if γ(t) = (y1(t), y2(t)), with (y1, y2) = (ϕ1 ◦ ϕ−1

0 )(z1, z2) = ( 1
z1
, z2
z1

) the usual
change of charts in CP2, we denote by σ the order of y1(t) at t = 0, which is the
order of contact of Σ with L∞ at p. Since Σ \ {p} is invariant by FX , γ∗X is a
holomorphic vector field on D∗ whose order at 0 is called the multiplicity of FX
with respect to Σ. We will denote it by indp(FX ,Σ). From now on, if no other
conditions are explicitly given, X will be a complete polynomial vector field on C2

of degree m ≥ 2 with isolated zeroes.

Lemma 1.2. indp(FX ,Σ)− σ(m− 1) = 1 or 2.
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Proof. We obtain the extension of X|L\{p} to p as γ∗(ϕ1 ◦ ϕ−1
0 )∗X = f(t) ∂∂t . Thus

(y1(t))m−1
f(t) equals

(1) −
m∑
i=0

(y1(t))m+1−i

y′1(t)
· Pi(1, y2(t)), or

m∑
i=0

(y1(t))m−i

y′2(t)
·Gi(y2(t)),

where Pi and Qi denote the homogeneous components of degree i of P and Q re-
spectively, and Gi(y2) = Qi(1, y2)−y2Pi(1, y2). As L∞ is invariant by Corollary 1.1,
ym−1

1 (ϕ1 ◦ϕ−1
0 )∗X represents FX in U1. Thus ord0f(t) = indp(FX ,Σ)− σ(m− 1),

and the result follows from Lemma 1.1. �

1.1. Foliations with nonzero first jet singularities at infinity. We say that
FX has nonzero first jet at a singularity p if the linear part at p of a vector field
Y which represents FX in a neighbourhood of p is not zero. Let λ and µ be the
eigenvalues of DYp and suppose that λ and µ are not both zero. Then, we say
that p is a saddle-node point if λµ = 0. If λ/µ ∈ Q+, the singularity is either
dicritical or of Poincaré-Dulac type: after a local analytic change of coordinates Y
is given by x ∂

∂x + (ny + xn) ∂∂y , with n ∈ N+ [3]. We will suppose that p = (0, α) ∈
Sing (FX) ∩ L∞. Let us rewrite the jacobian D(ym−1

1 (ϕ1 ◦ ϕ−1
0 )∗X )p as

(2) Jp =
(
−Pm(1, α) 0
Gm−1(α) G

′

m(α)

)
=
(
λ 0
ν µ

)
.

Theorem 1.1. Let p ∈ Sing (FX) ∩ L∞ be a point at which FX has nonzero first
jet. Let us suppose that λ and µ are not both zero. Then,

(i) either p is a saddle-node point and L∞ defines the strong direction, that is,
λ = 0, µ 6= 0;

(ii) or p is of Poincaré-Dulac type.

Proof. We study the following cases:
1) If detJp = 0, then λ = 0. To see this, we use Corollary 1.1, and observe

that if λ 6= 0, L∞ is a smooth separatrix tangent to the weak direction µ = 0 and
there is just one more smooth separatrix Σ, tangent to the strong direction. Σ is
transversal to L∞ at p, so indp(FX ,Σ) = 1 < m, contradicting Lemma 1.2. Then
(i) holds, and there is at most one more separatrix Σ 6= L∞, [11, pp. 521–522].

2) If detJp 6= 0, then λ/µ ∈ Q+, as otherwise there are exactly two transversal
smooth separatrices through p [11, pp. 518–521], and we get a contradiction as
before. Moreover, p is nondicritical. If not, take a separatrix Σ 6= L∞, then
indp(FX ,Σ) = 1 < 1 + σ(m − 1), again a contradiction by Lemma 1.2. Thus p is
of Poincaré-Dulac type, [3]. �

Remark 1.3. Note that if Σ 6= L∞ is a separatrix through p, then p is a saddle-node
point and L∞ defines the strong direction. Example ([7]): X = z1

∂
∂z1
−z2(1+z1) ∂

∂z2
,

with p = (0 : 1 : 0) ∈ L∞.

Corollary 1.2. For each m ≥ 2, the set of degree m foliations defined by complete
polynomial vector fields is a nowhere dense set in F(m, 2).

Application: exploding orbits of polynomial Hamiltonians. Given H ∈
C[z1, z2]m, the space of polynomials of degree ≤ m, we get a polynomial Hamilton-
ian, XH . The (complex) orbit of a point p ∈ C2 is said to explode if it is unbounded
on some D∗ ⊂ C.
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Proposition 1.1. The existence of a dense set of points in C2 whose complex orbit
explodes is a generic property in C[z1, z2]m, m ≥ 3.

Proof. Consider the Zariski open of C[z1, z2]m defined by Wm = {H | Hm =
0 defines m distinct points in CP1}. For any H ∈ Wm and p = (0, α) ∈ SingFXH ∩
L∞, as ∂Hm/∂z2(1, α) 6= 0, (2) is not 0. Since FXH is given by the pencil defined
by H , and L∞ is invariant, p can be taken to be dicritical. For each separatrix
Σ 6= L∞ through p, X|L\{p} extends to p as a pole of order k ≥ 1, Theorem 1.1.
Thus the norm of X is unbounded on D∗ and L explodes. �

2. On the number of zeroes of a complete polynomial vector field

Proposition 2.1. Suppose that X has a rational first integral. Then, there exists
a polynomial automorphism ϕ ∈ Aut[C2] such that

(i) If X is not singular, ϕ∗X = ∂
∂z1

.
(ii) If X is singular, ϕ∗X = mz1

∂
∂z1

+ nz2
∂
∂z2

where m,n ∈ Z∗.

Proof. Let H = F/G be a rational first integral of X . By Stein’s factorization, we
may assume that the generic fiber of H is connected, i.e., H is a primitive rational
first integral. Since X is complete there exists a subset E ⊂ C2 of zero transverse
logarithmic capacity, which is invariant by the flow of X , and such that the orbits
of X on C2 \E are all isomorphic either to C or to C∗ (see [18], [19]). We say that
the generic orbit of X is C or C∗, and also that H is of type C or C∗.
• Assume that the generic orbit of X is C. Suppose that {H = 0} ' C, so that

according to Abhyankar-Moh-Suzuki’s Theorem [16], there exists ϕ ∈ Aut[C2] with
H ◦ ϕ(z1, z2) = z2. Therefore ϕ∗X = ∂

∂z1
.

• If the generic orbit of X is C∗, following an improvement of a theorem of Saito
[17], after a polynomial automorphism Φ, we have that H ◦Φ(z1, z2) = h◦Q(z1, z2),
where h is a rational function of degree one and either Q = (zm1 (zl1z2 + p(z1))n),
m,n ∈ Z∗, l ∈ N+, p(z1) is a polynomial of degree ≤ l − 1 with p(0) 6= 0, or
Q(z1, z2) = zm1 z

n
2 . In the first case, removing the one-dimensional singular locus of

dQ, iΦ∗X(dz1 ∧ dz2) equals

λ(z−2m
1 )

a
((zl1z2 + p(z1))−2n)

b

zm−1
1 (zl1z2 + p(z1))n−1

h′(Q)
dQ, where


a = 0 if m > 0,
a = 1 if m < 0,
b = 0 if n > 0,
b = 1 if n < 0,

and λ ∈ C∗. Thus Φ∗X equals

Azl+1
1

∂

∂z1
+ (Bzl1z2 + Cp(z1) +Dz1p

′(z1))
∂

∂z2
, A ∈ C∗ andB,C,D ∈ C.

Let us consider the trajectory L = {zl1z2+p(z1) = 0}, and let Σ be the branch of L̄ at
(0 : 1 : 0), parametrized by γ(t) = (t,−p̃(1, t)), where p̃(x, z) is the homogenization
of p. Then, indp(FΦ∗X ,Σ) = 1 < 1 + l, and by Lemma 1.2 X|L is not complete.

If Q = zm1 z
n
2 , taking ϕ = 1√

λ
Φ, then ϕ∗X = mz1

∂
∂z1

+ nz2
∂
∂z2

. �

Proposition 2.2. Let p be a nondicritical zero of X (polynomial but not necessarily
complete). If Γ is an irreducible algebraic invariant curve through p such that
X|Γ\{p} is complete, then there exists Φ ∈ Aut[C2] such that Φ(Γ) is a line.
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Proof. As X|Γ\{p} is complete and C2 is Stein, Γ \ {p} ' C∗. Consider the unique
branch of Γ at p and its parametrization γ : D→ Γ. The extension of γ∗X to 0 has
a zero of order 1. Then DXp is not zero, and we denote by λ and µ its eigenvalues.
• If λ = µ = 0, after a linear change of coordinates

DXp =
(

0 0
1 0

)
.

Suppose that Γ is singular at p. There exists ψ ∈ Aut[C2] such that ψ(Γ) =
{z1

k − az2
l = 0, (k, l) = 1, a ∈ C∗}, [21]. Then γ(t) = (εtl, tk), with εk = a, and

D(ψ∗X)p = Dψp · DXp · Dψ−1
p , so we have that γ∗(ψ∗X) = ∆(t) ∂∂t , where ∆(t)

equals

(3)
αb(dεtl − btk) + P (εtl, tk)

εltl−1
=
αd(dεtl − btk) +Q(εtl, tk)

ktk−1
,

where a, b, c, d ∈ C, α = (ad− bc)−1 ∈ C∗, and P,Q ∈ C[z1, z2] have order ≥ 2 at p.
If bd 6= 0 (the case bd = 0 is similar), as γ∗(ψ∗X) has a zero of order 1, the orders
of the numerators in (3) are l and k, respectively. It should be k > l; otherwise,
the term −αb2tk is cancelled with one of the terms of P (εtl, tk), and thus k = jl
with j ≥ 2. But k > l implies that αd2εtl is cancelled with one of the terms of
Q(εtl, tk), and hence l = jk with j ≥ 2, a contradiction.
• If λ/µ ∈ Q+, as p is nondicritical, p is of Poincaré-Dulac type [3], and hence Γ

is smooth at p.
• If λ/µ /∈ Q+, or λ 6= 0 and µ = 0, according to [11, pp. 518–522] Γ is smooth

at p.
By [16], there exists Φ ∈ Aut[C2] such that Φ(Γ) is a line. �
Let Σ be a separatrix through a zero p of X . Consider the orbit L defined

extending Σ \ {p}. As C2 is Stein, L ' C∗. Thus L has two planar isolated ends;
one defined by Σ \ {p} and the other by L \ Σ. If the end defined by L \ Σ is
algebraic (transcendental), one says that Σ is algebraic (transcendental) at infinity
(see definitions in [4]).

Proposition 2.3. Either L is defined by the (unique) local branch at p of an alge-
braic curve Γ ⊂ C2, such that Γ \ {p} ' L, or L \ Σ defines a planar isolated end
which is properly imbedded and transcendental.

Proof. Take x ∈ L and let j : C → C2 be the map j(t) = ϕ(t, x), where ϕ is the
flow of X . We know that its analytic closure L ⊂ C2 is of pure dimension 1, [19].
Then L is properly embedded in C2 (j is proper). If L \ Σ is not transcendental,
then L defines a separatrix through the point r = lim(L \ Σ) ∈ Sing(FX) ∩ L∞.
Therefore L ∪ {r} ' CP1 is an algebraic curve by Chow’s Theorem. �
Theorem 2.1. X has at most one zero in C2.

Proof. Suppose that p1 6= p2 are zeroes of X . By [6], there exists a separatrix Σi
through pi, i = 1, 2. First assume that each Σi is algebraic at infinity through a
nondicritical pi. Let Φ ∈ Aut[C2], given in Proposition 2.2, such that Φ(Γ1) is a
line LΦ(p1) through Φ(p1). Let C2 be the closure of C2 := Φ(Γ2) in CP2. Thus
LΦ(p1) ∩ C2 = {r} ∈ L∞; otherwise if α : Z2 → C2 is the resolution of C2 , α∗X
extends to Z2 with at least three zeroes, which is a contradiction. Analogously,
L∞ ∩ C2 = {r}. As LΦ(p1) and L∞ just intersect C2 at r, C2 has to be a line as
it cannot have two branches at r. Suppose that LΦ(p1) = {z1 = a} and LΦ(p2) :=
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C2 = {z1 = b}. The orbit of (z0
1 , z

0
2) ∈ C2 with a 6= z0

1 6= b is defined by the image of
the entire map ϕ(z0

1,z
0
2)(t) = ϕ(t, z0

1 , z
0
2) = (z1(t), z2(t)), where ϕ is the flow of Φ∗X .

Since z1(C) ⊂ C \ {a, b}, by Picard’s Theorem z1(t) ≡ k ∈ C, and thus ϕ(z0
1 ,z

0
2)(C)

is contained in a line parallel to both LΦ(p1) and LΦ(p2), and hence Φ∗X = ∂
∂z2

, a
contradiction.

Observe that if pi is dicritical, Σi can be taken to be transcendental at infinity.
Otherwise Darboux’s Theorem and Proposition 2.1 imply that X has at most one
zero. Thus it only remains to analyze the case when Σi is transcendental at infinity.
Now, we take from [4] the notion of P -completeness, that will be used in what
follows. Let P : C2 → C be a nonconstant polynomial. FX is P -complete if there
exists a finite set Q ⊂ C such that, for all t 6∈ Q, P−1(t) is transverse to FX
and there is a neighbourhood Ut of t in C such that P|P−1(Ut) is a fibration and
FX |P−1(Ut) defines a local trivialization on it. Thus, if one Σi is transcendental
at infinity, it follows from [4] that there is a nonconstant (primitive) polynomial
P : C2 → C of type C or C∗ such that FX is P -complete. The set of points where
FX is not transverse to P is an algebraic curve S ⊂ P−1(Q), so pi ∈ S. If P is of
type C, since by [16] there is ϕ ∈ Aut[C2] such that P ◦ ϕ(z1, z2) = z1, one sees as
above that pi ∈ {z1 = λ}, for i = 1, 2, again a contradiction.

On the other hand, if P is of type C∗ by [17], as noted in the proof of Proposi-
tion 2.1, after a polynomial automorphism ϕ, P ◦ϕ can be easily written and since
(P ◦ ϕ)−1(λ) ' C∗ for all λ 6= 0, and X is complete on each component of S, one
has that pi ∈ (P ◦ ϕ)−1(0). Therefore S ∩ (P ◦ ϕ)−1(0) = {z1 = 0} or {z1z2 = 0},
but in both cases one has two zeroes on an invariant line of X , a contradiction. �

Theorem 2.2. Let p be a zero of X which is not of Poincaré-Dulac type, and let S
be the set of separatrices through p that are algebraic at infinity. Up to polynomial
automorphism,

(1) when p is dicritical and all the separatrices through it belong to S: X =
mz1

∂
∂z1

+ nz2
∂
∂z2

where m,n ∈ Z∗, and mn < 0;
(2) when p is nondicritical, but ]S ≥ 2: X = z1(λ + qf(zp1z

q
2)) ∂

∂z1
+

z2(µ+ pf(zp1z
q
2)) ∂

∂z2
, where f ∈ C[z], p, q ∈ N and λµ ∈ C∗.

If there is at least one separatrix Σ 6∈ S, then ]S ≥ 1, and either
(3) X = λz1

∂
∂z1

+ (a(z1) + b(z1)z2) ∂
∂z2

, with a, b ∈ C[z1] and b(0)λ ∈ C∗, or
(4) FX is P -complete for a polynomial P = (zm1 (zl1z2 + p(z1))n), where m,n, l
∈ N+, p ∈ C[z1] of degree ≤ l − 1 with p(0) 6= 0, or P = zm1 z

n
2 .

Proof. By Theorem 2.1, p is the unique zero of X in C2. Suppose that p = (0, 0).
Since the restriction of X to any open neighbourhood of p is semicomplete, [13],
one has that λµ 6= 0, [14].

We can distinguish two cases. Suppose that p is dicritical. Then, if there is
a rational first integral, one has by Proposition 2.1 that X can be written as in
(1). If there is no rational first integral, there is a separatrix through p, Σ, which
is transcendental at infinity, and according to [4], the foliation FX is P -complete,
with P of type C or C∗. As noted in the proof of Theorem 2.1, if P is of type C,
then P = z1 and it follows that X is as in (3), while if it is of type C∗, then P can
be written so that it reads as in (4).

Assume now that p is nondicritical. As p is not of Poincaré-Dulac type, then
there are at least two separatrices through p, [3] and [11]. If at least two of them
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are algebraic at infinity, according to Propositions 2.2 and 2.3 they are defined
by the smooth algebraic curves Γ1 = {P1 = 0} and Γ2 = {P2 = 0}. Consider
the simply connected algebraic curve Γ1 ∪ Γ2 = {P1P2 = 0}. After a polynomial
automorphism Φ, Φ(Γ1 ∪ Γ2) = {zk1zl2 = 0}, [21]. Moreover, since Φ∗X is complete
on C2 \ ({z1 = 0} ∪ {z2 = 0}) ' (C∗)2, the classification of such vector fields,
[2], shows that Φ∗X takes the form (2) of the statement. The nonexistence of two
separatrices through p algebraic at infinity implies the existence of at least one Σ
which is transcendental at infinity, and by [4]; X can be expressed as it is pointed
out in (3) or (4).

3. Completeness and the Jacobian Conjecture

Jacobian Conjecture. If F : Cn → Cn is a polynomial map such that det(JF ) ∈
C∗, then F is invertible, that is, F has an inverse which is also a polynomial map.

In fact, from a theorem due to Bialynicki-Birula and Rosenlicht, [20], if F is
injective it is surjective, and the inverse is a polynomial map. Thus the Jacobian
Conjecture is equivalent to: “if F : Cn → Cn is a polynomial map such that
det(JF ) ∈ C∗, then F is injective”. The conjecture is true for n = 1, and is an
open problem for n ≥ 2.

Following Nousiainen and Sweedler, [20], we can associate to F = (F1, . . . , Fn)
n polynomial vector fields on Cn, ∂

∂F1
, . . . ∂

∂Fn
, defined by(

∂

∂F1
, . . . ,

∂

∂Fn

)
:=
(

∂

∂z1
, . . . ,

∂

∂zn

)
(JF )−1,

with the following properties:

(1) They are C-linearly independent on Cn.
(2) L ∂

∂Fi

Fj = DFj
(

∂
∂Fi

)
= δij and

[
∂
∂Fi

, ∂
∂Fj

]
= 0, with 1 ≤ i, j ≤ n.

Therefore, we obtain for each i = 1, . . . , n a nonsingular algebraic foliation by curves
in Cn defined by the vector field ∂

∂Fi
whose leaves are given by the intersection of

the level sets of Fj , j 6= i.

Theorem 3.1. Let F : Cn → Cn be a polynomial map such that det(JF ) ∈ C∗.
Then F is injective if and only if the polynomial vector fields ∂

∂Fi
, i = 1, . . . , n, are

complete.

Proof. Suppose that F is injective. If Fi(z1, . . . , zn) = wi, i = 1, . . . , n, as the
vector fields ∂

∂wi
are complete, ∂

∂Fi
= F ∗ ∂

∂wi
are also complete.

Conversely, if ∂
∂Fi

, i = 1, . . . , n, are complete, and there are two different points
p, q ∈ Cn such that F (p) = F (q) = α = (α1, . . . , αn), there are n leaves Li =⋂
j 6=i{Fj = αj}, one of each foliation induced by ∂

∂Fi
, having at least two different

points p and q of intersection.
But each leaf Li, i = 1, . . . , n, is equipped with a holomorphic 1–form DFi|Li

such that DFi|Li(
∂
∂Fi

) ≡ 1. Following [13], since ∂
∂Fi

is complete the 1–form DFi|Li
is defined by the “différentielle du temps”, which is locally given by its flow.

Let us fix i0 ∈ {1, . . . , n}, and an injective smooth path ci0 : [0, 1]→ Li0 from p
to q. The integral of DFi0 |Li0 along ci0 has to be nonzero [13], but

∫
ci0

DFi0 |Li0 =
Fi0(q)− Fi0(p) = 0. Thus F is injective. �
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After our work was completed, we noticed that Theorem 3.1 was proved by
Meisters and Olech in [12] for the real case in another context. We denote by D
the C[z1, . . . , zn]–module of all C–derivations of C[z1, . . . , zn]. It is well known that
D is free and of rank n. A basis is said to be commutative when [Xi, Xj ] = 0,
0 ≤ i, j ≤ n. If each Xi is complete, we will say that it is complete.

Proposition 3.1. A commutative basis (X1, . . . , Xn) of D is complete if and only if
there exists a polynomial automorphism F of Cn such that F∗Xi = ∂

∂zi
, i = 1, . . . , n.

Proof. Suppose first that (X1, . . . , Xn) is a complete commutative basis. Then by
a result of A. Nowicki [20], there exists a polynomial map F = (F1, . . . , Fn) with
det(JF ) ∈ C∗ such that Xi = ∂

∂Fi
. Thus by Theorem 3.1, F is a polynomial

automorphism such that Xi = (F−1)∗ ∂
∂zi

.
Now, suppose that there is a polynomial automorphism F of Cn such that

F∗Xi = ∂
∂zi

. Then, theXi are complete and moreover [Xi, Xj ] = (F−1)∗[ ∂
∂zi
, ∂
∂zj

] =
0, thus proving the converse. �

Corollary 3.1. The Jacobian Conjecture holds if and only if every commutative
basis of D is complete.
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“Mir”, Moscow, 1980. MR 83a:34003
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