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INNER BOUNDS FOR THE SPECTRUM
OF QUASINORMAL OPERATORS

M. I. GIL’

(Communicated by Joseph A. Ball)

Abstract. A linear operator in a separable Hilbert space is called a quasi-
normal one if it is a sum of a normal operator and a compact one. In the
paper, bounds for the spectrum of quasinormal operators are established. In
addition, the lower estimate for the spectral radius is derived. Under some
restrictions, that estimate improves the well-known results. Applications to
integral operators and matrices are discussed. Our results are new even in the
finite-dimensional case.

1. Introduction and statement of the main result

Many papers and books are devoted to the spectrum of linear operators. Mainly,
the asymptotic distributions of the eigenvalues are considered; cf. the books by
König [Ko], Pietsch [Pi], and references therein. However, in many applications, for
example, in numerical mathematics and stability analysis, bounds for eigenvalues
are very important. But the bounds are investigated considerably less than the
asymptotic distributions.

Let H be a separable Hilbert space with a scalar product (., .), the norm ‖.‖ and
the unit operator I. For a linear operator A, σ(A) is the spectrum, Dom (A) is the
domain, rs(A) ≡ sup |σ(A)| is the (upper) spectral radius, and rl(A) ≡ inf |σ(A)|
is the inner (lower) spectral radius. In addition, α(A) ≡ sup Re σ(A).

A linear operator in H is called a quasinormal one if it is a sum of a normal
operator and a compact one. In the present paper, for a class of quasinormal
operators, lower bounds for rs(A), α(A) and upper bounds for rl(A) are derived.
They are new even in the finite-dimensional case. In addition, applications of these
bounds to matrices and integral operators are discussed.

Note that lower estimates for rs(A) for positive (finite and infinite) matrices and
integral operators are well known [MM], [Kr]. But in the case of operators which
are not positive, in general, to the best of our knowledge, the lower estimates for
rs(A) were not investigated. At the same time our estimates below are also valid
for non-positive matrices and integral operators. Moreover, in the case of positive
matrices and integral operators, under some restrictions below, we improve the
well-known results, in particular, the Frobenius estimate.
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Recall that a linear operator V is a Volterra one if it is quasinilpotent (that is,
σ(V ) = {0}) and compact; cf. the book by Gohberg and Krein [GK]. Furthermore,
let P (t) (−∞ ≤ t ≤ ∞) be a maximal resolution of the identity. That is, P (t) is
a continuous on the left orthogonal resolution of the identity defined on (−∞,∞).
Moreover, any gap P (t0 +0)−P (t0) of P (t) (if it exists) is one-dimensional; cf. the
books by Brodskii [Br], Gohberg and Krein [GK] and Gil’ [Gi1, p. 69].

Let us consider a linear operator A in H of the type

(1.1) A = D + V+ + V−

where D is a normal (generally unbounded) operator, and V− and V+ are Volterra
operators. It is assumed that for a maximal resolution of the identity P (.),

P (t)Dh = DP (t)h, P (t)V+P (t) = V+P (t) and P (t)V−P (t) = P (t)V−
(h ∈ Dom (D); t ∈ R).(1.2)

In addition, there is a monotonically increasing continuous scalar-valued function
φ(z) (z ≥ 0) with the properties φ(0) = 0, φ(∞) =∞, such that the inequality

(1.3) ‖(λI −A)−1‖ ≤ φ(ρ−1(A, λ))

holds, where ρ(A, λ) is the distance between σ(A) and a regular point λ ∈ C of A.
Put

(1.4) ν(A) = min{‖V−‖, ‖V+‖}
and denote by z(φ) the unique positive root of the equation

(1.5) ν(A)φ(1/z) = 1 (z ≥ 0).

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let A be defined by (1.1) and let conditions (1.2) and (1.3) hold.
Then for any µ ∈ σ(D) there is a µ0 ∈ σ(A), such that

(1.6) |µ0 − µ| ≤ z(φ).

The proof of this theorem is presented in the next section.

Corollary 1.2. Under the hypothesis of Theorem 1.1, the following inequalities are
true:

(1.7) rs(A) ≥ max{0, rs(D)− z(φ)} if D is bounded,

(1.8) rl(A) ≤ rl(D) + z(φ) and

(1.9) α(A) ≥ α(D)− z(φ) if α(D) <∞.

Indeed, take µ in such a way that |µ| = rs(D). Then due to (1.6), there is
µ0 ∈ σ(A), such that |µ0| ≥ rs(D)−z(φ). Hence, (1.7) follows. Similarly, inequality
(1.8) can be proved.

Furthermore, take µ in such a way that Re µ = α(D). Due to (1.6) for some µ0 ∈
σ(A), |Re µ0 − α(D)| ≤ z(φ). So, either Re µ0 ≥ α(D) or Re µ0 ≥ α(D) − z(φ).
Thus, inequality (1.9) is also proved.

We will say that operatorA is unstable if α(A) > 0. Due to the previous corollary,
under the hypothesis of Theorem 1.1, A is unstable, provided α(D)− z(φ) > 0.
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2. Proof of Theorem 1.1

1. Let B be a linear operator in H . Recall that the quantity

svA(B) ≡ sup
µ∈σ(B)

inf
λ∈σ(A)

|µ− λ|

is called the spectral variation of B with respect to A. Furthermore, let linear
operators A and B in H satisfy the conditions Dom(A) = Dom(B) and qB ≡
‖A−B‖ <∞. In addition, assume that condition (1.3) holds. Then due to Lemma
4.1.4 [Gi1], the inequality

(2.1) svA(B) ≤ z(φ, qB)

is true, where z(φ, qB) is the extreme right-hand (positive) root of the equation
qBφ(1/z) = 1. We will say that a maximal resolution of the identity P0(.) belongs
to a linear operator A0 if P0(t) projects onto invariant subspaces of A0 for all t ∈ R.
If a maximal resolution of the identity P0(.) belongs to a normal operator D0 and
to a nilpotent operator V0, clearly it also belongs to the operator A0 = D0 +V0 and
due to Lemma 3.2.12 from [Gi1],

(2.2) σ(A0) = σ(D0).

2. Furthermore, thanks to (1.2), P (.), belongs to operators D and V+. Take
B+ = D + V+. Then due to (2.2), σ(B+) = σ(D). Relation (2.1) implies that, for
any µ ∈ σ(D), there is µ0 ∈ σ(A), such that

(2.3) |µ0 − µ| ≤ z−,

where z− is the unique positive root of the equation

‖V−‖φ(1/z) = 1 (z ≥ 0).

Now, take B− = D+V−. Put P̃ (t) = I−P (t). Clearly, P̃ (.) is a maximal resolution
of the identity. Moreover, according to (1.2), P̃ (t)Dh = DP̃ (t)h (h ∈ Dom(D))
and

(I − P̃ (t))V−(I − P̃ (t)) = (I − P̃ (t))V−.

Hence, P̃ (t)V−P̃ (t) = V−P̃ (t) (t ∈ R). So P̃ (.) belongs to operators D and V−.
Therefore, due to relation (2.2), we get σ(B−) = σ(D). In addition, inequality (2.1)
implies that for any µ ∈ σ(D), there is µ0 ∈ σ(A) such that

(2.4) |µ0 − µ| ≤ z+,

where z+ is the unique positive root of the equation ‖V+‖φ(1/z) = 1 (z ≥ 0), since
‖A−B−‖ = ‖V+‖. Relations (2.3) and (2.4) prove the required result.

3. Finite-dimensional operators

Let Cn be an n-dimensional Euclidean space with the Euclidean norm ‖.‖. In
this section A = (ajk)nj,k=1 is an n × n-matrix. Let us introduce the following
quantity (Henrici’s departure from normality):

g(A) = (N2(A)−
n∑
k=1

|λk(A)|2)1/2,
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where λk(A) (k = 1, ..., n) are the eigenvalues taken with their multiplicities, and
N(.) is the Hilbert-Schmidt (Frobenius) norm N2(A) = Trace A∗A. The asterisk
means the adjointness. As it is proved in [Gi3, p. 353], for any regular λ,

(3.1) ‖(λI −A)−1‖ ≤
n−1∑
k=0

gk(A)γn,k
ρk+1(A, λ)

.

Here

γn,0 = 1, γn,p = [Cpn−1(n−1)−p]1/2, where Cpn−1 =
(n− 1)!

p!(n− 1− p)! (p = 1, ..., n−1)

are the binomial coefficients. Simple calculations show that

γn,p ≤
1√
p!

(p = 1, ..., n− 1).

If A is a normal matrix AA∗ = A∗A, then g(A) = 0. Moreover,

g(A) ≤
√

1/2N(A∗ −A);

cf. [Gi1, Corollary 1.3.7].
Let V+, V− be the upper and lower triangular parts of A:

V+ =


0 a12 . . . a1n

0 0 . . . a2n

. . . . . .
0 0 . . . 0

 and V− =


0 0 . . . 0
a21 0 . . . 0
. . . . . .
an1 an2 . . . 0

 .

Denote by zn(A) the unique positive root of the equation

(3.2) zn(A) = ν(A)
n−1∑
k=0

gk(A)γn,kzn−k−1

with ν(A) defined by (1.4).

Theorem 3.1. Let A = (ajk) be an n× n-matrix. Then for any k = 1, ..., n, there
is an eigenvalue µ0 of A, such that |µ0 − akk| ≤ zn(A). Moreover, the following
inequalities are true:

rs(A) ≥ max{0, max
k=1,...,n

|akk| − zn(A)},(3.3)

rl(A) ≤ min
k=1,...,n

|akk|+ zn(A), and α(A) ≥ max
k=1,...,n

Re akk − zn(A).

Proof. Let {Pk}nk=1 be the projectors defined by

Pkh = column [h1, h2, ..., hk, 0, ..., 0]

for an arbitrary vector h = column [h1, h2, ..., hn] ∈ Cn. Then {Pk}nk=1 is the
maximal resolution of the identity. Moreover, conditions (1.2) are valid, where D
is the main diagonal of matrix A, and V+ and V− are the pointed upper and lower
triangular parts.

Equation (3.2) is equivalent to the following one:

ν(A)
n−1∑
k=0

gk(A)γn,kz−k−1 = 1.

Now, taking into account inequality (3.1), we get the required result by virtue of
Theorem 1.1 and Corollary 1.2. �
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Put

wn(A) = ν(A)
n−1∑
k=0

gk(A)γn,k.

Due to the trivial Lemma 1.11.1 [Gi3], zn(A) ≤ δn(A), where

δn(A) = n
√
wn if wn(A) ≤ 1 and δn(A) = wn if wn(A) ≥ 1.

Now Theorem 3.1 implies

rs(A) ≥ max
k=1,...,n

|akk| − δn(A),(3.4)

rl(A) ≤ min
k=1,...,n

|akk|+ δn(A), and α(A) ≥ max
k=1,...,n

Re akk − δn(A).

Recall that for non-negative matrices Frobenius has derived the following lower
estimate:

(3.5) rs(A) ≥ r̃(A) ≡ min
j=1,...,n

n∑
k=1

ajk;

cf. [MM, Chapter 3, Section 3.1]. Relation (3.4) improves estimate (3.5) in the
case |ajk| = ajk (j, k = 1, ..., n) provided maxk akk−δn(A) > r̃(A). That is, (3.4) is
sharper than (3.5) for matrices which are close to triangular ones, since δn(A)→ 0
when V− → 0 or V+ → 0. It should be noted that in the cases where the largest
(or rightmost, or smallest modulus) Gerschgorin circle is disjoint from the others,
inequality (3.5) provides bounds that bear an even closer resemblance to inequality
(3.4).

Note that in [Gi2, Gi6] the new upper estimates for the spectral radius of matrices
were established. They improve the well-known results for matrices which are close
to triangular ones.

Furthermore, due to inequality (3.3) matrix A is unstable, provided

max
k=1,...,n

Re akk − zn(A) > 0.

The latter result supplements the Rorhbach theorem [MM, Chapter 3, Section
3.3.3].

4. Operators with Hilbert-Schmidt Hermitian components

In this section it is assumed that A has the Hilbert-Schmidt imaginary compo-
nent AI ≡ (A−A∗)/2i:
(4.1) N2(AI) = Trace A2

I <∞
where N(.) is the Hilbert-Schmidt norm, again.

Under (1.1), denote by zH(A) the unique non-negative root of the equation

(4.2) ν(A)
∞∑
k=0

(
√

2N(AI))k√
k!zk+1

= 1

where ν(A) is defined by (1.4).

Theorem 4.1. Let relations (1.1), (1.2) and (4.1) hold. Then for any µ ∈ σ(D),
there is a µ0 ∈ σ(A), such that |µ0 − µ| ≤ zH(A). Moreover, relations (1.7)-(1.9)
are true with zH(A) instead of z(φ).
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Proof. Condition (4.1) means that A is quasi-Hermitian. That is, it is the sum of
a self-adjoint operator and a compact one. So A is simulteneously a quasinormal
operator. Let us use the inequality

(4.3) ‖(λI −A)−1‖ ≤
∞∑
k=0

(
√

2N(AI))k√
k!ρk+1(A, λ)

(λ 6∈ σ(A));

cf. [Gi1, Theorem 3.4.2]. Now the required result is due to Theorem 1.1 and
Corollary 1.2. �

Further, for a constant a > 0, the Schwarz inequality implies

(4.4) (
∞∑
k=0

ak√
k!

)2 = (
∞∑
k=0

2k/2ak

2k/2
√
k!

)2 ≤
∞∑
j=0

2−j
∞∑
k=0

2ka2k

k!
= 2exp [2a2].

Now inequality (4.3) yields

(4.5) ‖(λI −A)−1‖ ≤
√

2ρ−1(A, λ) exp [
2N2(AI)
ρ2(A, λ)

] (λ 6∈ σ(A)).

Hence, it follows that zH(A) ≤ z1H(A) where z1H(A) is the extreme right-hand
(unique positive and simple) root of the equation

(4.6)
√

2ν(A)z−1exp [2z−2N2(AI)] = 1.

We need the following simple

Lemma 4.2. The unique positive root z0 of the equation

(4.7) zez = a (a = const > 0)

satisfies the estimate

(4.8) z0 ≥ ln [1/2 +
√

1/4 + a ].

If, in addition, the condition a ≥ e holds, then

(4.9) z0 ≥ ln a− ln ln a.

Proof. Since z ≤ ez − 1 (z ≥ 0), we arrive at the relation a ≤ e2z0 − ez0 . Hence,
ez0 ≥ r1,2, where r1,2 are the roots of the polynomial y2 − y − a. This proves
inequality (4.8).

Furthermore, if the condition a ≥ e holds, then z0e
z0 ≥ e and z0 ≥ 1. Now (4.7)

yields ez0 ≤ a and z0 ≤ ln a. So a = z0e
z0 ≤ ez0 ln a. Hence, inequality (4.9)

follows. �

Clearly, (4.6) is equivalent to the equation

(4.10) 2ν2(A)z−2exp [4z−2N2(AI)] = 1.

Denote aH(A) ≡ 2N2(AI)ν−2(A) and substitute z2 = 4N2(AI)x−1 in (4.10). Then
we have xex = aH(A). Now Lemma 4.2 implies zH(A) ≤ z1H(A) ≤ δH(A), where

(4.11) δH(A) =
2N(AI)

[ln (1/2 +
√

1/4 + 2N2(AI)ν−2(A)) ]1/2
.

Clearly, δH(A)→ 0, if either V− → 0 or V+ → 0.
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Furthermore, Theorem 4.1 implies

Corollary 4.3. Let relations (1.1), (1.2) and (4.1) hold. Then for any µ ∈ σ(D),
there is a µ0 ∈ σ(A), such that |µ − µ0| ≤ δH(A). Moreover, relations (1.7)-(1.9)
hold with δH(A) instead of z(φ).

5. Operators with Neumann-Schatten Hermitian components

In this section it is assumed that the Hermitian component AI = (A − A∗)/2i
belongs to the Neumann-Schatten ideal C2p with some integer p > 1:

(5.1) Np(AI) = [Trace A2p
I ]1/2p <∞.

Here Np(.) is the norm of ideal C2p:

Np(K) = [Trace (K∗K)p]1/2p (K ∈ C2p).

So N1(.) = N(.) is the Hilbert-Schmidt norm. Denote

βp = 2(1 +
2p

exp(2/3)ln2
) and gp(A) = βpNp(AI) (p > 1).

The constant βp shows the relation between Np(V ) and Np(AI), where V is the
nilpotent part of operator A satisfying condition (5.1) (see [Gi1], Lemma 3.4.9).

Let zp(A) be the unique positive root of the equation

(5.2) ν(A)
p−1∑
m=0

∞∑
k=0

gpk+m
p (A)

√
k!zpk+m+1

= 1

where ν(A) is defined by (1.4), again.

Theorem 5.1. Let relations (1.1), (1.2) and (5.1) hold. Then for any µ ∈ σ(D),
there is a µ0 ∈ σ(A), such that |µ0− µ| ≤ zp(A). Moreover, inequalities (1.7)-(1.9)
are true with zp(A) instead of z(φ).

Proof. Condition (5.1) means that A is quasi-Hermitian. So it also is a quasinormal
operator. Let us use the estimate

(5.3) ‖(A− λI)−1‖ ≤
p−1∑
m=0

∞∑
k=0

gkp+mp (A)

ρpk+m+1(A, λ)
√
k!

for all regular λ;

see [Gi1, Theorem 3.4.8]. Now the required result is due to Theorem 1.1 and
Corollary 1.2. �

Due to inequalities (4.4) and (5.3),

(5.4) ‖(A− λI)−1‖ ≤
√

2
p−1∑
m=0

gmp (A)
ρm+1(A, λ)

exp [
g2p
p (A)

ρ2p(A, λ)
].

Hence, zp(A) ≤ z̃p(A) where z̃p(A) is the unique positive root of the equation

(5.5)
√

2ν(A)
p−1∑
m=0

gmp (A)
zm+1

exp [
g2p
p (A)
z2p

] = 1.

Put

cp =
g2p
p (A)

2pp!ν2p(A)p2p−1
.
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Lemma 5.2. With the notation

δp(A) =
gp(A)(2p)1/2p

[ln [1/2 +
√

1/4 + cp ]1/2p
,

the inequality z̃p(A) ≤ δp(A) is valid.

Proof. By the Hölder inequality
p−1∑
m=0

gm+1
p (A)
zm+1

≤ l[
p−1∑
m=0

g
2p(m+1)
p (A)
z2p(m+1)

]1/2p

where l = p1−1/2p. Thus,

(5.6)
p−1∑
m=0

gm+1
p (A)
zm+1

≤ l[p!
p−1∑
m=0

g
2p(m+1)
p (A)
m!z2p(m+1)

]1/2p ≤ l[p!(exp [
g2p
p (A)
z2p

]− 1)]1/2p.

According to (5.5) with z = z̃p(A), we get

1 =
√

2ν(A)g−1
p

p−1∑
m=0

gm+1
p (A)
zm+1

exp [
g2p
p (A)
2zp

]

≤ l
√

2ν(A)g−1
p [p!(exp [

g2p
p (A)
zp

]− 1)]1/2p exp [
g2p
p (A)
z2p

].

Hence
1 ≤ p![l

√
2ν(A)g−1

p ]2p(x − 1)x = c−1
p (x− 1)x,

where

x = exp [
2p g2p

p (A)
z2p

].

Solving the inequality c−1
p x(x− 1) ≥ 1, we can see that x must be larger than both

roots of the quadratic x2 − x− cp. Thus,

exp [
2pg2p

p (A)

z2p
p (A)

] ≥ 1/2 +
√

1/4 + cp.

This proves the result. �

Now the latter lemma and Theorem 5.1 imply

Corollary 5.3. Let relations (1.1), (1.2) and (5.1) hold. Then inequalities (1.7)-
(1.9) are true with δp(A) instead of z(φ).

6. Examples

6.1. Integral operators. Consider in H = L2[0, 1] an integral operator A defined
by

(6.1) (Au)(x) = a(x)u(x) +
∫ 1

0

K(x, s)u(s)ds (u ∈ L2[0, 1]; x ∈ [0, 1])

where a(.) is a real bounded measurable scalar-valued function, and K is a scalar
Hilbert-Schmidt kernel: ∫ 1

0

∫ 1

0

|K(x, s)|2 ds dx <∞.
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Take (Du)(x) = a(x)u(x) and define P (t) for 0 ≤ t ≤ 1 by

(P (t)u)(x) = 0 for t < x ≤ 1 and (P (t)u)(x) = u(x) for 0 ≤ x < t.

In addition, put P (t) = I for t > 1 and P (t) = 0 for t < 0. Then, relations (1.1)
and (1.2) are valid with

(V+u)(x) =
∫ 1

x

K(x, s)u(s)ds; (V−u)(x) =
∫ x

0

K(x, s)u(s)ds

(u ∈ L2[0, 1]; x ∈ [0, 1]). Moreover,

N2(V+) =
∫ 1

0

∫ 1

x

|K(x, s)|2 ds dx; N2(V−) =
∫ 1

0

∫ x

0

|K(x, s)|2ds dx.

Clearly,

N2(AI) =
∫ 1

0

∫ 1

0

|K(x, s)−K(s, x)|2ds dx/4.

According to (1.4) and (4.11), put ν(A) = min {N(V−), N(V+)} and

(6.2) δH(A) =
2N(AI)

[ln (1/2 +
√

1/4 + 2N2(AI)ν−2(A) )]1/2
.

Due to Corollary 4.3, for the integral operator (6.1), the following relations are true:

rs(A) ≥ max{0, sup
x∈[0,1]

|a(x)| − δH(A)},

rl(A) ≤ inf
x∈[0,1]

|a(x)|+ δH(A) and α(A) ≥ sup
x∈[0,1]

a(x)− δH(A).

About the upper bounds for the spectral radius of integral operators see, for in-
stance, [Kr], [Gi4], [Gi5] and the references therein.

6.2. Matrix operators. Let {ek}∞k=1 be an orthogonal normed basis in H . Let A
be a linear operator in H represented by a matrix with the entries

(6.3) ajk = (Aek, ej) (j, k = 1, 2, ...),

where (., .) is the scalar product. Take P (t) = {Pk}∞k=1, where Pk are defined by

Pk =
k∑
j=1

(., ej)ej .

In the considered case V+, V− and D are the upper triangular, lower triangular, and
diagonal parts of A, respectively:

(V+ek, ej) = ajk for j < k, (V+ek, ej) = 0 for j > k,

(V−ek, ej) = ajk for j > k, (V−ek, ej) = 0 for j < k,

(Dek, ek) = akk, (Dek, ej) = 0 for j 6= k (j, k = 1, 2, ...).

Clearly, conditions (1.2) hold. Let the diagonal entries akk (k = 1, 2, ...) be real and
∞∑
j=1

∞∑
k=1, k 6=j

|ajk|2 <∞.



3746 M. I. GIL’

Then AI and V± are Hilbert-Schmidt operators

N2(AI) =
∞∑
j=1

∞∑
k=1

|ajk − ajk|2/4 <∞,

N2(V−) =
∞∑
j=1

j−1∑
k=1

|ajk|2 <∞, N2(V+) =
∞∑
j=1

∞∑
k=j+1

|ajk|2 <∞.

Due to Corollary 4.3, for the matrix operator (6.3), the following relations are true:

rs(A) ≥ max{0, sup
k
|akk| − δH(A)},(6.4)

rl(A) ≤ inf
k
|akk|+ δH(A) and α(A) ≥ sup

k
akk − δH(A)(6.5)

where δH(A) is defined by (6.2). So matrix A is unstable, provided maxk akk −
δH(A) ≥ 0. For non-negative matrices the following estimate is well known [Kr,
inequality (16.15)]:

(6.6) rs(A) ≥ r̃∞(A) ≡ min
j=1,...,∞

∞∑
k=1

ajk.

Relation (6.4) improves estimate (6.6) in the case |ajk| = ajk (j, k = 1, 2, ...) pro-
vided maxk akk − δH(A) > r̃∞(A). That is, (6.4) is sharper than (6.6) for matrices
which are close to triangular ones, since δH(A)→ 0 when V− → 0 or V+ → 0.
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