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A REPRODUCING KERNEL SPACE MODEL
FOR Nκ-FUNCTIONS

VLADIMIR DERKACH AND SEPPO HASSI

(Communicated by Joseph A. Ball)

Abstract. A new model for generalized Nevanlinna functions Q ∈ Nκ will
be presented. It involves Bezoutians and companion operators associated with
certain polynomials determined by the generalized zeros and poles of Q. The
model is obtained by coupling two operator models and expressed by means
of abstract boundary mappings and the corresponding Weyl functions.

1. Introduction

A function Q, locally meromorphic on C \ R, belongs to the class Nκ (κ ∈ Z+)
of generalized Nevanlinna functions if on its domain of holomorphy ρ(Q) it admits
the symmetry property Q(z̄) = Q(z), and is such that the Nevanlinna kernel

(1.1) NQ(z, w) =
Q(z)−Q(w̄)

z − w̄ , z 6= w̄, NQ(z, z̄) = Q′(z),

z, w ∈ ρ(Q), has κ negative squares; cf. [16]. As is known [17], every generalized
Nevanlinna function Q ∈ Nκ holomorphic at i ∈ ρ(Q) admits the representation

(1.2) Q(z) = s+ z[v, v] + (z2 + 1)[(A− z)−1v, v], s = s̄,

with a selfadjoint operator (or a linear relation) A acting in a Hilbert space (H, [·, ·])
and a generating vector v ∈ H, and then Q is called the Q-function of a symmetric
restriction S of A. Models for Pontryagin space selfadjoint operators has been
constructed in [16] and [15]. In particular, the model in [15], which is an extension of
the one given in [14] for the case κ = 1, was based on the use of certain distributions
to define a Pontryagin space Πκ, as a finite dimensional extension of a Hilbert space
L2(σ), and a selfadjoint multiplication operator in Πκ.

In the present paper a new and explicit model for the functions Q ∈ Nκ will
be given. This model uses a recent factorization result from [10] which states that
every function Q ∈ Nκ admits a representation

(1.3) Q = r]Q0r, r](z) = r(z̄),

where r = p
q is a rational function and Q0 is a Nevanlinna function (Q0 ∈ N0). The

model is constructed as a certain coupling of a Hilbert space selfadjoint operator
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A0 generated by Q0 in (1.3) and a selfadjoint operator AR acting on a finite-
dimensional Pontryagin space HR. The inner product in HR is defined with the aid
of the Bezoutian Bp,q associated with the polynomials p, q, and the operator AR is
the orthogonal sum Cp] ⊕ Cp of the companion matrices determined by p, p].

The main tools of the construction are the technique of the reproducing kernel
Pontryagin spaces (see e.g. [1], [21]) and the boundary value approach developed
in [13], [8], [2], [3]. In particular, some results obtained in [3] for orthogonal cou-
plings of symmetric operators, which are described in terms of abstract boundary
conditions, play an important role in the proof of Theorem 3.3. The models con-
structed in [5], [6] for giving realizations for singular perturbations of selfadjoint
operators (cf. e.g. [11]) can be seen as special cases of the present model.

The use of abstract boundary mappings makes it easy to apply the present
model, for instance, to spectral problems for differential operators with rationally λ-
depending boundary conditions. These problems were shown to be adequate to the
eigenvalue problems for some Pontryagin space selfadjoint operators; see [20], [12].
In [7] (see also [6]) a special case of the present model where r is a polynomial has
been applied to give realizations for singular perturbations of selfadjoint (differen-
tial) operators.

2. Preliminaries

Let H be a separable Pontryagin space, let S be a not necessarily densely defined
closed symmetric relation in H with equal defect numbers d = d+(S) = d−(S)
(< ∞), and let S∗ be the adjoint linear relation of S. A triplet Π = {H,Γ0,Γ1},
whereH is a Hilbert space and Γj , j = 0, 1, are linear mappings from S∗ toH, is said
to be a boundary triplet for S∗, if the mapping Γ = (Γ0,Γ1)> : f̂ → {Γ0f̂ ,Γ1f̂ }
from S∗ into H⊕H is surjective and the abstract Green’s identity

(2.1) (f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)H − (Γ0f̂ ,Γ1ĝ)H

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗; cf. [13], [8], [2]. The mapping Γ from
S∗ onto H⊕H establishes a one-to-one correspondence between the set ExtS of all
closed extensions of S and the set C̃(H) of all closed linear relations in H via

(2.2) Ãθ := Γ−1θ = { f̂ ∈ S∗ : Γf̂ ∈ θ }, θ ∈ C̃(H).

It follows from (2.1) that

(2.3) Ã∗θ = Ãθ∗ , for every θ ∈ C̃(H).

As usual A0 and A1 stand for the selfadjoint extensions Aj = ker Γj , j = 0, 1. Let
Nλ(S∗) = ker(S∗ − λ) be a defect subspace of S and let N̂λ := { {fλ, λfλ} : fλ ∈
Nλ(S∗) }. The γ-field and the Weyl function associated with Π are defined by

(2.4) γ(λ) = p1(Γ0� N̂λ)−1(∈ [H,Nλ]), Q(λ) = Γ1(Γ0� N̂λ)−1 (∈ [H]),

λ ∈ ρ(A0) 6= ∅ (see [8], [2]). In (2.4) p1 denotes the orthogonal projection onto the
first component of H⊕H. The operator-valued functions γ and Q are holomorphic
on ρ(A0). The set of all points of regular type of S will be denoted by ρ̂(S). A
closed symmetric relation S is said to be simple if

(2.5) H = span { γ(z) : z ∈ ρ̂(S) ⊃ C \ R }.
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In this case, the number κ of negative squares of the kernel NQ in (1.1) coincides with
the dimension of a maximal negative subspace of H. The class of Weyl functions Q
of S coincides with the class of Q-functions of S in the sense of [16].

Associated with the kernel NQ is a reproducing kernel Pontryagin space H(Q) of
analytic vector functions on ρ(Q) (cf. [1], [21]) generated by the vector functions
z → NQ(z, w)h, w ∈ ρ(Q), h ∈ H, and the inner product

(2.6) [NQ(·, w)h,NQ(·, z)k] = k∗NQ(z, w)h, h, k ∈ H, z, w ∈ ρ(Q).

The characterizing property of H(Q) is the equality

(2.7) [F (·),NQ(·, w)k] = k∗F (w), f ∈ H(Q), k ∈ H, w ∈ ρ(Q).

The multiplication operator S(Q) in H(Q) defined by

(2.8) S(Q) = { {f, f ′} ∈ H(Q)2 : f ′(w) = wf(w), w ∈ ρ(Q) }
is symmetric. The next proposition specifies its adjoint S(Q)∗ and associates a
boundary triplet to S(Q)∗, such that Q is the corresponding Weyl function.

Proposition 2.1 ([9], [4]). Let Q ∈ Nκ be a Weyl function in H = Cd of a
closed symmetric operator S in a Pontryagin space and let H(Q) be the reproducing
kernel Pontryagin space associated with the kernel (1.1). Then S(Q) in (2.8) is a
closed simple symmetric operator in H(Q) (which is unitarily equivalent to S if S
is simple) and, moreover:

(i) the adjoint S(Q)∗ is given by

S(Q)∗ = { F̂ = {F, F ′} ∈ H(Q)2 : F ′(w) − wF (w) = ξ1 −Q(w)ξ0, ξ0, ξ1 ∈ H};
(ii) the boundary triplet {H,Γ0,Γ1} for S(Q)∗ is given by

H = Cd, Γ0F̂ = ξ0, Γ1F̂ = ξ1;

(iii) the corresponding Weyl function coincides with Q and the γ-field is given
by

(2.9) γQ(z) = NQ(·, z̄), z ∈ ρ(Q).

3. An operator model associated with the class Nκ

Let p and q be scalar polynomials with complex coefficients of the form (pn 6= 0)

(3.1) p(λ) = pnλ
n + pn−1λ

n−1 + · · ·+ p0, q(λ) = qnλ
n + qn−1λ

n−1 + · · ·+ q0.

Then the Bezoutian Bez (p, q) and the companion matrix Cp are defined by

p(`)q(λ) − q(`)p(λ)
`− λ = LBez (p, q)Λ>, Cp =


0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . 0
0 0 1
−p̃0 −p̃1 . . . . . . −p̃n−1

 ,

with Λ(n) = (IH, λIH, . . . , λn−1IH), L(n) = (IH, `IH, . . . , `n−1IH), and p̃i = p−1
n pi,

i = 0, 1, . . . , n− 1. The following facts are needed in the sequel (cf. e.g. [19]):
(i) Bp = Bez (p, 1) = [pi+j+1]n−1

i,j=0 (pj = 0 if j > n);
(ii) Bez (p, λk) = BpC

k
p ;

(iii) Bez (p, q) =
∑n
j=0 qjBez (p, λj) = Bpq(Cp) (the Barnett factorization);
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(iv) BpCp = C>p Bp;
(v) σ(Cp) = σ(p) (the set of zeros of p).

In particular, (iii) shows that Bez (p, q) is invertible if and only if q(Cp) is invertible,
which holds precisely when σ(Cp) does not contain zeros of q, or equivalently, that
p and q are relatively prime, i.e., σ(p) ∩ σ(q) = ∅. The items (iii) and (iv) show
that Bez (p, q)> = Bez (p, q) and Bez (p, q)Cp = C>p Bez (p, q). The statement in (v)
can be augmented with the corresponding root vectors. For each λj ∈ σ(Cp) with
multiplicity κj one associates the set of Vandermonde vectors,

(3.2) Vk(λj) =
1
k!

dk

dλk
Λ|λ=λj , k = 0, 1, . . . , κj ,

which form a full chain of the root subspace ker(Cp−λj)κj . In what follows (ej)nj=1

stands for the standard basis in Cn. It is easy to check that

w : = Bez (p, q)en =
n−1∑
j=0

pnqjBpC
j
pen + qnBpC

n
p en

= (pnq0 − qnp0, pnq1 − qnp1, . . . , pnqn−1 − qnpn−1)>.

(3.3)

Now introduce the rational functions r, r], and R by

(3.4) r =
p

q
, r] =

p]

q]
, R =

(
0 r
r] 0

)
,

where p](z) = p(z̄) and q](z) = q(z̄). Then R is a matrix function which belongs
to the class Nκ with κ = max{deg p, deg q}. The next result gives an explicit form
for the reproducing kernel space H(R) associated with R.

Proposition 3.1. Let the polynomials p and q in (3.1) be relatively prime and
assume that deg p ≥ deg q and that p is monic. Let w and R be given by (3.3) and
(3.4), respectively. Then:

(i) The reproducing kernel Pontryagin space H(R) is isometrically isomorphic
to the space HR = Cn ⊕ Cn equipped with the inner product

(3.5) [·, ·]HR = (B ·, ·) , B =
(

0 Bp,q
B∗p,q 0

)
, Bp,q = Bez (p, q).

(ii) The restriction SR of Cp = Cp] ⊕ Cp to the domain

(3.6) domSR = {F = f ⊕ f̃ ∈ HR : w∗f̃ = w∗f = 0 }
is a simple symmetric operator in HR, which is unitarily equivalent to
S(R).

(iii) The adjoint S∗R of SR takes the form

(3.7) S∗R =
{
F̂ = {F, CpF + (c̃en, cen)>} : F = f ⊕ f̃ ∈ HR, c, c̃ ∈ C

}
.

(iv) A boundary triplet ΠR = {C2,ΓR0 ,Γ
R
1 } for S∗R can be defined by

ΓR0 F̂ =
(
q̄nc̃+ w∗f

qnc+ w∗f̃

)
, ΓR1 F̂ =

(
c
c̃

)
, F̂ ∈ S∗R.

(v) The corresponding γ-field is given by γR(λ) = 1/q](λ)Λ> ⊕ 1/q(λ)Λ> and
the Weyl function MR coincides with R in (3.4).
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Proof. The kernel Nr(`, λ) can be expressed in terms of Bp,q as follows:

(3.8) Nr(`, λ) =
1
q(`)

LBp,qΛ∗
1

q(λ̄)
.

This leads to the following factorization for the kernel NR(`, λ):

(3.9) NR(`, λ) =


1
q(`)

L 0

0
1

q](`)
L

( 0 Bp,q
B∗p,q 0

)
1

q(λ)
Λ 0

0
1

q](λ)
Λ


∗

.

Thus, R is a matrix Nevanlinna function with n negative (and n positive) squares.
(i) It follows from the factorization (3.9) that H(R) consists of vector functions

(3.10) F (`) =


1
q(`)

L 0

0
1

q](`)
L

BF, F =
(
f

f̃

)
∈ HR.

Now the identities [F (·), G(·)]H(R) = G∗BF = [F,G]HR show that the mapping
F → F (·) determines an isometric isomorphism between HR and H(R).

(ii) By the properties given above (BCp)∗ = BCp, i.e., Cp is selfadjoint in HR. It is
clear from (3.6) that SR is a closed symmetric operator in HR with defect numbers
(2, 2). For every K = k ⊕ k̃ ∈ HR the following equalities are easily checked:

(3.11)
{
λΛBpk̃ = ΛBpCpk̃ + p(λ)k̃1,
λΛB∗pk = ΛB∗pCp]k + p](λ)k1.

Moreover,

(q(Cp)f̃)1 = qn(−p0f̃1 − · · · − pn−1f̃n) + qn−1f̃n + · · ·+ q0f̃1 = w∗f̃

and similarly (q](Cp])f)1 = w∗f . Therefore, applying the identities (3.11) with
k̃ = q(Cp)f̃ , k = q](Cp])f and taking into account the Barnett factorization, one
arrives at the following decomposition for the function λF (λ):

(3.12) λF (λ) =


1

q(λ)
Λ 0

0
1

q](λ)
Λ

BCp(f
f̃

)
+R(λ)

(
w∗f

w∗f̃

)
.

This implies the unitary equivalence of the operators SR and S(R).
(iii) Denote by T the set on the right-hand side of (3.7) and assume that {F,G} ∈

T . Then the selfadjointness of Cp in HR shows that for all {H,K} ∈ SR,

[G,H ]HR − [F,K]HR =
[(
c̃en
cen

)
,

(
k

k̃

)]
HR

=
(
B
(
c̃en
cen

)
,

(
k

k̃

))
=
(
ck∗w

c̃k̃∗w

)
= 0;

cf. (3.3). Thus, T ⊂ S∗R and the equality (3.7) follows by a dimension argument.
(iv) & (v) Since pn = 1 one can write Λw = q(λ) − qnp(λ) and this leads to

1
q(λ)

Λw = 1− qnr(λ),
1

q](λ)
Λw = 1− q̄nr](λ).
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Therefore, with F̂ = {F,G} ∈ S∗R one obtains from (3.3), (3.7), and (3.12)

G(λ) − λF (λ) =


1

q(λ)
Λ 0

0
1

q](λ)
Λ

B(G− CpF )−R(λ)
(
w∗f

w∗f̃

)

=


c

q(λ)
Λw

c̃

q](λ)
Λw

−R(λ)
(
w∗f

w∗f̃

)
=
(
c
c̃

)
−R(λ)

(
q̄nc̃+ w∗f

qnc+ w∗f̃

)
.

Now, it follows from Proposition 2.1 that ΓR0 and ΓR1 as defined in (iv) can be
taken to be the boundary operators for S∗R and that R is the corresponding Weyl
function. The form of the γ-field follows from (2.9), (3.9), and (3.10). �

Corollary 3.2. Let the assumptions be as in Proposition 3.1. Then:
(i) The selfadjoint extension AR1 = ker ΓR1 of SR is an operator which coincides

with Cp = Cp] ⊕ Cp.
(ii) The selfadjoint extension AR0 = ker ΓR0 of SR is an operator if and only if

deg p = deg q, in which case it coincides with Cq = Cq] ⊕ Cq.

Proof. The statement (i) is obtained by taking c = c̃ = 0 in part (iii) of Proposi-
tion 3.1. To see (ii) first assume that deg q < deg p. Then qn = 0 and it follows
from the formulas for S∗R and ΓR0 in Proposition 3.1 that mulAR0 is nontrivial. Next
assume that deg q = deg p. Then qn 6= 0 and F̂ ∈ AR0 implies that

(3.13) c = − 1
qn
w∗f̃ , c̃ = − 1

q̄n
w∗f.

Observe that w/qn = (C>p − C>q )en. Substituting this and (3.13) into (3.7) yields

Cp]f − en
1
q̄n
w∗f = Cp]f − ene>n (Cp] − Cq])f = Cp]f − (Cp] − Cq])f = Cq]f,

Cpf̃ − en
1
qn
w∗f̃ = Cpf̃ − ene>n (Cp − Cq)f̃ = Cpf̃ − (Cp − Cq)f̃ = Cq f̃ ,

which proves (ii). �

The construction of the model for Nκ-functions is based on the following theo-
rem. An underlying idea here arises from some results on intermediate extensions
that were proved in [3]; cf. also [5] for the case of Pontryagin spaces. Given two
symmetric operators S1 and S2 with the Weyl functions Q1 and Q = (Qij)2

i,j=1, Q
decomposed according to H = H1 ⊕H2, one produces two intermediate extensions
whose Weyl functions are of the form

Q̃(λ) = Q1(λ)π1 +Q(λ) =
(
Q1(λ) +Q11(λ) Q12(λ)

Q21(λ) Q22(λ)

)
,(3.14)

Q̃2(λ) = (π2Q(λ)−1�H2)−1 = Q22(λ)−Q21(λ)Q−1
11 (λ)Q12(λ),(3.15)

where πj stands for the orthogonal projection onto Hj , j = 1, 2, and then combines
these two transforms by applying (3.15) to (3.14). All of this can be shortly ex-
pressed by using abstract boundary conditions. The procedure is applied here to a
scalar function Q1 = −M−1

0 and the matrix function Q = R in Proposition 3.1.
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Theorem 3.3. Let the polynomials p and q in (3.1) be relatively prime, let r
and R be given by (3.4), and let SR be the symmetric operator in HR as defined in
Proposition 3.1 with the boundary triplet ΠR = {C2,ΓR0 ,Γ

R
1 }. Let S0 be a symmetric

operator in the Hilbert space H0 = H(M0) corresponding to the Weyl function M0

of the boundary triplet Π0 = {C,Γ0
0,Γ

0
1} of S∗0 , and let w be given by (3.3). Denote

F̂ = {F, F ′} with F = f ⊕ f̃ ∈ HR and let f̂0 = {f0, f
′
0} ∈ S∗0 . Then:

(i) The linear relation

S = { {f0 ⊕ F, f ′0 ⊕ (CpF + (0,Γ0
0f̂0en)>)} : w∗f̃ = −qnΓ0

0f̂0, w
∗f = Γ0

1f̂0 }

is closed and symmetric in H = H0 ⊕ HR.
(ii) The adjoint S∗ of S is given by

S∗ = { {f0 ⊕ F, f ′0 ⊕ (CpF + (c̃en,Γ0
0f̂0en)>)} : q̄nc̃+ w∗f = Γ0

1f̂0, c̃ ∈ C }.

(iii) A boundary triplet Π = {C,Γ0,Γ1} for S∗ is determined by

Γ0(f̂0 ⊕ F̂ ) = qnΓ0
0f̂0 + w∗f̃ , Γ1(f̂0 ⊕ F̂ ) = c̃, f̂0 ⊕ F̂ ∈ S∗.

(iv) The corresponding γ-field and the Weyl function are given by

γ(λ) = γ0(λ)r(λ) ⊕
(
r(λ)M0(λ)
q](λ)

Λ> u 1
q(λ)

Λ>
)
,(3.16)

M(λ) = r](λ)M0(λ)r(λ).(3.17)

Proof. Step 1. Define an intermediate extension S̃ of S0 ⊕ SR by

(3.18) S̃ = { f̂0 ⊕ F̂ ∈ S∗0 ⊕ S∗R : Γ0
1f̂0 = ΓR0 F̂ = (Γ0

0f̂0)e1 − ΓR1 F̂ = 0 },

where e1 = (1, 0)> ∈ C2. Then S̃ is closed and symmetric. Using (2.3) it can be
seen that the adjoint S̃∗ of S̃ is of the form (cf. also [5, Proposition 2.3])

(3.19) S̃∗ = { f̂0 ⊕ F̂ ∈ S∗0 ⊕ S∗R : Γ0
1f̂0 − π1ΓR0 F̂ = 0 },

where π1 = e1e
∗
1. Moreover, one can take Π̃ = {H0 ⊕H0,ΓR0 , (−Γ0

0)e1 + ΓR1 } to be
a boundary triplet for S̃∗. The corresponding Weyl function is given by

(3.20) M̃ =
(
−M−1

0 r
r] 0

)
.

Step 2. Next define a closed symmetric extension S of S̃ in (3.18) via

S = { f̂0 ⊕ F̂ ∈ S̃∗ : π2ΓR0 F̂ = (Γ0
0f̂0)e1 − ΓR1 F̂ = 0 }

= { f̂0 ⊕ F̂ ∈ S∗0 ⊕ S∗R : Γ0
1f̂0 = q̄nc̃+ w∗f, Γ0

0f̂0 = c, qnc+ w∗f̃ = c̃ = 0 },

where π2 = I − π1. In view of (3.7) S can be rewritten as in (i). Moreover,

S∗ = { f̂0 ⊕ F̂ ∈ S̃∗ : Γ0
0f̂0 − π1ΓR1 F̂ = 0 }

= { f̂0 ⊕ F̂ ∈ S∗0 ⊕ S∗R : Γ0
1f̂0 = q̄nc̃+ w∗f, Γ0

0f̂0 = c },
(3.21)

which leads to (ii). A boundary triplet for S∗ is obtained by letting

Γ0f̂ = π2ΓR0 F̂ = qnΓ0
0f̂0 + w∗f̃ , Γ1f̂ = π2((−Γ0

0f̂0)e1 + ΓR1 F̂ ) = π2ΓR1 F̂ = c̃,
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which gives (iii) (cf. [5, Proposition 2.2]). Finally, to prove (iv) observe that the
defect subspace Nλ(S∗) consists of vectors

f0 ⊕ F = γ0(λ)ξ ⊕


1

q](λ)
Λ> 0

0
1

q(λ)
Λ>

(h1

h2

)
, ξ, h1, h2 ∈ C,

such that f̂0,λ = {f0, λf0} ∈ S∗0 and F̂λ = {F, λF} ∈ S∗R satisfy the equalities

(3.22) Γ0
1f̂0,λ − π1ΓR0 F̂λ = Γ0

0f̂0,λ − π1ΓR1 F̂λ = 0;

cf. (3.19), (3.21). One can rewrite (3.22) in the form

ξ − r(λ)h2 = M0(λ)ξ − h1 = 0.

Therefore, Nλ(S∗) is spanned by the vectors

γ(λ)h2 = γ0(λ)r(λ)h2 ⊕


1

q](λ)
Λ> 0

0
1

q(λ)
Λ>

(M0(λ)r(λ)h2

h2

)
, h2 ∈ C,

and this gives (3.16). Similarly, (3.17) follows from Γ1(f̂0,λ ⊕ F̂λ) = π2R(λ)h =
r](λ)M0(λ)r(λ)h2 . Notice that the same expression for M is also obtained by ap-
plying the transform (3.15) to (3.20). �

To explain the importance of Theorem 3.3 let M be a generalized Nevanlinna
function in Nκ. Let αj be all the poles in C+ and the generalized poles of nonpos-
itive type in R of M with multiplicities κj , j = 1, . . . , t, and let βi be all the zeros
in C+ and the generalized zeros of nonpositive type in R of M with multiplicities
πi, i = 1, . . . , s; see [18]. Define the polynomials p and q as follows:

(3.23) p(z) =
s∏
j=1

(z − βj)πj , q(z) =
t∏
i=1

(z − αi)κi .

The factorization result in [10] when applied to M 6≡ 0 shows that there exists a
(unique) Nevanlinna function M0 ∈ N0, i.e. κ = 0, such that (3.17) holds with
r = p/q. The converse is also true. If p and q are relatively prime polynomials, and
if M0 ∈ N0, M0 6≡ 0, then M in (3.17) belongs to Nκ, with κ = max{deg p, deg q}.
Moreover, the zeros of p and q coincide, counting multiplicities, with the finite
(generalized) poles and zeros of nonpositive type of M , and deg q−deg p = κ∞−π∞;
cf. [4, Proposition 3.2]. Now Theorem 3.3 applied to the polynomials p and q gives
a model for M as a coupling of the finite-dimensional model for R in Proposition
3.1 with r = p/q, and a Hilbert space model for M0. In fact, the approach for
constructing the model via Theorem 3.3 allows one to apply the same method
immediately to factorized matrix Nevanlinna functions for which the corresponding
Bezoutian is invertible.

4. Simplicity of the model operator

The symmetric linear relation S in Theorem 3.3 need not be an operator. In fact,
from the form of S it is seen that if deg p = deg q, then mulS = mulS0⊕{0}⊕{0},
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while if deg p > deg q, then

(4.1) mulS =
{
f ′0 ⊕

(
0

Γ0
0f̂0en

)
: f̂0 = {0, f ′0} ∈ A1 = ker Γ0

1

}
.

Hence, if deg p = deg q, then S is an operator if and only if S0 is an operator and
if deg p > deg q, then S is an operator if and only if A1 is an operator. A simple
symmetric relation is necessarily an operator. The next theorem characterizes the
simplicity of S in spectral theoretical terms.

Theorem 4.1. Let the symmetric operator S0 in H0 be simple and let S be as
defined in Theorem 3.3 with relatively prime polynomials p and q as in (3.1). Then:

(i) If deg p = deg q, then S is simple if and only if

(4.2) σp(A0) ∩ σ(p) = ∅ and σp(A1) ∩ σ(q) = ∅.
(ii) If deg p > deg q, then S is simple if and only if A1 = ker Γ0

1 is an operator
and the conditions (4.2) are satisfied.

(iii) If deg p < deg q, then S is simple if and only if A0 = ker Γ0
0 is an operator

and the conditions (4.2) are satisfied.
Moreover, the γ-fields γ and γ1 of H0 = ker Γ0 and H1 = ker Γ1 have the expansions

q(λ)γ(λ) =
πi−1∑
k=0

(λ − βi)kΓk,i + (λ− βi)πi−1o(1), λ→̂βi ∈ σ(p)\σp(A0),(4.3)

p](λ)γ1(λ) =
κj−1∑
k=0

(λ− ᾱj)kΓ̃k,j + (λ− ᾱj)κj−1o(1), λ̄→̂αj ∈ σ(q)\σp(A1),(4.4)

i = 1, . . . , s, j = 1, . . . , t, where Γk,i = 0 ⊕ 0 ⊕ Vk(βi), Γ̃k,j = 0 ⊕ Vk(ᾱj) ⊕ 0, and
Vk(βi), Vk(ᾱj) are the corresponding Vandermonde vectors.

Proof. First the expansions (4.3) and (4.4) are derived. For every βi ∈ σ(p)\σp(A0)
the γ-field γ0 and the Weyl function M0 corresponding to A0 satisfy the relations

(4.5) lim
λ→̂βi

(λ− βi)γ0(λ) = lim
λ→̂βi

(λ − βi)M0(λ) = 0.

By incorporating the Taylor series for the vector function Λ at λ = βi in the
expression for the γ-field in (3.16) and taking into account (4.5), one obtains the
expansion (4.3) with βi ∈ σ(p)\σp(A0) of multiplicity πi, i = 1, . . . , s. The γ-field
γ1 and the Weyl function M1 corresponding to H1 = ker Γ1 are given by

(4.6) γ1 = γM−1, M1 = −M−1 = − qq
]

pp]
M−1

0 .

The γ-field γ0M
−1
0 and the Weyl function −M−1

0 corresponding to A1 satisfy

(4.7) lim
λ→̂ᾱj

(λ − ᾱj)γ0(λ)M0(λ)−1 = lim
λ→̂ᾱj

(λ− ᾱj)M0(λ)−1 = 0

for every αj ∈ σ(q)\σp(A1). It follows from (3.16) that for every λ ∈ ρ(A1)\σ(p),

(4.8) p](λ)γ1(λ) = γ0(λ)
q](λ)
M0(λ)

⊕
(

Λ> u Λ>
q](λ)

p(λ)M0(λ)

)
.

Hence, by incorporating the Taylor series for Λ at λ = ᾱj in (4.8) and using (4.7) one
obtains the expansion (4.4) with αj ∈ σ(q)\σp(A1) of multiplicity κj , j = 1, . . . , t.
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Proof of sufficiency. Let H̃ = span {Nλ(S∗) : λ ∈ ρ(A0)}. Then H̃ ⊂ H and the
simplicity of S follows by proving H ⊂ H̃. The expansions (4.3) and (4.4) imply

Γk,i ∈ H̃, k = 1, . . . , πi, i = 1, . . . , s,(4.9)

Γ̃k,j ∈ H̃, k = 1, . . . , κj , j = 1, . . . , t.(4.10)

If deg p = n, the Vandermonde vectors Vk(βi), k = 1, . . . , πi, i = 1, . . . , s, span Cn,
and (4.9) gives {0}⊕{0}⊕Cn ⊂ H̃. Similarly, if deg q = n, the Vandermonde vectors
Vk(ᾱj), k = 1, . . . , κj, j = 1, . . . , t, span Cn, and (4.10) gives {0} ⊕ Cn ⊕ {0} ⊂ H̃.
To treat the case deg p 6= deg q one may assume that n = deg p > deg q = m. Then
by the assumptions A1 is an operator, which implies that

(4.11) lim
λ→̂∞

γ0(λ)M0(λ)−1 = 0, lim
λ→̂∞

1
λ
M0(λ)−1 = 0.

Hence, it follows from (4.8) that

lim
λ→̂∞

p](λ)γ1(λ)
λn−1

= 0⊕ en ⊕ 0.

Analogously, for k = 1, . . . , n−m− 1 one obtains

lim
λ→̂∞

λk

p](λ)γ1(λ)
λn−1

− 0⊕
k−1∑
j=0

en−j
λj
⊕ 0

 = 0⊕ en−k ⊕ 0.

This together with (4.10) implies that {0} ⊕ Cn ⊕ {0} ⊂ H̃, since the first m
coordinates of the Vandermonde vectors Vk(ᾱj), k = 1, . . . , κj, form the full chain
of the root subspace of the m × m companion matrix Cq] at ᾱj ∈ σ(Cq] ), j =
1, . . . , t. The simplicity of S0 and the form of the γ-field in (3.16) finally show that
H0 ⊕ {0} ⊕ {0} ⊂ H̃. Therefore, H ⊂ H̃ and S is simple.

Proof of necessity. If deg p > deg q and mulA1 6= {0}, then also mulS 6= {0}, which
is not possible if S is simple. Similarly, if deg p < deg q, then the simplicity of S
forces that A0 is an operator. It remains to prove the necessity of the conditions
(4.2). First assume that βi ∈ σp(A0) ∩ σ(p). Let hi 6= 0 be the corresponding
eigenvector of A0 and let ĥi = {hi, βihi}. Then βi ∈ R and Γ0

0ĥi = 0. Let
v̂i = {vi, βivi}, where

vi =
q](βi)

Γ0
1ĥi

hi ⊕
(
V0(βi)

0

)
.

Here q](βi) 6= 0, since σ(p) ∩ σ(q) = ∅, and Γ0
1ĥi 6= 0 since S0 is simple. The

definition of w in (3.3) leads to

w∗V0(βi) = e>nB
∗
p,qV0(βi) = e>nB

∗
pq
](Cp])V0(βi) = e>1 q

](βi)V0(βi) = q](βi).

Now the description of S in Theorem 3.3 shows that v̂i ∈ S. Hence, βi is an
eigenvalue of S, and thus S is not simple.

Finally, assume that αj ∈ σp(A1) ∩ σ(q). Let kj 6= 0 be the corresponding
eigenvector of A1 and let k̂j = {kj , αjkj}. Then αj ∈ R, Γ0

1k̂j = 0, p(αj) 6= 0, and
Γ0

0k̂j 6= 0. Now let ûj = {uj, αjuj}, where

(4.12) uj =
p(αj)

Γ0
0k̂j

kj ⊕
(

0
V0(αj)

)
.
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If deg p = deg q, then (3.3) and Bez (p, q) = −Bez (q, p) = −Bqp(Cq) yield

w∗V0(αj) = −e>nBqp(Cq)V0(αj) = −e>1 qnp(αj)V0(αj) = −qnp(αj).
Hence, in view of Theorem 3.3, ûj ∈ S. If deg p > deg q = m, then qn = 0 and

w∗V0(αj) = e>nBp,qV0(αj) = e>nBpq(Cp)V0(αj) = e>1 q(Cp)V0(αj)

= q(e>1 Cp)V0(αj) =
m∑
k=0

qke
>
k+1V0(αj) = q(αj) = 0.

Moreover,

CpV0(αj) + Γ0
0

(
p(αj)

Γ0
0k̂j

kj

)
en = (αjV0(αj)− p(αj)en) + p(αj)en = αjV0(αj).

The description of S in Theorem 3.3 again shows that ûj ∈ S. In both cases αj is
an eigenvalue of S, and thus S is not simple. The case deg p < deg q is obtained by
changing the roles of A0 and A1 (cf. Corollary 3.2). �
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